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Abstract. This paper describes the modeling and simu-
lation of a Permanent Magnet Synchronous Generator
(PMSG) based Marine Current Turbine (MCT) under
converter faulty conditions. The modeling of the gener-
ator is represented in the d-q reference frame. The Pro-
portional Integral (PI) controllers are used for the di-
rect current, the quadratic current, and the speed Con-
trol. The faulty mode describes an open-circuit fault in
the generator-side converter. Simulations results show
that the dynamic performances and the power genera-
tion of the MCT are highly degraded due to the fault.

Keywords

Generator-side converter, marine current tur-
bine, MPPT, open-circuit fault, permanent
magnet synchronous generator, PI control.

1. Introduction

Nowadays, new renewable resources are developed such
as wave energy, thermal energy, and marine tidal en-
ergy. In fact, the production of electric power from
marine tidal energy is interesting; 48 % is in the UK,
8 % in Ireland, and 42 % in France [1].
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However, marine current turbine systems are ex-
posed to ecological constraints because of the severe
weather conditions (immersed systems). Due to these
constraints, the performance of the MCT system can
be degraded [2] and [3]. That leads to several faults,
which can be related to the PMSG, to the blades, and
to the converters [4] and [5]. Indeed, industrial surveys
have shown that 70 % of converter faults are related to
the switches.

This paper describes the modeling of the MCT sys-
tem under switchs fault conditions (open circuit fault).
The control of the MCT system is achieved by using the
Maximum Power Point Tracking (MPPT) to extract
the optimal power and the PI controllers are designed
to control the dg-axis currents and the speed.

This paper is composed as follows: in Sec.
the MCT system modeling is given. In Sec. MCT
system control is developed. In Sec. post-fault be-
havior of the generator-side converter and performance
evaluation are analyzed. Section gives the conclu-
sion.

2. Marine Current Turbine
Modeling

Figure [1] represents the MCT basic structure. It con-
tains the turbine, the PMSG, the three-phase converter
and the DC-bus.
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2.1. Resource Description

The gravitational interaction of Moon, Earth, and Sun
creates the marine currents [6]. Marine currents are
resulted about 32 % from the Sun and 68 % from the
Moon.

DC bus

Marine turbine

Fig. 1: Marine current turbine basic structure.

In fact, this interaction makes the ocean swell on
different places. This fact makes an increase of the
altitude of the water in the aligned places with the
moon and a decrease in the level of the water between
those two places. A horizontal movement is resulted
from the increase in water level; this movement is called
tidal current.

2.2. Marine Turbine Model

A marine turbine mechanical power is given by Eq.

.
1)

where p is the fluid density in (kg-m~2), r is the turbine
radius in (m), v; is the tidal velocity in (m-s~1), C,
represents the rate of mechanical power extracted by
the turbine from the fluid, A is the tip speed ratio, and
8 is the blade pitch angle in (°). For typical MCTs and
under normal operation, the maximum value of C, is
in the range of 0.35-0.5. In fact, for a given turbine,
the power coefficient is represented using A (Eq. )
and 3 [g].

1
P = 5Cy(\, Bpmr®es,

)
Ut

(2)

where (2 is the mechanical turbine speed in (rpm).

2.3. Generator Model

The PMSG was chosen for the system [9] thanks to its
high efficiency, its compactness, and the possibility to
remove gearbox in case of a direct-drive system. This
reduces maintenance and makes the PMSG as a can-
didate of choice for immersed systems. The modeling
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of PMSG in the d-q reference is given by Eq. as
follows:

digq _ Usda &

'S Q.S bl

L T TP qu)
1sq Vsq s . . a

= 57 — 7 lsqg — Qs — P75
at L. Ls;q PRaA=PTo

Tom = ipq)aisqa
dQ
JiZTm_Tem_ Qy
v f

where J; is the total inertia in (kg-m~2), T,, is the
mechanical torque in (N-m), Te,, is the electromag-
netic torque in (N-m), f is the viscosity coefficient in
(N'm-s™1) tidal velocity in (m-s™'), vsq and vg, are the
d — g components of the stator voltages respectively in
(V), isq and isq are the d — ¢ components of the stator
currents respectively in (A), R is the phase resistance
of the stator winding in (), Ly is the stator cyclic in-
ductance in (H), ®, is the permanent magnet flux in
(Wb) and p is the pole pair number.

