
HAL Id: hal-03412893
https://hal.science/hal-03412893

Submitted on 5 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Realistic Preterm Prediction Based on Optimized
Synthetic Sampling of EHG Signal

Jinshan Xu, Zhenqin Chen, Yanpei Lu, Xi Yang, Jinpeng Zhang, Alain Pumir

To cite this version:
Jinshan Xu, Zhenqin Chen, Yanpei Lu, Xi Yang, Jinpeng Zhang, et al.. Realistic Preterm Prediction
Based on Optimized Synthetic Sampling of EHG Signal. Computers in Biology and Medicine, 2021,
136, pp.104644. �10.1016/j.compbiomed.2021.104644�. �hal-03412893�

https://hal.science/hal-03412893
https://hal.archives-ouvertes.fr


Realistic Preterm Prediction Based on Optimized Synthetic Sampling
of EHG Signal
Jinshan XUa,b, Zhenqin Chena, Jinpeng Zhanga, Yanpei Lua, Xi Yanga,∗ and Alain Pumirc

aCollege of Computer Science, Zhejiang University of Technology, Hangzhou 310023, China
bResearch Center for AI Social Experiment, Zhejiang Lab, Hangzhou 311321, China
cLaboratoire de Physique, ENS-Lyon, Lyon 69007, France

ART ICLE INFO

Keywords:
preterm prediction
uterine electrohysterogram
synthetic sampling
sample balance coefficient

ABSTRACT

Preterm labor is the leading cause of neonatal morbidity and mortality and has attracted research
efforts from many scientific areas. The relationship between uterine contraction and the underlying
electrical activity makes the uterine electrohysterogram (EHG) a promising direction for detecting and
predicting preterm birth. Due the scarcity of EHG signals, especially those leading to preterm birth,
synthetic algorithms are used to generate artificial samples of preterm birth type to eliminate bias
in prediction towards normal delivery, at the expense of reducing feature effectiveness in automatic
preterm birth detection based on machine-learning. To address this issue, we quantify the effect of
synthetic samples (balance coefficient) on feature effectiveness and form a general performancemetric
by utilizing several feature scores with relevant weights describing their contributions to class segre-
gation. In combination with the activation/inactivation functions that characterize the effect of the
abundance of training samples on the accuracy of the prediction of on- or off-time delivery, we obtain
an optimal sampling balance coefficient that optimizes the effect of synthetic samples in removing the
bias towards the majority and minimizes the side-effect of reducing the importance of features. More
realistic prediction accuracy was achieved through a series of numerical tests, utilizing the publicly
available TPEHG database, demonstrating the effectiveness of the proposed method.

1. Introduction
Preterm births, defined as babies born at gestational age

of less than 37 weeks, represent a major and growing chal-
lenge for public health systems. Every year, nearly 15 mil-
lions babies, or about 10% of all births worldwide, are born
prematurely. Approximately one million of these premature
babies die from complications that follow preterm birth [1].
Currently, the lack of comprehensive knowledge of themech-
anisms that trigger uterine contraction prevents effective early-
stage treatment of preterm birth. Once delivery has started, it
can no longer be interrupted. Therefore, early detection and
preventive treatments are a promising direction to prevent
preterm births. Commonly used methods of preterm diag-
nosis include Toco-grametry, intra-uterine pressure catheter,
fetal fibronectin, cervical length measurement etc, but none
of these methods provides reliable results [2].

The expulsion of a fetus is a direct consequence of the
strong periodic uterine contractions, which are the result of
the generation and propagation of action potentials [3]. The
corresponding electric signals can be recorded by electrodes
placed on the abdomen of pregnant women, using the elec-
trohysterogram (EHG) technique. Because of the close re-
lationship between uterine contraction and the underlying
electrical activities, EHG provides a new direction for the
development of preterm diagnosis method [4, 5]. For this
reason, several databases of carefully annotated EHG sig-
nals recorded from pregnant women at different stages of
pregnancy have been made publicly available [6, 7, 8]. For
example, the PhysioNet TPEHG database contains record-
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ings from 300 pregnant women at the gestation age of about
26 weeks. Unlike the Icelandic Electrohysterogram data-
base, which uses 16 electrodes to record the electrical sig-
nals, a 4-electrode configuration (E1,E2,E3,E4) was adopted
for TPEHG. To avoid common noises from external sources
like undesired body movements, only differences between
adjacent two electrodes, i.e., S1=E2-E1, S2=E2-E3, S3=E4-
E3 were stored with a sampling frequency of 20 Hz and fil-
tered with different bandwidths to reduce noises.

