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Abstract

With the advancements in power electronic devices, the increasing use of DC loads, DC renewable generation sources and
battery storage systems, and no reactive power and frequency stability issues, DC microgrids are increasingly gaining attention in
both academia and industry. In this paper, a grid-connected DC microgrid is considered, which consists of a PV system and a Li-
ion battery. DC microgrids optimal operation requires battery degradation cost modeling and demand response incentive for active
consumers’ participation to be addressed in detail. Therefore, a practical degradation cost model for a Li-ion battery is developed
to optimize battery scheduling and achieve its realistic operational cost. Apart from energy price, scheduled islanding responsive
demand response incentive is also introduced to encourage customers to shift load during scheduled grid-tie line maintenance.
Levelized cost of energy of PV system is calculated for both hot and cold climate regions. Optimal operation of DC microgrid
cannot be achieved without considering nodal voltages and system losses. Hence, network constraints are also included in the
proposed model. Extensive numerical simulations are carried out to prove the effectiveness of the proposed approach. The achieved
results would aid in DC microgrids adoption planning that would expectedly replace traditional AC grids in the future.

Keywords: DC microgrid, photovoltaic system, Li-ion battery, battery degradation cost model, demand response, energy
management system, optimization.

Nomenclature

χΥ
d Depth of discharge dependent battery cyclelife

factor.
χΥ

T Temperature dependent battery cyclelife fac-
tor.

χΞ
T Temperature dependent battery capacity fac-

tor.
∆t Time interval.
δ1, δ2, δ3 Time-of-use based scaling factors for demand

response incentives.
ηch Charging efficiency of battery.
ηdch Discharging efficiency of battery.
NV,NW,NX Sets of PV, battery, and load buses.
N Set of all buses including grid bus.
T1,T2,T3,T Sets of off-peak, mid-peak, on-peak, and all

time slots.
Tsh Set of forward and backward shifting time in-

stants.
Φ Chemical reaction rate of Li-ion battery.
Φre f Chemical reaction rate of Li-ion battery at ref-

erence temperature.
πdr

t Demand response incentive price at time t.
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π
g+
t , π

g−
t Buying and selling electricity prices at time t.

ρ1, ρ2, ρ3 Schedlued islanding sensitive scaling factors
for demand response incentives.

σ PV system degradation factor.
Υw,re f Reference cyclelife of Li-ion battery at bat-

tery bus w.
Ξw,re f Rated energy capacity of Li-ion battery at bat-

tery bus w.
Ξw,t Li-ion battery energy capacity at battery bus

w and time t.
Cb,Cb

inv,C
b
om Battery degradation, investment, and opera-

tion and maintenance costs.
Cb

inv Investment cost of battery.
Cpv,Cpv

inv,C
pv
om Levelized cost, investment cost, and operation

and maintenance cost of PV system.
Cvoll Value of lost load.
CRmax Maximum charging (discharging) rate limit of

Li-ion battery.
d Depth of discharge of Li-ion battery.
dr Discount rate.
Epv

an Annual energy produced by PV system.
Ea(Φ) Activation energy.
Gt Irradiance at time t.
GNOCT Irradiance at PV array nominal operating cell

temperature.
GS TC Irradiance at PV array standard test conditions.
hΥ(d), hΥ(T ) Regression model for battery cyclelife depen-

Preprint submitted to Applied Energy December 23, 2018

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0306261919300406
Manuscript_9777d98e0e9667abd9ad5463e442756f

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0306261919300406
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0306261919300406


dence on depth of discharge and temperature.
hΞ(T ) Regression model for battery capacity depen-

dence on temperature.
Lb

re f battery cyclelife at reference conditions.
Lb

t Baseline power demand at time t.
N pv Number of PV arrays.
NOCT Nominal operating cell temperature.
Pi

t Active power at bus i during time t.
Pch

w,t Charging power of battery at battery bus w
and time t.

Pdch
w,t Discharging power of battery at battery bus w

and time t.
Pdr+

x,t Power demand at load bus x shifted from time
t.

Pdr−
x,t Power demand at load bus x shifted at time t.

PDR
i,t Maximum shiftable power demand from pe-

riod t.
Pdr

x,i,t Power demand at bus x shifted from time slot
i to t.

Pg+
t , Pg−

t Buying and selling power from/to grid power
at time t.

Ploss
t Power loss of the DC microgrid system at time

t.
Ploss

i j,t line loss of branch connected between bus i
and bus j.

Pls
x,t Power demand of lost load at load bus x and

time t.
Pl

t Power demand at time t after shifting.
Ppv

S TC PV array power output at standard test condi-
tions.

Ppv
v,t Power output of PV system at PV bus v and

time t.
R Gas constant.
Rch

w,t Charging rate of Li-ion battery at battery bus
w and time t.