2.4. Converter Model
The generator-side converter contains three legs
(Fig. . Every leg is composed by two switches (T},
Tr + 3, k=1, 2, 3) and two freewheeling diodes (D,
Dy, + 3) called IGBT. These IGBTs are controlled by
a block of a PWM using gate signals Sy (k = 1,2,3)
[I0]. The kth gate signal denoted Sy, switch is defined
by Eq. as follows:
(1 T,
Sk = { 0 if Tki3 on

off

on and Tiy3 ,
off. (4)

and T}

—
— T b1 T2 D2 T3 D3
—_— A
Viide ) » B | Va @
— c
—
PMSG
T4 b4 Ts D5 T6 D6

Marine turbine

Fig. 2: Generator-side converter topology.

3. Marine Current Turbine
Control

The marine current turbine control system is based
on a PI controller, which is used in conventional field-
oriented control technique. It is illustrated by Fig.
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Fig. 3: The proposed control structure.

3.1. Maximum Power Point Tracking

The control system is defined by Eq. (5)) as follows:

. 1

lsd = m(vsd + wihsq)

isq = m (Usq - W'l/)sd) ) (5)
Tem = §p¢aisq

where (w = pQQ) is the electrical speed, 154 and 95, are
the d — ¢ components of the stator flux, respectively,
defined by Eq. @ as follows:

{

The MPPT strategy is based on a variable speed
[I1]. Indeed, the rotor speed is controlled using a PI
controller to obtain the value of A that corresponds to
the maximum value of the power coefficient C, and
finally achieve the expected maximum power by the
MCT.

wsd = Lsisd + @a’

7/)5(1 = Lsisq' (6)

The speed controller is given by Eq. as follows:

bo

R() = b+ 2, ™
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where b; is the controller proportional coefficient and
by is the controller integral.

The placing poles technique is used to compute the
parameters of this controller. The reference of the
speed is expressed by Eq. . It is used in order to
make the function of the turbine is around the maxi-
mum power for different current tidal velocities.

(%7 Ao;mf

(8)

Qre =
! r
If the tidal velocity exceeds 2.3 m-s~! [12], the power
is restricted to 7.5 kW. The power of the turbine for
different tidal velocities is determined by Eq. .

3.2. Current PI Controller

The PI currents controllers are given by Eq. @ as fol-

lows:
)

R(s) =k, (1 * s 9)

where k), is the controller proportional coefficient and
k; is the controller integral. The division compensation
technique is used to complete the parameters of these
controllers. To reduce resistive losses, the reference of
the d-axis current is zero, so, the g-axis current is the
only current which control the electromagnetic torque.
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The reference of the quadratic current is determined 4. Marine Current Turbine

via the cor.ltro.ller of the speed. The converter volt- Post-Fault Behavior and
age vector is given by the two PI currents controllers.

The control signal is generated by the PWM block to Results Analysis
implement the vector control of the generator.

In this section, the influence of an open-circuit fault
on the PMSG phase currents and the MCT dynamic
performances will be studied on a PMSG-based MCT
whose parameters are given in the Appendix. Simu-
lations are carried out using MATLAB/Simulink en-
vironment. Figure [4] represents an example of marine
current velocity in the Raz de Sein (potential site for
the MCT project of the coast of Brittany in France)
during 20 s based on tidal current data given by the

N
o

= S )

Marine current speed (m/s)
o
o

0 2 ¢ ° R ©) oo e % Erench Navy Hydrographic and Oceanographic Ser-
vice (SHOM). The marine current velocity can reach
Fig. 4: Marine current turbine basic structure. 23 m-s L.
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Fig. 5: Simulation Results of (T1) open-circuit fault: (a, b) currents, (c, d) line-to-line voltage Uapg, (e, f) load voltage Van.
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Waveforms given by Fig. [5] and Fig. [6] shows the
three phase currents, the line-to-line voltage U4 g, and
the load voltage Van, respectively. In Fig. [0 a fault
state is introduced at ¢ 1.02 s and applied to
the switch (T1). It is observed that the phase cur-

rent ia is no more negative (Fig. [5(a)). The line-
to-line voltage Uap (Fig. p(c)) and the load voltage
Van (Fig. p(e)]) exhibit a great drop from the positive

level to the negative one. Figure Fig. and
Fig.|5(f)|shows that the Fault detection is accomplished