The availability of datasets and recent progress in ma-
chine learning have led to a number of newmethods of preterm
diagnosis [9, 10, 11]. Overall, preterm diagnosis can be cat-
egorized as a classification problem, i.e. deciding or predict-
ing whether a patient (pregnant woman) is at risk for preterm
birth based on a set of physical examination data (sample)
and the features contained therein. It is natural to expect
that both the abundance of the sample in terms of different
classes and the quality of the features (difference between
classes) are essential to obtain satisfactory classification re-
sults.

In addition to the sample abundance and feature qual-
ity already mentioned, the distribution pattern of samples
among classes is also an important factor affecting classi-
fication performance [12, 13]. Although there are millions
of preterm deliveries worldwide, the proportion of preterm
birth is quite small compared to the total number of births.
This fact is reflected in the composition of the TPEHGdatabase,
in which there are only 38 EHG samples from premature
deliveries and 262 samples from normal term births. Due
to the large difference between the number of samples from
preterm and normal term infants, the application of conven-
tional machine learning algorithms with such extremely im-
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balanced data will tend to classify the minority of patients
into the majority class, i.e., there is a bias towards the ma-
jority [14], which is likely to lead to an inaccurate diagnosis
result [15].

Learning from imbalanced dataset is a very active re-
search topic in the field of machine learning [16, 17]. The
state-of-the-art research methods to deal with imbalanced
data mining problem can be categorized into two directions:
1) over-sampling the minority class or under-sampling the
majority one in order to compensate the imbalance of sam-
ples between classes to be identified; 2) synthesizing artifi-
cial samples from the minority class [18]. The idea behind
under-sampling is quite simple. Only a fraction of the major-
ity data is used. In practical applications, special attention
must be paid to selecting the right samples so that the distri-
bution pattern in the feature space remains unchanged [13].
Although many studies have documented the effectiveness
of under-sampling [19], its use for small datasets is excluded.
To be more precise, under-sampling could significantly re-
duce the number of samples to be used in training the learn-
ing model, which may lead to underestimation. Oversam-
pling simply uses minority samples multiple times. This
makes the data set highly correlated, resulting in magnified
feature variations. Consequently, high computational costs
are required during training process and the trained classi-
fiers might have the overstimation issue [20]. In particular,
it is inappropriate to use very correlated signals, recorded
simultaneously from different electrodes .

On the other hand, synthetic sampling with data genera-
tion methods consists in generating synthetic data that origi-
nate from the minority class. The synthesis method mim-
ics the random distribution of the sample data in the mi-
nority’s feature space, so that the generated samples are as-
sumed to be close to the actual distribution of the minority
in its feature space. Including these samples in the minority
training set eliminates the original imbalance problem, and
therefore removes the classification bias towards the major-
ity. Frequently used synthetic algorithms such as SMOTE
[21] and ADASYN [22], have exhibited some advantages in
real-world applications of preterm diagnosis [10] and oth-
ers [17, 23].

In addition to the abundance of training examples, the
quality of the features is another key factor that contributes to
the precision of the trained classifiers [24]. For this reason,
algorithms are proposed to extract new features that improve
the classification performance [25, 26, 27, 28]. It should be
noted that the effect of imbalance may worsen when new
features are adopted in the training process [29]. Also, when
more synthetic/artificial minority class data is generated, the
representation ability of the features may change. In addi-
tion, as the synthetic samples increase, the noise in the orig-
inal samples may increase. When the classifier is trained
with these datasets, it would overfit [30]. Therefore, adding
synthetic samples may affect the feature quality in a com-
plex way. As a result, the classification performances may
change. Although there has been work on optimizing syn-
thetic algorithms [31, 32], to the best of our knowledge, few

studies address the optimal number of synthetic samples on
classifier accuracy. For this reason, it is necessary to explore
the relationship between the amount of synthetic data and the
quality of features and to find a unified formulation.

In this paper, we examine the relationship between bias
elimination and feature reduction when synthetic samples
are introduced in the training process. We propose an op-
timal synthesis strategy for minority samples by quantifying
the variation in feature importances in terms of the ratio be-
tween available samples in different classes. Our manuscript
is organized as follows: In Section 2, we present some ba-
sic elements that are important for the problem, and analyze
the underlying principles of the widely used synthetic sam-
ple generation algorithms, SMOTE and ADASYN, which
we use to show the importance of finding an optimal sam-
pling ratio between classes when learning from imbalanced
dataset. In Section 3, we further quantify the effect of syn-
thetic samples and formulate the problem of determining the
optimal sample balance coefficient. In Section 4, we verify
the effectiveness of the proposed method by applying it to
EHG based preterm birth prediction numerically. Section 5
concludes the paper.

