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Abstract – Non-Gaussian statistics of large-scale fields are routinely observed in data from atmo-
spheric and oceanic campaigns and global models. Recent direct numerical simulations (DNSs)
showed that large-scale intermittency in stably stratified flows is due to the emergence of spo-
radic, extreme events in the form of bursts in the vertical velocity and the temperature. This
phenomenon results from the interplay between waves and turbulent motions, affecting mixing.
We provide evidence of the enhancement of the classical small-scale (or internal) intermittency
due to the emergence of large-scale drafts, connecting large- and small-scale bursts. To this aim
we analyze a large set of DNSs of the stably stratified Boussinesq equations over a wide range
of values of the Froude number (Fr ≈ 0.01 − 1). The variation of the buoyancy field kurtosis
with Fr is similar to (though with smaller values than) the kurtosis of the vertical velocity, both
showing a non-monotonic trend. We present a mechanism for the generation of extreme vertical
drafts and vorticity enhancements which follows from the exact equations for field gradients.

Introduction. – A characteristic feature of turbulent
flows, including geophysical flows, is the so-called internal
(or small-scale) intermittency, producing localized intense
variations of the energy dissipation and of field gradients
[1], as observed in many instances in the atmosphere [2],
the ocean [3, 4], and in laboratory experiments and in di-
rect numerical simulations (DNSs). The Kolmogorov re-
fined theory [5] of homogeneous isotropic turbulence (HIT)

relates this phenomenon to the anomalous scalings of the
structure functions [5]. Internal intermittency is also at
the origin of the non-Gaussian behavior of the probabil-
ity distribution functions (PDFs) of small-scale turbulent
velocity fluctuations. But an accurate modeling of in-
termittency in turbulence remains a challenging question.
Numerous attempts have been made to model this depar-
ture from Gaussianity, as for instance with log-normal or

p-1

ar
X

iv
:2

10
6.

07
57

4v
1 

 [
ph

ys
ic

s.
fl

u-
dy

n]
  1

4 
Ju

n 
20

21



F. Feraco, R. Marino, L. Primavera, A. Pumir, P.D. Mininni et al.

log-Lévy models [6]. When shear waves are present, it
was shown that intermittency is again a major feature of
the small-scale behavior in these flows [7], although the
anomalous exponents differ from those obtained in HIT,
showing a lack of dependence with the imposed shear.

More generally, intermittent events at large scales have
been observed in clear air turbulence with patches that
can span up to 100 km horizontally and 1 km vertically
[9], in the vertical velocity and temperature in atmo-
spheric mesoscales [10], in the mesosphere-lower thermo-
sphere [11], in the ocean (in observations [12] and models
[16]), and in DNSs [13,14,19] where large-scale bursts de-
velop in a certain parameter space. Indeed, [14] (F18 here-
after) demonstrated that the vertical velocity w and the
buoyancy θ (proportional to potential temperature fluctu-
ations) are highly intermittent at large scales in DNSs of
the Boussinesq equations. This phenomenon takes place
in a range of the Froude number Fr compatible with val-
ues in the atmosphere and the oceans. Large-scale inter-
mittency was found both for Eulerian and Lagrangian ve-
locities, demonstrating the importance of large-scale flow
structures. In turn, these structures were shown to be as-
sociated with the most unstable regions within the fluid,
affecting its mixing properties [14]. More recently it was
shown that large-scale intermittency is present also in ro-
tating stratified turbulent flows, including situations in
quasi-geostrophic balance [15,21].

The purpose of this study is to connect large- and small-
scale intermittency in stably stratified turbulence, using
the DNS database of purely stratified flows from F18. We
analyze fourth-order moments of the Eulerian velocity and
buoyancy fields. With these fields we show the connection
between intermittent dynamics at different scales, and how
intermittency and the emergence of structures in the flow
are modulated by the Froude number.