30
20 20 1
210 < 1of 1
s )
£ £
O.10 5
-20
30 0 ‘ ‘ ‘ ‘ ‘ ‘
1 1.01 1.02 1.03 1.04 1.05 1.06 1.015 1.016 1.017 1.018 1.019 1.02 1.021 1.022
time (s) time (s)
(a) Current. (b) Current.
150 200
100+ ]
— H __ toor il
S 50F I w“ “\‘ ‘ >
= I Il Ll 2
: . i I I -
8 5
(7] (%2}
5 50 | H 1 5
-100} 1
-100{- 1
150 ‘ ‘ ‘ ‘ \ 200 s \ \ \ \ | ‘ ‘ ‘
1 1.01 1.02 1.03 1.04 1.05 1.06 1.017 10175 1.018 10185 1019 10195 1.02 10205 1021 1.0215 1.022
time (s) time (s)
(c¢) Line-to-line voltage. (d) Line-to-line voltage.
150 150
100+ J
S sl | s
P4 P-4
2 |
c 0 c
k<] S
(7] (7]
-100{- 1
150 L L L L L 150 L L L L L L L
1 1.01 1.02 1.03 1.04 1.05 1.06 1017 1018 1019 102 1021 1022 1023 1024  1.025
time (s) time (s)
(e) Load voltage. (f) Load voltage.
Fig. 6: Simulation Results of (T4) open-circuit fault: (a, b) currents, (c, d) line-to-line voltage Uap, (e, f) load voltage Van.
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Fig. 7: PMSG generated power.
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Fig. 9: PMSG torque.

at t = 1.0295 s, taking 9.5 ms as fault detection
time. In Fig. [6] the fault is now applied to the
switch (T4), the reverse effect is observed on the phase
current ia (Fig. , the line-to-line voltage Uap
(Fig.7 and the load voltage Van (Fig. exhibit
a great drop from the negative level to the positive one.
Figure [7} Fig. B and Fig. [0] represent the generated
power, the rotor speed, and the torque with its version.
It should be noticed that these results are achieved
for an open-circuit in switch T1 occurring at ¢t = 1 s,
t=4s,t=8sandt = 17 s. As shown in these

I T T I T

Power

50%

40%

30%

20%

10%

0% -

Rotor speed Torque

Fig. 10: Range of variation in speed, torque and power in (%)
att=1s.
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0 0.2

20

o
T
I

Torque (N.m)
>

time (s)

(b)

figures, by using PI control, the power, the speed, and
the torque have some ripples at the faults occurrence.

Figure[I0|gives a histogram which shows the range of
variation in speed, torque, and power in (%) at t = 1 s.
This proves that this technique is not useful and does
not present any robustness against faults, therefore
leading to the MCT system performances degradation.

5. Conclusion

The paper described the simulation of a PMSG-based
marine current turbine experiencing open-circuit fault
in power switches of its generator-side converter. PI
controllers have been adopted for the MCT control.
These results evidently show that PI control is very
sensitive to faulty conditions and does not present
any robustness. Therefore a fault-tolerant rectifier
with specific redundancy or an advanced robust con-
trol techniques such as a high order sliding mode con-
trol are required.
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Appendix A
PMSG-Based MCT Parameters

MCT Parameters

Turbine blade radius 0.87 m
Number of blades 3
Fluid density 1027.68 kg-m—3

PMSG Parameters

Rated Power 7.5 kW
Rated Speed 3000 tr-mn—1

Rated Torque 17 N-m
Stator resistance 0.173 mS2
Stator inductance 0.951 mH
Permanent magnets flux 0.112 Wb

System total inertia

1.3131 106 kg-m—2
8.5 10-3 Nm-s~ T

Viscosity coefficient

Converter Parameters
Turn-on time 0.13 ps
Turn-off time 0.445 us
Dead-time 4 us
Duty-cycle frequency 5 kHz
DC-bus voltage 600 V
PI Controller parameter
Turbine speed loop (b0, bl) (0.56, 1.7)
Generator dg-axis current loop
(kp, ki) (0.0173, 5.49)
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