2. Problem Statement
As explained in the introduction, the strong imbalance

between samples in pathological and normal classes in datasets
leads to an unsatisfactory classification performance, espe-
cially for the pathological class. To avoid this, the prefer-
able machine-learning-based algorithms typically introduce
a certain amount of synthetic preterm sample data to mit-
igate the bias towards majority (normal delivery). At the
same time, however, the possibility of misclassification of
term samples increases. To ensure the representativeness of
the artificial samples, synthetic algorithms are applied to the
entire original minority, i.e., before partitioning into train-
ing and testing subsets. This leads to a high correlation be-
tween training and testing samples, resulting in higher val-
ues of preterm predictive performance than for the original
sample. In this scenario, determining the optimal number of
synthetic samples is crucial, not only for better performance
of a machine-learning based diagnosis method, but also for
more accurate validation of classifier performance.

2.1. Sample balance coefficient and feature score
As stated in Section 1, the balance and abundance of

training samples of different classes are essential to the per-
formance of the classifier. The TPEHG database contains
many more samples corresponding to normal term than to
preterm births, in the ratio (262:38). To train classifiers, it
is essential to generate synthetic (artificial) preterm samples
from the original minority class.

The enrichment of minority samples by applying data
synthesis techniques can improve the classification perfor-
mance to some extent. However, it could also degrade the
classifier performance, since the synthetic data could change
the original pattern of sample distribution in the feature space,
i.e., the boundary in feature space between different classes
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could be blurred. To better quantify the separability of classes
in the different feature spaces, we introduce the following
feature score f is defined as in [33],

f is =

(

x̄+i − x̄i
)2 +

(

x̄−i − x̄i
)2

1
n+−1

∑n+
k=1

(

x+k,i − x̄
+
i

)2
+ 1

n−−1
∑n−
k=1

(

x−k,i − x̄
−
i

)2

(1)

where x+k,i and x
−
k,i denote the measured physical value of

the feature i of sample k, which is in the positive (minor-
ity or preterm birth) class and negative (majority or term )
class, respectively. The quantity x̄i denotes the average value
among all samples, x̄+i is the average value of all n+ positive
(minority or preterm birth) samples, and x̄−i is the average
value of n− negative samples. The numerator of Eq.(1) mea-
sures the distance between the centers of the distributions of
the two classes, while the denominator gives the dispersion
of the samples within each class. In general, f is expresses the
separation between minority class (+) and majority class (-
) in the space corresponding to the specific feature, i. The
larger f is is, the more likely it is that the feature contributes to
class separation, and samples of non-separable classes gives
f is =0. A small value of f is, however, does not imply that
classes are non-separable, as classifiers can map the current
feature in a higher dimensional space.

It is worth mentioning that the feature score explicitly
depends on the size of testing samples. We introduce the
sample balance coefficient � by,

� =
n+
n−

(2)

where n+ and n− are the numbers of samples in the minority
and majority class, respectively, after generating additional
samples with the synthetic algorithms. Note that n+ includes
the number of synthesized samples. In addition, for each
specified classification problem, different features that are
abstracted from samples jointly contribute to the final clas-
sification result. According to (2) and (1), it is appropriate
to define the global feature score Fscore as the weighted sum
of different feature scores f is, i.e.,

Fscore(�) =
N
∑

i
wi ⋅ f

i
s

∑

wi = 1

(3)

where � is the sample balance coefficient defined in (2), the
weights wi ∈ [0, 1] are introduced to represent the impor-
tance of feature i to the classification, andN is the number of
features used in the final classification. By construction, the
definition of (3) links the number of synthetic samples and
the quality of the features. It provides a unified performance
metric which is essential for further investigations. To pro-
ceed, all features are first used to build a forest consisting
of a number of decision trees. Each node in the trees is a
condition on a single feature, which is designed to well sep-
arate the dataset into two subsets. The Gini index measures

the global impurity of the subsets at the node, the higher the
better [34]. A good feature should help to split a tree node
with increased Gini index (Gini information gain). Thus the
contribution of a feature (feature importance score) can be
quantified as the normalized total information gain over tree
nodes in the forest [35].

2.2. Size of the synthesized data and
distinguishability of the features

After introducing the definitions of the sample balance
coefficient � and of the feature score f is /Fscore(�), it is useful
to discuss the properties of the conventional data synthesis
algorithms such as SMOTE or ADASYN, and to test their
feasibility in the application of preterm birth diagnosis using
the TPEHG database.