Methods. – The results presented here are based on
several DNSs of the Navier-Stokes equations in the Boussi-
nesq framework in presence of stable stratification. To
ensure incompressibility, the velocity field u satisfies the
condition ∇ · u = 0. The dimensionless equations are:

∂tu + (u · ∇)u = −∇p−Nθẑ + F + ν∇2u (1)
∂tθ + u · ∇θ = Nw + κ∇2θ, (2)

where ν and κ are respectively the kinematic viscosity
and the thermal diffusivity. For all the runs the Pran-
dlt number is Pr = ν/κ = 1 with ν = 10−3. N is the
Brunt-Väisälä frequency, associated to the background po-
tential temperature stratification, kept constant through-
out the computational domain, thus representing the pa-
rameter governing the imposed stable stratification. The
initial conditions consist of vanishing buoyancy fluctua-
tions (θ = 0) and a velocity field with kinetic energy ran-
domly distributed on spherical shells with wavenumbers
kF ∈ [2, 3] in Fourier space. A random isotropic me-
chanical forcing F is applied to the velocity field at the

same wavenumbers [20]. We define the dimensionless pa-
rameters Re = UL/ν and Fr = U/LN respectively as
the Reynolds and Froude numbers, where U and L are
the flow characteristic velocity and integral scale. The
buoyancy Reynolds number RB ≡ ReFr2 measures the
relative strength of buoyancy to dissipation and is com-
monly used to identify regimes where waves (RB ≤ 10)
or turbulence (RB ≥ 102) dominate. We integrated the
equations numerically using the Geophysical High-Order
Suite for Turbulence (GHOST), a hybrid MPI-, OpenMP-
and CUDA-parallelized pseudo-spectral code [18] that can
generate flows in a triply-periodic domains (as in the runs
under study) or with non-periodic boundary conditions
in one direction [17]. Seventeen runs were performed on
isotropic grids of 5123 points, with the size of the peri-
odic three-dimensional computational box equal to 2π,
each run with a different value of N . The statistics of
u = (u, v, w) and θ are characterized by their dimension-
less fourth-order moment, the kurtosis,

Kα =
〈(α− ᾱ)4〉
〈(α− ᾱ)2〉2

, (3)

with α = u, v, w, θ, or field gradients. Averages were
taken in all cases over the entire spatial domain and for
≈ 8 turnover times τNL = L/U after the peak of dissipa-
tion was reached. The reference value of the kurtosis for
Gaussian processes is 3, thus values Kα > 3 correspond to
leptokurtic PDFs with fat tails and a higher probability of
extreme values. As seen in F18, u and v show no large-
scale intermittency, their kurtosis never exceeding 3, and
thus with nearly Gaussian PDFs as in HIT, or, in fact,
slightly sub-Gaussian up to Fr ≈ 0.2. However, in F18 it
was shown that w and θ develop strong events in the range
0.07 ≤ Fr ≤ 0.1, with Kw,θ > 3. Table 1 gives relevant
quantities and the governing parameters for each run.

Results. – The Eulerian vertical velocity w kurtosis
for runs in Table 1 follows a non-monotonic dependence
on Fr with a peak at Fr ≈ 0.08; see Fig. 1 (top). The
figure also shows that Kθ exhibits a qualitatively similar
dependence with a peak at Fr ≈ 0.08. The value of Kθ

at the peak, however, is significantly smaller than that of
Kw. The buoyancy field θ is therefore intermittent at large
scales, with the emergence of localized bursts making its
PDF non-Gaussian in the range Fr ∈ [0.07 − 0.1], corre-
sponding to runs 7 to 12 in Table 1. As a reference, in the
atmosphere at horizontal scales of 100 km, Fr ≈ 0.01 on
the average, but values in the range mentioned above are
not unusual (e.g., up to 0.5 in clear air turbulence [9] with
turbulent patches of 1 to 100 km).