Rdch
w,t Discharging rate of Li-ion battery at battery

bus w and time t.
RV Residual value of Li-ion battery.
T Ambient temperature.
t Indices of time slots.
t f End time.
ts Start time.
Tc Cell temperature of PV array.
Tre f Reference temperature.
TS TC Cell temperature of PV array at standard test

conditions.
v,w, x Indices of PV, battery, and load buses.
V i

t Voltage at bus i during time t.
V i

max Maximum limit of bus voltage.
V i

min Minimum limit of bus voltage.
yi j Line admittance from bus i to bus j.
zt Islanding status at time t.

1. Introduction

Renewable energy sources (RESs) are being deployed on a
large scale due to the advancement and maturity in their tech-

nologies. Among these sources, photovoltaic (PV) systems are
leading in terms of installation and utilization followed by wind
turbines. Integration of these sources along with energy storage
systems paves the way for microgrids (MGs) [1]. An MG in-
tegrates all such distributed energy sources with plug and play
ability to operate in islanded mode during maintenance or fail-
ure of grid-tie line [2]. MGs reduce burden on aging trans-
mission network by meeting load demand locally with the help
of distributed energy sources connected to local substation and
distribution networks [3, 4].

MGs can be either AC or DC, and hybrid depending upon
the type of buses, loads, and RESs [5, 6]. Although, current
utility grid (UG) system is of AC type, DC loads such as light-
ening systems, computers, and battery chargers are significantly
increasing [7]. Recent advancements in power electronic de-
vices also pave the way for modeling loads as constant power
loads due to negligible effects of transient behavior in output
power of many loads [8]. Moreover, quite a few RESs produce
DC voltages, thus requiring power converters for AC conver-
sion that reduces efficiency of the overall system. DC MGs are
less complex power systems with the advantages of no reactive
power flow and no complex control circuitry for frequency sta-
bility as well [9]. DC MGs can operate in grid-connected and
islanded modes.

The battery storage system plays a vital role in an MG as
it can be used in various applications such as peak demand
management, uncertainties handling caused by RESs, and pro-
viding supply to load end during islanding operation [10, 11].
In DC MG operation, battery continuously charges and dis-
charges, which affects its performance and cyclelife. Hence, a
practical model of battery degradation cost (BDC) is necessary
to optimize its scheduling during DC MG operation. Battery
performance is affected by charge (discharge) rate, depth of dis-
charge (DOD), state of charge (SOC), and temperature. There-
fore, BDC should be modeled considering all these parameters.
Such BDC model avoids higher costs for the DC MG operator
(DMO) due to imprudent charging and discharging times.

Researches have proposed various BDC models for battery
scheduling optimization and overall system operation. An eco-
nomic operation of a PV/battery system with a basic BDC model
was proposed in [12]. However, the BDC model has not in-
cluded explicit consideration of battery aging factors, thus pro-
viding inefficient cost-competitive model. In [13], a PV/battery
system has scheduled its decision strategies using operating cost
model that considers only capacity fading effects in modeling
BDC. Moreover, battery degradation model was used in energy
management of remote MGs in [14]. The degradation model
considers DOD effects on battery lifetime only. The other bat-
tery aging factors are not taken into consideration. In [15], an
optimized management of PV integrated off-grid power system
was achieved. MG energy scheduling was achieved by using
only DOD-dependent BDC model in operational cost-function
of MG [16]. The BDC model was developed by considering
only lifetime energy throughput of battery and ignoring other
aging factors.

A grid-connected PV/battery system operation was proposed
in [17]. In this study, DOD-dependent battery cyclelife degra-
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dation model estimates battery sizing. However, the daily rule-
based operation neglects battery degradation in deciding strate-
gies for efficient PV/battery system operation. Rule and model
predictive-based control techniques were used to minimize the
operating cost of PV/battery system in [18]. The developed
model includes capacity loss degradation in battery operation
that considers only SOC-based aging effects. Moreover, the
degradation cost of battery is hypothetically assumed. Authors
in [19] have proposed battery aging model for MG optimal de-
sign. The degradation model is developed based on capacity
loss of battery that considers capacity fading only. Moreover,
the capacity loss is taken constant for a range of temperature
without providing reference of any manufacturers datasheet.
Operating cost of RESs-based MG is optimized in [20]. Au-
thors have considered only the DOD related aging effects in
BDC modeling, which does not provide the practical degrada-
tion model for batteries. All these battery degradation models
only consider capacity fading of battery, while ignoring power
fading. Capacity fading is related to cyclelife degradation of
battery and power fading is related to ohmic and reaction losses,
which is connected to energy (discharged) capacity degradation
of battery. Optimal operation of battery in a DC MG is a com-
plex problem due to its intertemporal nature. Lead acid and Li-
ion batteries are the most widely used energy storage systems
in energy management applications. Nowadays, Li-ion batter-
ies are dominating due to their high energy density, no memory
effect, and increased resistance to temperature effects. They are
being deployed at large scale for utility, regulation, and electric
vehicle (EV) applications [21]. In 2017, annual deployment of
Li-ion batteries was 2 GWh, and it is predicted to go up to 18
GWh in 2022 [22]. In this paper, BDC of a Li-ion battery is
modeled to optimize the overall operation of a DC MG.