Although data synthesis algorithms tend to mimic the
natural distribution of the sample in its feature space, the
method used to synthesize samples of the minority class in-
evitably has an impact on the ability of features to discrim-
inate different classes. According to the ADASYN algo-
rithm [22], a synthetic sample ss is generated using a minor-
ity sampe si, and another randomly selected minority one sk
among the k nearest neighbors of si, as ss = si + �(sk − si),
where � is a random number (� ∈ [0, 1]). For each orig-
inal minority sample si, this processed will be repeated for
nsyn(= G ⋅ Δi

∑n+
i Δi

) times, whereG is the total number of syn-
thetic samples to be generated and Δi is the number of mi-
nority samples within the ktℎ nearest neighbors of si. Mani-
festly, ADASYN attempts to synthesize more data from mi-
nority samples that are surrounded by more majorities [22].
As shown in Fig.1 (a), the synthetic samples are more likely
to appear on the left since there are more majority data sam-
ples around these minority ones. Although they are intended
to facilitate the classification by focusing on samples that are
hard to learn from, theywould at the same time result in orig-
inally separated datasets not being discriminated in feature
space.

Contrary to ADASYN, SMOTE does not take into ac-
count the surrounding of the minority samples. For each
minority sample si, its k nearest neighbors are first deter-
mined and stored in an array. A sample sk in the array is
randomly selected to synthesize an artificial sample as ss =
si + �(sk − si), with a random number � ∈ [0, 1] [21]. As
a result, the synthesized samples will concentrate in the re-
gion containingmoreminority samples (see Fig.1(b)), which
implies that the original distribution pattern could be better
maintained, without degrading the feature’s contribution to
the classification.

To see the effect of synthetic sampling on the contri-
bution of features to classification, we apply the aforemen-
tioned two synthetic algorithms to the TPEHG database of
commonly used features obtained directly from PhyioNet
(https://www.physionet.org/content/tpehgdb/1.0.1/): 1) the
root mean square value of the signal (rms); 2) the median
(Fmed) and peak (Fpeak) frequency of the power spectrum;
3) the sample entropy of the signal (Esamp) extracted from
each recorded EHG signals. The 4 electrodes configuration
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Figure 1: Schematic illustration of sample synthetic algo-
rithms. (a) ADASYN tends to synthesize more artificial sam-
ples with the original minorities surrounded with more majority
samples. It might cripple the original separability of samples.
(b) SMOTE algorithm synthesize data point with a randomly
chosen minority sample in its closest neighbors. It is easier to
keep the original sample distribution in feature space.

and bipolar signal recording scheme mean that there are 3
EHG signals for each patients. By combining different dig-
ital filters, 12 versions of each above features can be ex-
tracted. Here, we used signals filtered within the frequency
range from 0.3Hz to 4Hz. This is the frequency range of the
fast wave. The two components fast, i.e., wave low (FWL)
and fast wave high (FLW) are related to the excitability of
the uterus and to the burst pattern of the EHG signal [36].
Applying a feature selection algorithm to each of the fea-
tures extracted from different channels allows us to identify
the optimal combination of channels on which we should ex-
tract the features. In the current study, S1, S2 are selected to
compute Fpeak and rms respectively, and S3 is used for the
calculation of Fmed and Esamp. We use those with the gesta-
tion age less than 37 weeks as the preterm (minority class)
samples.

Fig. 2 shows the variation of the contribution of the fea-
tures to classification, represented by its f is after synthetic
sampling. It can be clearly seen that the peak frequency
gives the highest feature score f is among these four features.
The effectiveness of this feature for classification has been
confirmed by other authors [2, 37, 38]. It is also surprising
that both techniques tend to deteriorate the ability of the fea-
tures to separate the two classes. SMOTE turns out to be bet-
ter, i.e., the feature scores are higher after applying SMOTE
than after applying ADASYN. This is consistent with the
previous analysis of data synthesis mechanics of SMOTE
and ADASYN.

