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Abstract—This paper explores the use of model predictive
control (MPC) in dealing with the pursuit-evasion game (PEG)
problem where players have incomplete information on their
opponents. This is different from most cases in the literature
where each player knows all the information (states information
and dynamics) on the opponent. The burden caused by such
demand for the opponent’s full information induces the need for
more sensors during physical implementation as well as high
computation time. However, we found that only the current
positions, i.e. x−y coordinate of the opponent, are indispensable.
Thus, knowing the orientation and the dynamics of the opponent
are insignificant to the performance of the game. We propose a
new method to exploit a two-player PEG in the presence and
absence of obstacles, where each player can only rely on the
current position information of its opponent. Several simulation
results show that the PEG problem can be handled and obstacles
can be avoided using the proposed control protocol. We also
show that our approach is robust to measurement noise and can
perform better, in terms of the computation than the approach
with full information.

Index Terms—MPC, Obstacles avoidance, Pursuit Evasion
Games, Wheeled Robots

I. INTRODUCTION

Pursuit and Evasion are non-cooperative game problems
that are recently receiving a lot of attention especially in the
field of mobile robotics. This was motivated by its numerous
applicability in both military and civil applications. The game
was basically concerned with solving a dynamic problem with
a pursuer or group of pursuers in one team and an evader
or a group of evaders in another team. The objective of
one team conflicts with the objective of the other team. The
formal solution of this type of problem, based on dynamic
programming and variational techniques, was presented in [1]
with several areas of applications and examples. Many other
solutions are presented in the literature such as [2], [3], [4]
and [5] which are based on safe-reachable area minimization
using Voronoi partition for both holonomic and non-holonomic
robots. The safe-reachable area method focuses on cooperative
pursuit cases where a group of pursuers cooperate to capture
a team of evading players.
A classification-based solution depending on the number of
players, i.e. one-pursuer-one-evader, N-pursuers-one-evader,
one-pursuer-M-evader, and N-pursuers-M-evaders were sum-
marised in [6]. Paper [7] deals with the cooperative two-

pursuer one-evader differential game using a geometric ap-
proach. Based on the Hamiltonian formulation and the geomet-
ric solution using the point of intersection of two Apollonian
circles, a candidate value function and its corresponding
optimal strategy are obtained. However, all these approaches
require current states information of the opponent to compute
the optimal strategy of each player, but could not predict
the future behavior of the opponent. In addition to its intri-
cate computation, especially for nonholonomic systems, these
methods could not incorporate obstacles avoidance.
Model predictive Control approaches are used to handle
pursuit-evasion games in [8], [9] and [10] due to their capacity
of handling constraints. In [8], Non-linear Model Predictive
Tracking Control (NMPTC) was employed to deal with sym-
metric pursuit-evasion games for unmanned aerial vehicles.
The game was symmetric in the sense that a pursuer can turn
to be an evader while the evader can turn to be a pursuer.
Both players are assumed to know all the information on
the opponent. In [9], NMPC was used for pursuit-evasion
between two heterogeneous players. The evading player is
an unmanned aerial vehicle while the pursuing player is an
unmanned ground vehicle. The paper considers the relative
distance and orientation between the two players as states of
the game and assumed that the players know full information
on the opponent, no states constraints or obstacle avoidance
can therefore be incorporated. Our previous paper [10] has
considered current states information as the states of each
player and was able to incorporate both states constraints and
obstacles avoidance. Also, full information on the opponent is
assumed to be known to each player. However, high compu-
tation time is consumed due to the double computation while
searching for Nash equilibrium which is problematic during
physical implementation.
The assumption of knowing the full on the opponent infor-
mation by each player as in the case of [8], [9] and [10] is
not feasible in real situations because each player will not
reveal its full information. It is therefore pertinent to search
for approaches that depend on the measured information. Also,
during our physical experiments on pursuit-evasion games in
Gipsa-lab, we have found that it is easier to obtain the position
of players rather than obtain their orientation. Consequently,



we propose an approach for handling pursuit-evasion games
such that each player only needs to obtain the current position
of the opponent. The game-theoretic aspect of this approach
is that the orientation of the opponent is predicted in advance
using the position of both players as derived in [7] for a case of
one pursuer one evader. For this purpose, we present the game
description and all the preliminaries in Section II. The control
algorithms are described in Section III, while the simulation
results are presented in Section IV. Finally, we presented some
conclusions and directions for future work in Section V.