The PDFs of both w and θ are shown in Fig. 2 (left) for
run 9, exhibiting fatter tails than the Gaussian reference.
The small asymmetry of the PDFs is a consequence of the
limiting sampling, and is expected to disappear if statis-
tics are accumulated over much longer times. A Gaussian
behavior, to the extent that Kα ≈ 3 (α = w, θ), is recov-
ered in the runs with large Fr (weakly stratified) and for

p-2



Connecting Large-Scale Velocity and Temperature Bursts with Small-Scale Intermittency in Stratified Turbulence

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Re/103 3.9 3.8 3.8 3.8 3.8 3.8 3.9 3.8 3.8 3.8 3.7 3.6 3.0 2.6 2.6 2.8 2.9
Fr 0.015 0.026 0.030 0.038 0.044 0.051 0.068 0.072 0.076 0.081 0.098 0.11 0.16 0.19 0.28 0.56 0.93
RB 0.87 2.5 3.4 5.6 7.3 10.2 17.7 19.7 22.1 25.2 35.9 47.5 75.2 90.9 201 895 2560

Ku 2.3 2.4 2.3 2.1 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.5 2.6 2.9 2.8 2.8
Kv 2.2 2.3 2.2 2.3 2.1 2.0 2.1 2.1 2.1 2.1 2.1 2.1 2.6 2.8 2.7 2.8 2.8
Kw 3.1 3.2 3.1 3.1 3.2 3.6 7.3 8.6 10.4 9.1 8.8 5.3 3.9 3.5 3.3 3.0 2.9
Kθ 3.3 3.4 3.4 3.5 3.5 3.6 4.0 4.3 4.3 4.1 4.1 3.6 3.1 2.9 2.8 2.7 2.7

K∂xθ 4.7 4.9 6.5 11.7 16.0 45.6 118.0 101.5 112.2 71.7 53.0 28.6 17.5 15.9 15.6 13.6 13.5
K∂yθ 5.0 5.2 6.1 14.9 58.7 157.0 165.0 140.0 150.1 88.1 84.2 34.5 18.5 15.3 16.0 13.5 13.1
K∂zθ 9.8 6.3 6.5 6.4 6.1 6.5 8.7 8.8 10.3 8.7 11.1 8.7 10.2 11.8 16.9 15.3 15.3

K∂xu 4.0 4.5 4.0 4.0 7.4 9.9 49.6 37.3 38.6 33.9 26.0 16.3 7.3 6.03 5.5 5.7 5.8
K∂yv 3.9 4.6 4.6 6.1 22.7 59.5 83.5 71.2 57.4 41.2 35.9 19.2 7.5 6.0 5.5 5.7 5.8
K∂zw 3.4 3.7 5.3 27.5 67.4 90.1 88.4 73.7 56.7 38.3 25.6 13.0 6.0 5.4 5.2 5.6 5.8

K∂yu 5.2 5.9 5.8 6.0 7.7 24.3 58.5 55.7 48.2 51.0 44.6 25.1 10.1 8.6 8.1 8.6 8.8
K∂zu 4.4 3.9 4.0 4.0 4.01 3.9 3.8 3.9 3.9 3.8 4.2 4.3 6.0 6.9 7.5 8.3 8.7
K∂xv 4.3 5.0 4.3 5.2 6.6 8.8 60.7 39.4 56.4 41.4 36.5 23.0 10.1 8.2 7.9 8.5 8.7
K∂zv 3.8 4.2 3.7 3.9 3.8 3.7 3.9 3.8 3.9 3.8 4.0 4.1 5.9 6.9 7.5 8.4 8.6
K∂xw 5.0 5.6 8.4 25.1 61.9 176.5 361.6 225.0 258.4 133.8 78.4 35.8 11.3 8.7 7.7 8.3 8.7
K∂yw 5.4 6.1 10.8 41.4 222.1 354.0 236.0 191.1 199.1 112.1 89.5 36.6 11.6 8.8 7.7 8.5 8.6

Table 1: Governing parameters for each run, namely the Reynolds number Re, the Froude number Fr, and the buoyancy
Reynolds number RB, and kurtosis of the fields and their gradients, Kα (α = u, v, w, θ, and spatial derivatives ∂x, ∂y and ∂z
of all these quantities) for all the runs. Values are averaged for ≈ 8 turnover times after the peak of dissipation in each run.
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Figure 1: For all runs in Table 1, the figure shows as a function of Fr: the kurtosis of u, v, w (top-left) and θ (top-right);
the kurtosis of the diagonal elements of the velocity gradient tensor ∂xu, ∂yv, ∂zw (bottom-left), and of the components of the
buoyancy gradient ∂xθ, ∂yθ, and ∂zθ. Note that Ku, Kv, and K∂zθ do not show any sizable dependence with Fr, the first two
being always compatible with Gaussian or sub-Gaussian statistics.