It is also worth noting that the feature classification abil-
ity is sensitive to the number of synthetic samples introduced.

s
s

Original

(a)

(b)

rms Fpeak Fmed Esamp

rms Fpeak Fmed Esamp

0.08

0.06

0.04

0.02

0

0.08

0.06
0.04

0.02

0

f
f

ADASYN SMOTE

Figure 2: Effect of synthetic samples on features’ contribution
to class separation measured using feature score fs. Both syn-
thetic methods weaken features importance with the increase
of synthetic samples. (a) Sample balance coefficient � = 0.3,
(b) � = 0.5

This is evident from Fig. 2, which shows the feature scores
f is after adding synthetic data with different sample balance
coefficients � (see Eq. (2)) � = 0.3, panel (a) and � = 0.5,
panel (b). Adding synthetic samples degrades the ability of
the algorithm to distinguish the different classes. However,
synthetic samples are required to prevent the classification
bias against the minority. Therefore, a trade-off should be
found between the number of synthetic samples and the qual-
ity of the features to optimize the final performance of the
classifiers trained with these data.

3. Determination of optimal sample balance
coefficient
As discussed in Section 2, synthesizing artificial samples

from the minority class is essential for machine-learning-
based preterm early diagnosis, and an optimal balance be-
tween the synthetic data and feature quality must be found.
Intuitively, increasing the number of minority samples by
generating synthetic samples should increase the prediction
accuracy for the minority class and reduce the bias towards
the majority. On the other hand, the prediction precision
for the majority class could be decreased if there are too
many synthetic samples. Ideally, we would expect a learn-
ing system without bias when the sample balance coefficient
reaches � = 1.0. In real applications, however, due to the
imbalance of the available original samples between classes,
the optimum may differ from � = 1. To proceed, we intro-
duce two functionsC+ andC− describing the putative biases
induced by the sampling on the minority and the majority
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class, respectively,

C+(�) =
1

1 + exp(−k(� − 1 + �0))

C−(�) =
1

1 + exp(k(� − 1 + �0))
�0 =�0(1 − �0)

(4)

where �0 is the original sample balance coefficient before
any synthetic sample is generated. Manifestly, the parame-
ter k controls how fast the prediction performances on term
(C−) and preterm (C+) change with �. However, it does
not change the relation between C− and C+ (the interception
point). In the present work, we chose the parameter k = 4 to
facilitate the identification of the optimal balance coefficient
�∗ defined in Eq( 5), as small k will give a relative flat area
of the F escore near �

∗. Varying k around the value selected
in this work is expected to change only very moderately the
quantitative results presented here.

Eq (4) implies that when � is smaller than 1, the majority
is well described, and C− is close to 1. On the other hand,
when � is large, the minority is accurately described (C+ is
close to 1), but the majority is affected (C− is reduced). For
most of the classification purposes, a high precision on dif-
ferent classes is required (no bias towards any class). To
achieve this, for learning problems from unbalanced data
samples, one needs to resample the minority training class to
match the number of majority, i.e., � = 1, in order to elim-
inate potential bias towards majority. However, recall the
synthesis procedure, additional training examples are gener-
ated from the original minority data sets and can be consid-
ered as a kind of “copy” of the original data. As a conse-
quence, adding too many synthetic samples improves only
the precision on the minority class, while degrading the ac-
curacy on the majority classification.

To account for these effects, we introduce the constant
�0 in the definitions of C+ and C− in Eq.(4). This equa-
tion expresses that the constant �0 goes to 0 when there are
enough original minority samples (�0 → 1), so there is no
need to synthesize training samples. When learning tasks
from imbalanced dataset are encountered (�0 < 1), the opti-
mal balance coefficient � deviates from the ideal value.

To account for the bias described above, we simply mul-
tiply the effective feature score, Fscore, as defined in Eq. (3),
by C+ × C−, to determine an effective score, F escore. Com-
bining this with the requirement for high predictive perfor-
mance on preterm and normal term birth, we determine the
optimal sample balance coefficient �∗ as follows,

�∗ =argmax�∈[0,inf]F escore(�)
F escore(�) =Fscore(�) ⋅ C+(�) ⋅ C−(�)

(5)

4. Empirical verification
The above analysis suggests a way to improve preterm

birth diagnosis by determining the optimal sample balance
coefficient without unduly affecting the term prediction ac-
curacy. In this section, we provide empirical results to test

the effectiveness of the proposed method. In particular, we
propose a numerical way to determine the value of �∗ nu-
merically. The general procedure is summarized in Fig. 3,

Synthetic dataset

Minority dataset

Feature Weights

Majority dataset

Sample Feature Score F
score

Effective Feature Score Fe
score

Activation
funtion  C

-

Inactivation
funtion  C

+
Feature Scores fi

s

Figure 3: Flowchart for determining effective feature scores.
After having synthesized artificial samples, calculate the weight
wi and score value f is of each feature. Based on these two
values, the weighted feature score Fscore is defined. Combining
the activation/inactivation functions with Fscore gives effective
feature score F e

score.