II. PRELIMINARIES

A. Problem Statement

Consider a pursuit-evasion game between two nonholo-
nomic robots of unicycle type, conducted in the interior
of a polytope, Ω ∈ R2 in the presence and absence of
obstacles. The aim of the pursuer is to capture the evader in a
shortest time possible by moving towards the evader while
the aim of the evader is to avoid the pursuer or at worst
maximize the capture time. Assuming that the pursuer is faster
than the evader, capturing is guaranteed in finite time. Both
players should have the ability to avoid an obstacle in the
environment. The kinematic model of each wheeled mobile
robot as represented in [11] is given by equation (1) below:

ẋi = vi cos θi

ẏi = vi sin θi

θ̇i = ωi

(1)

The subscript i stands for ith player such that i ∈ {p, e}, de-
notes pursuer and evader, respectively. The states (xi, yi) ∈ Ω
and θi are the position and orientation of ith player, respec-
tively. The control inputs for the ith player are the the linear
and the angular speeds, which are denoted as (vi, ωi) ∈ Ui,
respectively. Ui denotes the set of feasible control inputs for
the ith player, which is assumed to be bounded.
The relative distance between the two players is defined as:

rr.d(t) =
√

(xp(t)− xe(t))2 + (yp(t)− ye(t))2 (2)

The capture condition can then be defined as:

rr.d(tc) ≤ rc, tc ≥ 0 (3)

where rc is the capture radius (which is equal to the sum of
the radii of the two robots) and tc is the capture time.

a) Pursuit Problem: Find a set of feasible pursuer inputs
up ∈ Up such that the capture time is satisfied in finite time
irrespective of the evader’s strategy. Given an initial condition
of the pursuer xp(0), yp(0), θp(0) ∈ Ω, the initial condition of
the evader xe(0), ye(0) and that rr.d(0) > rc.

b) Evasion Problem: Find a set of feasible evader inputs
ue ∈ Ue such that the capture time is maximized irrespective
of the pursuer’s strategy. Given an initial condition of the
evader xe(0), ye(0), θe(0) ∈ Ω, the initial condition of the
pursuer xp(0), yp(0) and that rr.d(0) > rc.

B. Nash Equilibrium

Game-theory modelize systems as intelligent rational
decision-makers where an agent considers the opponent’s
strategy before deciding its strategy. The agent predicts the
opponent’s best response, which is the worst case from his
point of view, and then computes its optimal strategy. The
relationship between game theory and control was reviewed
in [12]. A min-max dynamic games can be expressed as:

Jp(Up, Ue) + Je(Up, Ue) = 0 ∀Up ∈ Up, Ue ∈ Ue (4)

where [Jp, Je], [Up,Ue] and [Up, Ue] are the cost function, the
control strategy and the admissible control strategies for the
pursuer and evader respectively. The solution can be expressed
as a double optimization:

φ(Up∗ , Ue∗) = min
Up

max
Ue

φ(Up, Ue) = max
Ue

min
Up

φ(Up, Ue)

(5)
The strategy pair [U∗

p ,U∗
e ] is a Nash equilibrium if no player

has an incentive to deviate.

φ(U∗
p , U

′

e) ≤ φ(U∗
p , U

∗
e ) ≤ φ(U

′

p, U
∗
e ) (6)

C. Model Predictive Control

Model Predictive Control (MPC) is an online algorithm
for computing sequence of optimal control variables using
predicted system model. The system model can be linear or
non-linear which translate to Linear Model Predictive Control
(LMPC) and Non-linear Model Predictive Control (NMPC),
respectively. MPC can be implemented by minimizing a
quadratic cost function subject to some constraints which
comprises the model of the system, state and input constraints.
The output of the controller is a sequence of open loop
controls predicted ahead over a prediction horizon, N . The
first element of the sequence is applied to the system while the
rest of the solutions are discarded. At every decision instant,
the prediction horizon is shifted one step and the process is
repeated to obtain the new optimal control sequence [9], [10],
[13] and [14].
Mathematically, general MPC problem can formulated in
discrete form to solve the following cost function:

min
u
J =

N∑
k=0

||x(k)− r(k)||2Q + ||u(k)||2R (7)

subject to the following constraints on the system’s dynamics,
states and inputs:

x(k + 1) = f(x(k),u(k)), k = 0, 1, . . . , N (8a)

xmin ≤ x(k) ≤ xmax (8b)

umin ≤ u(k) ≤ umax (8c)