Fr < 0.04 (strongly stratified). The kurtosis of u and v on
the other hand show almost no dependence on Fr, with
values of Ku and Kv close to 3 for all runs (see Fig. 1).
The corresponding PDFs (not shown) are in good agree-
ment with Gaussian or sub-Gaussian distributions. To
characterize the spatial distribution of the intermittent ex-
treme events in w and θ, emerging within the flow with the
passage of the time, we computed two-dimensional (2D)
histograms of these fields accumulated in time (i.e., us-
ing several DNS temporal outputs), displayed in Fig. 3 for
runs 3, 9, and 15. Events are counted as a function of
their height and of the standardized values (i.e., normal-

ized to have zero mean and unitary standard deviation) of
w and θ, and the counts normalized to get a probability.
The standard deviation σα (α = w, θ) used to normalize
each field is computed on the three-dimensional domain
at the time of each output. In this representation, in the
absence of extreme events, assuming a Gaussian statistics,
over 99.7% of all the points would accumulate in a verti-
cal stripe of the histograms between ±3α/σα. However,
velocity and buoyancy bursts induce the presence of many
events with |α|/σα > 3. Histograms for run 9 are shown
in particular in Fig. 3 (middle) and provide several rele-
vant information: (1) The values of vertical velocity and
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Figure 2: (Left) PDFs of w and θ for run 9 with Kw = 10.4,
Kθ = 4.3. (Right) PDFs of ∂zw and ∂zθ for the same run,
with K∂zw = 56.7, K∂zθ = 10.3. Shaded areas exceeding the
Gaussian PDF (black lines) indicate the probability for extreme
values in the fields and their gradients. Fields are normalized
by their standard deviation to allow direct comparison.

buoyancy with the highest probability to occur are those
between ±3σα. However, extreme events (outside that
range) are rather abundant for both w and θ for all the
runs within the peak of the plot of kurtosis vs. Fr (Fig. 1,
top), and this is true in particular for run 9, for which the
probability to observe events larger than 3σα is 1.06% for
α = w and 0.85% for α = θ, therefore significantly larger
than what expected in the Gaussian case (0.27%). (2)
Extreme events have a higher probability to develop in w
than in θ. Moreover, non-zero probabilities are observed
in w up to ≈ 13σw, whereas in θ only up to ≈ 9σθ. This
is in agreement with the fact that peak values of Kθ are
lower than those of Kw (see Fig. 1, top). Such difference
is probably due to the coupling between w and θ, which
is modulated also by other parameters of the system such
as Re and Fr. (3) The pattern described above is also
observed in the histograms of the other runs within the
range Fr ∈ [0.07− 0.1] (not shown), demonstrating in all
cases that extreme events in w and θ have a probability to
develop over time which is rather independent of height,
as expected given the flow homogeneity.

Top and bottom panels in Fig. 3 also show the his-
tograms for two cases outside the peaks of Kw,θ in Fig. 1,
respectively at lower and higher Froude numbers: Fr =
0.038 (run 3), and Fr = 0.28 (run 15). The pattern here
is significantly different from the one observed for run 9,
with these histograms having almost no points in the re-
gion |α/σα| > 7 (α = w, θ), consistent with the low Kα

detected and the absence of extreme events in the vertical
velocity and buoyancy in these runs. Next we provide ev-
idence of the connection between the large-scale intermit-
tency materializing through the emergence of these bursts
of vertical velocity and buoyancy [13,14], and the classical
internal or small-scale intermittency (evaluated through
the kurtosis of the fields and their gradients). From 1 we
first note that the kurtosis of all components of the veloc-
ity gradient tensor ∂iuj (except for ∂zu and ∂zv) follow
a trend with the Froude number resembling that of the
kurtosis of w and θ, with peaks close to Fr ≈ 0.08. The