4.1. Material and methods
Bearing in mind the purpose of predicting gestational

status, simple, but powerful classifers are often used, such as
Support Vector Classifier (SVC), Linear Discriminant Clas-
sifier (LDC), Decision Tree Classifier (DTC), Gradient Boost-
ing Classifier (GBC) etc., are used to verify the proposed
method. To ensure a good performance of the classifier, a
grid search (GridSearchCV method in sklearn package) is
first performed in parameter space, using accuracy as the cri-
terion to determine their optimal values. It turns out that the
SVC should be used with a Gaussian kernel and the hyper-
parameter C is set to 20 to emphasize on the effect of mis-
classified data points during training. Following [38], the
Holdout Cross-Validation is performed using 80% of the en-
tire dataset for training the classifiers and the remaining 20%
for testing, from which we determine the sensitivity (True
Positive (preterm) Rate, TPR) and specificity (True Nega-
tive (term) Rate, TNR). Note that these two quantities alone
cannot well represent our requirements for high performance
in both positive and negative prediction. For this reason, we
introduce Gmean and the Overall Accuracy (OA) as the per-
formance metrics as follows:

Gmean =
√

TPR × TNR

OA = TP+TN
TP+FP +TN +FN

(6)

where TP and TN are correctly predicted positive and neg-
ative test samples, FP and FN are incorrect predictions, re-
spectively. It appears that classifiers provide the most accu-
rate prediction for both the preterm and term classes, typ-
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ically with the highest value of Gmean and overall accuracy
OA. Besides these quantities, the Area Under (Receiver Op-
erator) Curve (AUC) [39] is also used to verify the proposed
method.

4.2. Optimal synthetic preterm samples
Based on the intuitive analysis given in the previous sec-

tions, SMOTE has a stronger ability than ADASYN tomain-
tain the importance of the features in classification. We first
apply it to generate synthetic minority samples correspond-
ing to a given sample balance coefficient �. Fig. 4(a) shows
the measured feature score f is with different �. It is clearly
difficult to determine howmany synthetic samples should be
generated, because the measured values of feature scoref is
are well separated and vary with �.

f 
s i
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0.1

0.15
(a) rms F

med
F

peak
E

samp

,
0 0.2 0.4 0.6 0.8 1 1.2

F
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or
e
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0.04

0.05
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(b)

Figure 4: Measured feature scores f is (a) and Fscore (b) at dif-
ferent sample balance coefficient �. The importances of each
of the frequently used features f is show variation after apply-
ing synthetic algorithm SMOTE. However, the global feature
score Fscore obtained from the importance wi and feature score
f is shows continuous decrease with the increase of �.

‘
After synthesizing enough artificial samples, we use the

features to build a forest, from which we obtain a classifica-
tion accuracy value. The reduced classification accuracy by
randomly permuting a node in the tree gives a reliable mea-
sure of the importance (weight) of the feature [40]. Calculat-
ing the importance (weight) of the features at each � allows
us to investigate the combined effect of synthetic samples
on the importance of the features Fscore. As shown in Fig. 4
(b), Fscore decreases when the number of synthetic samples
is increased, which illustrates the drawbacks of the synthetic
sampling. This also implies that it is important to determine
the optimal sampling adjustement coefficient �.

Combining the activation and inactivation functions in-
troduced earlier ( Fig. 5(a) ), the effective feature scoreF escore
shows a trend that helps us to easily find out the optimal sam-

,
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Figure 5: Variation of the effective feature score F e
score ( panel

b) calculated from the activation and inactivation function
(panel a) at different sample balance coefficient �. F e

score shows
a peak at � ≈ 0.7, which determines the optimal sample bal-
ance coefficient �∗.

ple balance coefficient �∗. As shown in Fig. 5(b), F escore ini-
tially increases with �, manifesting the effect of the synthetic
samples to eliminate the bias towards the majority (term)
sampling. Due to the attenuation of features’ scores and
the bias towards term at large �, F escore reaches its peak at
� ≈ 0.7, and decreases for higher values of �. The position
of the peak F escore locates provides the optimal �∗. Fig. 5
shows that with the optimal �∗, the ability of the various
features to distinguish between different classes has not been
lost, while the bias towards the majority has been reduced.