The reference signal r(k) can be point vector or a trajectory,
while the state variable x(k) is a sequence of future trajectory
of the system predicted using the system model in (8a). N is
the prediction horizon, k stands for the instantaneous discrete
time while Q and R are the states and control weighting
matrices. The constraints in (8b) and (8c) represent states



and inputs bounds, respectively. At every decision instant, the
systems are re-initialised using new measurement of states and
references.

x(0) = x0 (9a)

r(0) = r0 (9b)

The output is a sequence of predicted optimal controls:

u = [u(k),u(k + 1), ...u(N)]T (10)

The first part u = u(k) is applied to the system, while the
others are discarded. The controller parameters N , Q, and R
can be tuned to stabilize the system depending on the relative
importance of the states and on the computation time.

III. CONTROL STRATEGIES

A. Limited Information Model Predictive Control

As explained in the previous section, we want to use MPC
technique to solve pursuit-evasion problem for nonholonomic
mobile robots where each player has incomplete states infor-
mation on the opponent.

1) Prediction of Opponent’s Heading Angle: In order to
obtain the heading angle of the opponent of each player, which
is not available a priori, we can use the current position of
the players to compute the optimal heading of the opponent.
For this, we employ the optimal strategies for computing
the heading angle of a player as presented in [3] and [7].
The method in [3] proposes pursuit and evasion strategies for
holonomic systems using the concept of Voronoi partitions
where two or more players cooperate to capture an evader
assuming all the players have the same speed. The optimal
heading angle for each pursuer is derived as:

θ∗i = arctan(
yci − yi
xci − xi

) (11)

While the optimal heading angle of the evader is derived as:

θ∗e = π + arctan(
yci − ye
xci − xe

) (12)

where (yci, xci) is the center of the shared boundary. This
same strategy was proposed in [7] to provide a solution to
a cooperative pursuit-evasion game between with two faster
pursuers and one evader using Hamiltonian formulation and
the geometric properties of the game. The pursuers cooperate
to capture a slower evader in minimum time. In this method,
the cooperative strategy is only employed if none of the two
pursuers can capture the evader faster than the other. The
pursuit and evasion strategies are proposed based the positions
of the players. Since our PEG involves one pursuer and one
evader, the center of the shared boundary would be regarded
as the position of the opponent. We can therefore use this
method in a reciprocal manner to predict the optimal heading
angle of the opponents.

2) Pursuer’s Controller: The pursuer’s controller can be
designed to solve the pursuit problem using NMPC techniques
as explained in section II-C. Assuming that the states of the
pursuer and the position of the evader can be measured at
every decision instant. The optimal control can obtained by
solving the following minimization cost function:

min
Up

J(Up, U
∗
e ) (13)

Subject to:

Xp(k + 1) = fp(Xp(k), Up(k)), k = 0, 1, ..N (14a)√
(xk+1

p − xobs)2 + (yk+1
p − yobs)2 ≥ (Robs +Rrob) (14b)

Xpmin ≤ Xp(k) ≤ Xpmax (14c)

Upmin
≤ Up(k) ≤ Upmax

(14d)

where

J = ||Xp(N)−Xe||2QN
+

N−1∑
k=0

||Xp(k)−Xe||2Q + ||Up(k)||2R

(15)
Xe is a vector of evader’s current position and it’s predicted
orientation which is computed by the pursuer in advance
using (11). The first segment of the cost function (13) was
added to stabilize the controller by tuning the weighting matrix
QN . The constraint (14a) is the pursuer’s predicted trajectory
over the prediction horizon, (14b) is the obstacle avoidance
constraint which depends on the position and radius of both the
pursuer and the obstacle, respectively, while (14c) and (14d)
are the pursuer’s states and input constraints, respectively.