Figure 3: 2D histograms of w (left) and θ (right) for three
Froude numbers, in bins of their standardized values and of the
height h (the z-coordinate and direction of gravity). The color
palette shows the probability that a particular field value has to
occur in the plane at altitude h. Red is for the most common
values, light-blue for the rarest (see color bar). The mid panel
corresponds to run 9 which displays extreme events in w and
θ. Top and bottom panels correspond respectively to runs 3 and
15, in which extreme events rarely elop.

kurtosis of the diagonal components of the tensor, K∂xu,
K∂yv, and K∂zw are reported in Fig. 1 (bottom), whereas
kurtosis of the off-diagonal terms are in Table 1, show-
ing how most peak values achieved by K∂iuj

are about
one order of magnitude larger than the peak values of Kw

and Kθ. A similar trend is followed by the kurtosis of
the horizontal buoyancy gradient, K∂xθ and K∂yθ. Sur-
prisingly K∂zθ (see Fig.1, bottom), as the vertical deriva-
tives K∂zu and K∂zv, do not exhibit any definite trend.
This can be understood as ∂zθ is dynamically bounded
and cannot take arbitrarily large values. For ∂zθ ≥ N
buoyancy fluctuations reverse the background stratifica-
tion, and the flow becomes unstable, developing local con-
vection. Thus, as soon as ∂zθ ≈ N the flow destabilizes,
generating fast and strong large-scale drafts, and ∂zθ de-
creases again [22]. Indeed, neglecting viscous effects and
with Dt the Lagrangian derivative,

Dt(∂zθ) = (N−∂zθ)(∂zw)−(∂xθ)(∂zu)−(∂yθ)(∂zv). (4)

Strain in horizontal winds (∂zu and ∂zv) can change ∂zθ,
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Figure 4: Vertical 2D slices (with the insets showing a horizontal slice of 1/4 of the domain at the region of the extreme event)
for run 9. Correlations of θ and w, ω = |ω| and θ, ∂yθ and ∂zv, and ω and ∂yθ are shown (the first quantity in colors, the second
with contours). Contours are at ±3σθ for θ, and ±4σ for all other fields. Gray shaded areas indicate regions with ∂zθ > N .

but the first term on the r.h.s. tends to saturate ∂zθ as
it approaches N [22], albeit for this value other gradients
grow explosively as the local instability develops. Given
the estimated values of the kurtosis, the PDFs of most
gradient tensor elements cannot be Gaussian, as seen in
Fig. 2 (right) for run 9. This is a universal feature in tur-
bulent fluids, and a manifestation of small-scale intermit-
tency, with or without stratification. But in this case, the
large-scale intermittency and extreme events in w and θ
also enhance the extreme values of the field gradients, thus
also enhancing small-scale intermittency. It is also worth
noticing that the statistics of the horizontal velocities u
and v are always Gaussian (or slightly sub-Gaussian) for
all the DNSs in this study, pointing to the fact that the
large-scale intermittent behavior of the sole vertical com-
ponent of the velocity w (and/or of the buoyancy) is able
to enhance small-scale intermittency, as seen from the spa-
tial derivatives both of the velocity and of the buoyancy.
What is then the origin of the large-scale extreme events,
and the link between large-scale intermittent structures
and classical small-scale intermittency?

Large-scale extreme events are generated through a
buoyancy driven instability, which also connects large- and
small-scale dynamics. The visualization in Fig. 4 (left)
shows localized bursts of w, the vertical velocity compo-
nent, and θ (left), with an essentially periodic structure
in the horizontal plane (inset), with a phase difference of
≈ π/2 between the two fields. Fig. 4 (center left) also
reveals that intense values of θ coincide with locations
where vorticity, |ω|, is very strong. These structures can
be understood as a result of an instability in the following
terms. Vertically sheared horizontal winds (VSHWs) [23]
are ubiquitous in the flow, as revealed by Fig. 4 (center
right, with ∂zv and ∂yθ), appearing as horizontal streaks
with strong values of ∂zv. The resulting shear is prone
to Kelvin-Helmholtz instabilities, which creates vertical
modulations of the layers, and passively generate horizon-
tal gradients of θ. A nonlinear amplification of the verti-
cal gradients results from the coupling with the velocity
gradient, as readily seen from Eq. (4). The induced cor-
relation between, e.g., ∂zv and ∂yθ is clearly seen in the
inset of this figure. This mechanism may even lead to val-