4.3. Validation
To verify the obtained optimal sample balance coeffi-

cient �∗, the same features extracted from 80% of samples
in the TPEHG database are used to train a SVC classifier,
and the remaining 20% are then used for verification. Since
the samples used for training and for testing are randomly
selected, the computed quantities representing performances
of the classifiers depend on the random choice. For this rea-
son, we repeated the training-testing procedure for 100 times
at each value of �. To see the generalization ability of the
classifier, we use the overall accuracy (OA) as an indica-
tor to evaluate its performance in both training and testing
processes. As shown in Fig. 6 (a), the measured OA in both
training and testing show a positive correlation with the sam-
ple balance coefficient �, which is the expected benefits of
introducing synthetic samples. More interestingly, the clas-
sifier performs similarly in both training and testing when
the sample balance coefficient reaches a critical value close
to �∗ (see Fig. 6 (b) ). Although, a slight overestimation can
be seen when slightly more or less synthetic samples are in-
troduced, due to the higher correlation of training and testing
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Figure 6: Classifier performances in both training and test-
ing processes. (a) The measured overall accuracy (OA) shows
positive correlation with sample balance coefficient �. (b) Dif-
ference of classifier performance in training and testing.

samples, no significant difference in classifier performance
can be observed in training and testing processes. This gives
us the confidence that the results in testing dataset are suffi-
cient to validate the effectiveness of the proposed method.

In the following, we use TPR and TNR as metrics to
quantify how accurately the proposed method could help to
predict both preterm and term births. In addition, we use
Gmean and OA defined in Eq. 6 to demonstrate the overall
performance. Fig. 7 shows the variation of these quantities
as a function of the number of synthetic samples added to the
dataset, i.e., the increase of �. As expected, the prediction
accuracy for the minority increases, while that of majority
decreases. In particular, when minority and majority sam-
ples are balanced (� = 1.0), the trained classifier loses its
ability on term birth prediction (see the average TNR ∼ 0.5
and high variance). This would imply, in practical terms,
error in diagnosis in half of the the cases, and unnecessary
treatments. Another concern in the case of the ideal balanced
dataset synthesizing strategy is the unrealistic prediction per-
formance in testing process. This is confirmed by the reduc-
ing variance in TPR while an increasing variance in TNR
shown in Fig.7(a), which is a direct consequence of higher
correlation between training and testing samples. This prob-
lem can be solved by determining an optimal sample balance
coefficient. It is worth noting that the two curves intersect
at the optimal �≈0.7 , which corresponds to the previously
determined optimal sample balance coefficient �∗. At this
point the trained classifier eliminates most of the bias toward
the majority (term) and increases the accuracy in predict-
ing the minority (preterm birth) group without sacrificing
too much accuracy in term prediction. This is confirmed by
the accompanied variation of Gmean and AUC, see Fig. 7(b),
where both of these two quantities peak at � ≈ �∗.

,
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Figure 7: Prediction accuracy of SVC classifier on term (TNR)
and preterm (TPR) at different sample balance coefficient �.
The SVC is trained with 80% of 262 term and 262 ⋅ � preterm
samples synthesized by applying SMOTE algorithm. Predic-
tion results are obtained with the rest of 20% samples. Results
shown in panel (a) are averaged true positive rate ( preterm
prediction precision) and true negative rate ( term prediction
precision). The lower panel (b) shows the variation of Gmean
and AUC (area under curve) with respect to sample balance �.

Table 1
Comparison of classifier performance under optimal sampling

Classifier � = 1.0 � = �∗
OA Gmean AUC OA Gmean AUC

LDC 0.62 0.62 0.66 0.68 0.65 0.71
SVC 0.73 0.72 0.74 0.75 0.74 0.75
DTC 0.75 0.74 0.83 0.82 0.82 0.86
GBC 0.78 0.78 0.83 0.85 0.84 0.91

The receiver operator characteristic curve (ROC) and the
associated AUC values shown in Fig. 8 show the cut-off val-
ues for the true positive and false positive rates at different
sample balance level (different �). It can be seen that the
SVC classifier performs better at the optimal sample bal-
ance coefficient �∗. Compared to the case of ideal balance
(� = 1.0), training with the optimal amount of synthetic
samples leads to an improved performance.

The advantages shown in SVC for determining the opti-
mal sample balance coefficient also apply to other classifiers.
Table 1 provides a comparison of frequently used parameters
for evaluating the performance of the classifiers. It can be
observed that with the previously determined optimal sam-
ple balance coefficient �∗, all classifiers show an improve-
ment in performance, especially for SVC based classifiers.