3) Evader’s Controller: It can be designed to solve the
evasion problem also using NMPC techniques, assuming that
the states of the evader and the position of the pursuer can be
measured at every decision instant. The optimal control can
obtained by solving the following maximization cost function:

max
Ue

J(Ue, U
∗
p ) (16)

Subject to:

Xe(k + 1) = fe(Xe(k), Ue(k)), k = 0, 1, ..N (17a)√
(xk+1

e − xobs)2 + (yk+1
e − yobs)2 ≥ (Robs +Rrob) (17b)

Xemin
≤ Xe(k) ≤ Xemax

(17c)

Uemin
≤ Ue(k) ≤ Uemax

(17d)

where

J = ||Xe(N)−Xp||2QN
+

N−1∑
k=0

||Xe(k)−Xp||2Q + ||Ue(k)||2R

(18)
Xp is a vector of pursuer’s current position and its predicted
orientation which is computed by the evader in advance using
(12) Similarly, the first part of the cost function (16) was
added to stabilize the controller by tuning the weighting matrix
QN . The constraint (17a) is the evader’s predicted trajectory



over the prediction horizon, (17b) is the obstacle avoidance
constraint which depends on the position and radius of both
the evader and the obstacle, respectively while (17c) and (17d)
are the evader’s states and input constraints, respectively.

B. Complete Information Model Predictive Control

In this method, as detailed in our previous paper [10], each
player uses full information of the opponent to predict the next
move. The solution of problem 1 (pursuer’s controller) starts
by predicting the evader’s next move. The following optimal
control problem is solved:

max
Ue

J(Up, Ue) (19)

subject to:
Xe(k + 1) = fe(Xe(k), Ue(k)), k = 0, 1, ..N − 1√

(xk+1
e − xobs)2 + (yk+1

e − yobs)2 ≥ (Robs +Rrob)

Xemin
≤ Xe(k + 1) ≤ Xemax

Uemin ≤ Ue(k + 1) ≤ Uemax

(20)
where

J = ||Xe(N)−Xp||2QN
+

N−1∑
k=0

||Xe(k)−Xp||2Q + ||Ue(k)||2R

(21)
The output of this computation X∗

e is used as reference to the
following optimal control problem:

min
Up

J(Up, Ue) (22)

subject to:
Xp(k + 1) = fp(Xp(k), Up(k)), k = 0, 1, ..N − 1√

(xk+1
e − xobs)2 + (yk+1

e − yobs)2 ≥ (Robs +Rrob)

Xpmin ≤ Xp(k + 1) ≤ Xpmax

Upmin ≤ Up(k + 1) ≤ Upmax

(23)
where

J = ||Xp(N)−X∗
e ||2QN

+

N−1∑
k=0

||Xp(k)−X∗
e ||2Q + ||Up(k)||2R

(24)
The output of this computation is the pursuer’s Nash equilib-
rium strategy, i.e. U∗

p = [v;ω]T which stands for the linear
and angular speeds respectively.
The solution of problem 2 (Evader’s controller) is computed
in an similar but opposite format.

IV. NUMERICAL RESULTS

The proposed control technique was implemented on MAT-
LAB/Simulink environment. An open source symbolic frame-
work for automatic differentiation and optimal control soft-
ware called CasADi [15], was used for coding the controllers
by converting the optimal control problems into nonlinear
programming problems using multiple shooting approach.
Another open source software, the Interior point optimizer

(IPOPT), was interfaced to provide a solution.
Several games are played in the presence and absence of
obstacles. In each scenario (either with or without obstacles),
the pursuer position is behind the evader with random initial
conditions. The simulation environment is a squared polytope
with a dimension of 20m by 20m which is translated to
states constraints on both x− axis and y− axis from −10m
to +10m and is applied to each player. In each game, the
relative distance between the two players are computed at
every time instant using equation (2) and the game terminates
when the condition (3) is satisfied. The radius of each robot,
Rrob = 0.1m, thus the sum of the radii of the two robots
(which is the threshold distance for terminating the game) is
0.2m. To ensure that the game terminates in a finite time, the
pursuer’s speed limit is selected to be slightly higher than that
of the evader, thus the limits of pursuer’s control variables are
|vp| = 0.5m/s, |ωp| = π/3 while the limits of the evader’s
control variables are |ve| = 0.48m/s, |ωe| = π/3.
The weighting matrices are tuned and the best values obtained
are R = [1; 0.5]T , Q = diag(1; 1; 0.00001]) and QN =
100000 ∗ Q. The weight on the angular speed was less than
the weight on the linear speed because agility of the robot
is less important compared to the fastness. The weight of the
position was more important than the weight on the angular
difference. For stability, a large weight on the terminal cost
was imposed. Three prediction horizons N = [5, 10, 20] are
used for the sake of comparison while the sampling time was
Ts = 0.1.