ues of ∂zθ ≥ N , therefore bringing heavier fluid on top of
lighter one, resulting in the formation of intense up- and
down-drafts, and to very strong vertical velocity fluctua-
tions (indeed, extreme regions in Fig. 4 also coincide with
regions with ∂zθ ≥ N , as shown by the shaded regions in
the first two insets). This process however saturates as
the first term on the r.h.s. of Eq. (4) prevents ∂zθ from
becoming too large (i.e., the background stratification op-
poses vertical gradients of θ). Also, from Eqs. (1,2), a
fluid element going up (down) results in an increase (de-
crease) of θ following the fluid element, opposing w, and
thus large updrafts (downdrafts) tend to have a phase
shift between w and θ. These motions generate vortic-
ity as Dtω ≈ −N(∂yθx̂ − ∂xθŷ) (where viscous effects,
forcing and vortex stretching were neglected), resulting in
a correlation between |ω| and horizontal gradients of θ,
clearly seen in Fig. 4 (right, with |ω| and ∂yθ). In turn,
the generation of vorticity feeds the small-scale intermit-
tency, giving the link between large-scale events and in-
ternal intermittency. This results in enhanced dissipation,
as volumetric dissipation of kinetic energy is proportional
to the enstrophy which depends on the spatial average of
ω2. And this also explains the conspicuous absence of vor-
tex filaments in stably stratified turbulence, despite their
ubiquity in HIT. In these flows, vortex stretching is not
the main mechanism producing vorticity (as shown, e.g.,
by the absence of the Vieillefosse tail [27] in diagrams of in-
variants of the field gradients [19,22]). Instead, generation
of vorticity is the result of buoyancy, through a mechanism
reminiscent of a large-scale local baroclinic instability.

Thus, large-scale extreme values feed stronger small-
scale intermittency through the generation of vorticity.
And also the small-scale intermittency can be the precur-
sor of the large-scale extreme values of w and θ, through
the billows in the horizontal winds and the amplification
of ∂zθ.

Indeed, this also provides an explanation for the de-
crease of large-scale intermittency for Fr < 0.04. As Fr
decreases, N increases, and it becomes more difficult for
points in the fluid to reach ∂zθ ≈ N . The counterpart of
this process in spectral space, and the coupling of these
two types of intermittency, could be studied using tools as
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those used in [24,25] for HIT. Similarities in the behavior
of K∂xu, K∂yv, and K∂zw (and in the kurtosis of the off-
diagonal components of ∂iuj) also suggest that the small
scales of the large-scale drafts are in a more mixed state,
and in some sense more isotropic (albeit this should not
be confused with a recovery of isotropy as in HIT, as, e.g.,
the vertical velocity has extreme values while horizontal
velocities do not, and passive scalars are known in some
cases not to return, or to return very slowly, to isotropy),
whereas regions outside these patches are less mixed and
even more anisotropic. Such more mixed states enforce the
connection between these patches and local instabilities.

Finally, this intermittent dynamics at large and small
scales is modulated by different regimes explored by the
flow, which can be viewed in terms of the relative strength
of waves and turbulent motions as measured by RB (see
the labels in Fig. 1, indicating the range of RB for the
runs). All simulations with larger values of kurtosis have
RB ∈ [10, 200]. While several theoretical models of small-
scale intermittency for the velocity field in HIT have been
devised, the intermittency considered here couples mul-
tiple scales and combines such intermittency with large-
scale bursts. It is thus not clear a priori how these models
perform in geophysical applications or in the presence of
waves. It was shown in [13] and in F18 that a simple
one-dimensional model stemming from the original work
of Vieillefosse [27], to which the wave terms were added,
behaves remarkably well in reproducing the peak of the
kurtosis of the vertical velocity (Fig. 1). There are also
models that tackle the dynamics of the passive scalar. For
example, in [26], the dispersion of turbulent plumes in
a boundary layer is considered through a model which
allows for a prediction of the PDF of the scalar density
distribution (see also [28]). A generalization of such mod-
els to the Boussinesq framework was presented in [19,22],
and it would be of interest to further extend these models
to properly capture the coupling of small-scale and large-
scale intermittency in stratified flows.