The effect of the optimal sample balance coefficient also
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0.7
0.7

Figure 8: Receiver Operator Curve (ROC) for SVC ( blue )
and GBC (yellow) classifiers under different sample balance
coefficient �. In the case of optimal sample balance coefficient
�∗(=0.7, determined using the proposed method, solid line),
classifiers show better performance.

works with ADASYN. Although this method has less power
in maintaining the ability of the features in classification,
the combination of the proposed activation and inactivation
functions does lead to an easy-to-identify optimal sample
balance coefficient �∗ = 0.8. As shown in Fig. 9, the term
and preterm prediction accuracy of a SVC classifier trained
from these dataset gives the optimal performance at this �∗.
However, as the effective feature score F escore obtained from
ADASYN is less than what was obtained by using SMOTE
as indicated in Fig.5, consistent with the expectation that the
use of SMOTEmethod leads to better performance than that
of ADASYN.

5. Conclusion & Discussion
Machine-learning based systems for automatic disease

diagnosis offers a promising direction for modern health-
care. In these applications, the availability of healthcare data
and the effectiveness of the features extracted from these
samples play a decisive role. However, healthcare data are
generally unbalanced, with most samples corresponding to
healthy (majority), and a few corresponding to sick individ-
uals (minority). When trained with unbalanced dataset, clas-
sifiers typically introduce biases towards the majority, mak-
ing the automatic diagnosis system less useful. Synthetic
sampling techniques are frequently used in the study of EHG
signal based to predict preterm birth, with the aim of elim-
inating bias toward majority. However, they bring a side-
effect of reduced ability of features in class separation and
unrealistic high performance reported in literature[41].

In the traditional data synthesizing strategy, the number
of minority samples must be equal to that of majority, no
matter how small the minority class is. Excessive synthetic
samples not only decreases classifier’s ability in identifying
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Figure 9: (a) Variation of effective feature score F e
score with

respect to sample balance coefficient �. Artificial samples are
synthesized using ADASYN to give sample balance coefficient
�. F e

score shows a peak at �∗ ≈ 0.8. (b) Prediction accu-
racy of SVC classifiers on term(TNR) and preterm (TPR) after
been trained with different amount of synthetic samples using
ADASYN method.

majority sample, but may also lead to un-realistic classifi-
cation performance (due to high correlation between sam-
ples). To go beyond this analysis of the advantages and dis-
advantages of introducing sythetic samples, we propose here
a method for determining the optimal number of artificial
samples that compromises the effect of synthetic samples in
reducing feature effectiveness and eliminating bias towards
majority. We expect that our work opens. To proceed, we
measure the contributions of the features and their weights in
class separation in the case of introducing different numbers
of synthetic samples. Combining with the activation and in-
activation functions introduced to describe the effect of sam-
ple abundance on classification precision, we obtain the op-
timal sample balance coefficient that compromises the effect
of synthetic samples on eliminating bias and the side-effect
of weakening feature importance. We apply the proposed
method to predict preterm behavior using features extracted
from public available database TPEHG. After applying syn-
thetic algorithms, system performances are compared under
different scenarios and the results highlight the importance
of optimal sample balance coefficient proposed in the work.

It could be argued that it is more critical for an auto-
matic diagnosis system to misidentify a true preterm patient
than a normal patient, considering the serious consequences
the preterm infants are facing. For this reason, increasing
the number of synthetic samples should be of greater inter-
est, which corresponds to the case shown in Fig.7 and 9.
However, before drawing this conclusion, special attention
should be paid. In the absence of a field test for an EHG-
based preterm birth diagnosis system, its performance is typ-
ically verified using data samples randomly selected from
the total sample set. The datasets used to check the perfor-
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mance in preterm prediction are synthesized from the same
minority class as those used for the training purpose. As the
number of synthetic samples increases, the validation sam-
ples become closer and closer to the training samples, which
lead to unrealistically high scores of the accuracy of preterm
birth prediction, especially in real-world applications[42].
In the proposed method, we suppress this side-effect by in-
troducing the activation/inactivation functions that account
for the original size of minority samples. It is believed that
validation results should be close to the actual applications.

As pointed by Vandewiele and co-authors in [43], in-
troducing synthetic samples before partitioning the whole
dataset into training and testing subsets can lead to un-realistic
prediction performance. However, due to the very few avail-
able samples in the TPEHG, partitioning datasets before syn-
thesizing artificial samples could give even worse results.
For this reason, researchers all adopted the first scenario.
The paper focuses on the two inevitable problems when us-
ing synthetic sampling technique to address data imbalance,
particularly in the case of dataset with very few samples. Al-
though the proposed method is believed to be general, no
test have been done to other datasets or the TPEHG dataset
with more features. Another limitation goes to the numer-
ical way of determining the optimal balance coefficient �∗,
which would be of tedious computational work. All these
questions require future work.
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