A. Results of the Limited information MPC approach

Several simulations of PEG in an obstacles-free environment
were conducted using random initial conditions. Each player
firstly uses the opponent’s current position to predict its
optimal heading angle and then uses both the position and
the predicted angle as a reference to the MPC. We present
three different games with the same initial condition for the
purpose of comparison, the only difference being the length
of the prediction horizon. For each case, the initial condition
of the pursuer is (−2,−8, π/2) while the initial condition of
the evader is (6,−6, 0). In Figure 1(a), the trajectory and
capture time of the game was presented for the case where
the prediction horizon is (N = 5) while in Figure 1(b)
and Figure 1(c), the same game was conducted with same
initial conditions but using different prediction horizon of
(N = 10) and (N = 20), respectively. Similar results are
obtained nevertheless, the capture time is slightly affected
by a small prediction horizon, as we see in Figure 1(a).
The computation time of these three games are compared in
Figure 2. The average computation time was by far less than
the sampling time of Ts = 0.1s but one can notice a slight
augmentation with the increase of the prediction horizons. Our
proposed approach was found to be robust to the presence of
measurement noise as shown in Figure 3. Some random noise
was added to the feedback of each player, nevertheless close
to similar results of Figure 1(a) were obtained.
For the purpose of further improving the robustness of our
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(a) PEG with Limited Information MPC, N = 5
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(b) PEG with Limited Information MPC, N = 10
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(c) PEG with Limited Information MPC, N = 20

Fig. 1. PEG with Limited Information MPC in an obstacles free environment
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Fig. 2. Comparison of computation time, limited information MPC in an
obstacle free environment

algorithms, we conducted three more simulations of the game
in an environment that contains obstacles. The obstacles were
placed strategically along the path of the game so that the
players must encounter them. In Figures 4(a), 4(b) and 4(c),
we present the trajectory and the capture time of the games
for different prediction horizons. In each case, there is no
collusion with any obstacle by either of the players. The
computation time of each is computed for the comparison
given in Figure 5. It was found that each computation time
increases with increase in the length of the prediction horizon.
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Fig. 3. PEG with Limited MPC with a noisy measurement, N=5
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(a) PEG with Limited Information MPC, N = 5
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(b) PEG with Limited Information MPC, N = 10
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(c) PEG with Limited Information MPC, N = 20

Fig. 4. PEG with Limited Information MPC with obstacle avoidance
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Fig. 5. Comparison of computation time, limited information MPC with
obstacle avoidance
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(a) PEG with Full Information MPC, N = 5
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(b) PEG with Full Information MPC, N = 10
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B. Comparative Study

We have compared the result of our method which have
limited information with another approach in which each
player has full information of the opponent. The results in
Figure 6 depicts the trajectories and the capture time of
the game under different prediction horizons. It can be seen
that despite the limited information, our method performed
satisfactorily in terms of the capture time. In addition, the
computation of the method with full information, as presented
in Figure 7 is much higher than the present method.

V. CONCLUSION

This work proposes new game-theoretic way of using
limited information MPC to handle pursuit-evasion games

for nonholonomic mobile robots where each player can only
measure the current position of its opponent. Each uses its
limited information to predict the future heading angle of its
opponent. Instead of a conventional game-theoretic approach
which requires each player to know the full information on
its opponent which is unrealistic, the new strategy was able to
handle the problem in the presence and absence of obstacles.
The computation time required for this method is very small
which is advantageous during physical implementation. It is
also worth mentioning that the computation time is affected
by the presence of obstacles. We would as a future work
investigate the use of stochastic MPC in handling the same
problem and then implement the algorithms on a physical
systems. Finally, we would like to extend the work to coop-
erative pursuit problem where a team of pursuers cooperates
to capture a single evader.
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