Discussion. – The aim of the present study was to
investigate the large-scale intermittency properties of the
velocity and buoyancy fields in forced stably stratified tur-
bulence, and to show its connection with the more clas-
sical small-scale (or internal) intermittency. To achieve
this goal we exploited a large set of forced DNSs where
solutions of the Boussinesq equations were analyzed us-
ing statistical tools; in particular, the large-scale intermit-
tency of the velocity and buoyancy fields was evaluated by
means of their fourth-order distribution moments (or kur-
tosis), while the small-scale intermittency was quantified
through the kurtosis of field gradients.

Our analysis shows that the buoyancy field θ (propor-
tional to potential temperature variations) is intermittent
at large scales with its kurtosis following the same non-
monotonic trend with Froude number as the kurtosis of
the vertical component of the velocity w. Thus, well-
defined peaks of the kurtosis of both w and θ appear for

Fr ≈ 0.07 − 0.1, with values significantly larger than the
Gaussian reference of 3, indicating the emergence of bursts
of both quantities in stratified turbulence. From the anal-
ysis in Fig. 3 we conclude that the extreme events respon-
sible for this large-scale intermittent behavior in strati-
fied flows can take place at any height and are uniformly
distributed along the direction of stratification for long-
enough DNS integration times.

Moreover, we showed that small-scale intermittency
(i.e., in field gradients) is enhanced in the same range of
Fr as large-scale intermittency, with the peaks of their
kurtosis occurring for Fr ≈ 0.07 − 0.1, and that in indi-
vidual simulations their extreme values takes place at the
same spatial locations as the large-scale patches. We also
provided a mechanism for the generation of the large-scale
events through the growth of billows in the winds, the am-
plification of vertical buoyancy gradients through strain,
the development of overturning, and the generation of vor-
ticity through baroclinicity which feeds the small scales.
This mechanism is consistent with the exact equations for
the evolution of the field gradients. Thus, we showed the
connection between large-scale extreme events, and small-
scale intermittency in the fields ∂xu, ∂yv, ∂zw, the vortic-
ity, and other off-diagonal elements of the velocity gradi-
ent, as well as in ∂xθ and ∂yθ.

Beyond the specific objectives of this study, weather
and climate codes in use today require sophisticated mod-
eling through parameterizations of the unresolved small
scales. Unraveling the link between small-scale intermit-
tency and large-scale enhancement of vertical velocity and
buoyancy is an important element to incorporate in sub-
grid models of geophysical flows, and that raise questions
for future studies. For example, can these strong vertical
shear layers in stratified turbulence (including in the pres-
ence of rotation [21]) be modeled adequately with the sub-
grid parameterization developed for plane-channel flows,
e.g., in [29], improving on the classical Smagorinsky eddy-
viscosity? The fact that the rapid intensification phase
of a hurricane is best predicted by following vertical ve-
locity enhancements leads to think that the small-scale
and large-scale connection through intermittency is also
a factor to be taken into consideration in such models.
This might also allow for a more detailed understanding of
the interplay between the intermittency observed in some
cases in the ocean or in the atmosphere far from the atmo-
spheric or oceanic boundary layers, and the high skewness
and kurtosis found in recent oceanic simulations [4]. For
the atmosphere, based on the range of Froude numbers
for which strong events develop, typical scales are of the
order of 100 km, while in the ocean the scale is of 10 km.
We conclude by stressing that the significance of extreme
events in the atmosphere goes well beyond the scales con-
sidered here [30].
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