Demand response (DR) is becoming an integral part of power
system and MGs due to its applications in minimizing system
operational cost [23], congestion management [24], peak de-
mand management [25], defer investment in power network
[26], system reliability [27], and ancillary services [28]. DR
operation is achieved by utilizing smart meters, advanced me-
tering infrastructure, and energy information systems. An ad-
vanced metering infrastructure is used to collect data from me-
tering devices using home area network. These data log are sent
to service provider by wide area network for analysis in order
to achieve energy cost and consumer service optimization [29].

DR is divided mainly into two types, price-based DR (PDR)
and incentive-based DR (IDR). PDR programs help the con-
sumers to change their consumption pattern with time-varying
energy prices. However, IDR programs provide benefits to con-
sumers for reducing their load demand following DR requests.
Most utilities provides PDR programs to their consumers in-
stead of IDR, but PDR shares a small contribution in overall
DR resource base [30]. IDR provides great provision and con-
trol to DMO, which enables performing efficient MG operation.
In this paper, IDR is used for optimal and efficient operation of
a DC MG.

A generalized PV and battery-based grid-connected DC MG
model is presented in Fig. 1. PV system, and DC and AC loads
are connected to the DC network through DC/DC converters

DC Network

PV system Utility grid

Battery

DC load

AC load

Communication flow Power flow

Figure 1: DC MG architecture.

and inverters, respectively. A bidirectional DC/DC converter is
used to control power flow between Li-ion battery and DC net-
work during charging and discharge. In grid-connected mode,
a DC MG can reap advantages of selling power to UG during
excess supply period and the bidirectional DC/AC converter
is used for this purpose. While in islanded mode, it provides
supply to loads through local sources. All the energy sources,
loads, and UG local controllers communicate with each other
and DMO using communication technologies. These wired and
wireless technologies are selected based on the criteria of de-
ployment cost, coverage area, and data rate [1]. Power output of
the PV system is used at first to meet load demand followed by
UG power and battery power. DMO needs centralized decision-
making strategies to avoid ineffective and costly operation of
the DC MG. Therefore, optimized daily scheduling of energy
sources in a DC MG requires an energy management model to
minimize its operating cost and optimize its daily operation.

In this paper, optimal operation of a scalable PV and Li-
ion battery based grid-connected DC MG is studied consid-
ering scheduled islanding and time-of-use (TOU) based IDR
schemes. The BDC model of Li-ion battery is developed tak-
ing into account the effects of temperature and DOD on battery
performance. The levelized cost of energy (LCOE) of the PV
system is determined using real data of temperature and irradi-
ance of hot and cold weather climate regions, namely Dammam
(Saudi Arabia) and Brest (France), respectively. The proposed
cost-operation model of a scalable grid-connected DC MG is a
nonlinear programming model that also considers bus voltages
and includes system losses in power balance constraint. The
contributions of this paper can be summarized as follows:

• Regression models are developed to determine temperature
and DOD effects on cyclelife and energy capacity degrada-
tion of a Li-ion battery.

• A practical BDC model of Li-ion battery is presented using
the developed regression models.

• A practical LCOE of a PV system for hot and cold climate
regions is computed using real temperature and irradiance
data.

• An IDR is introduced to encourage customers to change their
consumption patterns during normal operation.

• An islanding responsive IDR is proposed to encourage cus-
tomers to shift load from scheduled islanding periods to nor-
mal operation periods.
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• Power flow of a scalable DC MG system is also included in
the optimization model to regulate bus voltages and compute
system losses.

2. Battery Degradation Modeling

Li-ion battery energy storage systems are an essential part
of MGs due to their high power and energy densities, good cy-
clelife, and improved efficiency. They are being widely used
in energy systems for various applications such as bulk stor-
age, peak shaving, frequency regulation, voltage support, re-
serve capacity, and transmission and distribution deferral [31].
Nowadays, Li-ion batteries are the most mature and commer-
cial technologies used in power system. However, integration
of Li-ion battery into an MG system requires its degradation
cost-modeling for effective and efficient operation.

Increasing cell impedance and decreasing battery capacity
due to unwanted side reactions lead to fast degradation of bat-
tery [32, 33]. Hence, the battery chemistry and its scheduling
operation plays a major role in affecting battery cyclelife. The
most important parameters in battery degradation are energy ca-
pacity and cyclelife. These parameters depend on temperature,
depth of discharge (DOD), state of charge (SOC), charge and
discharge rates (c-rate), battery application, type of battery, and
battery manufacturer. However, battery degradation modeling
becomes unrealized as the effects of these degradation factors
cannot be analyzed and modeled individually. Therefore, the
most important degradation factors are considered to be temper-
ature, DOD, SOC, and c-rate. Several studies have shown that
SOC can also be defined in the form of a DOD. A battery with
DOD of d completes its charge-discharge cycle by discharging
from 100% SOC to (100− d)% SOC and then charging back to
100% SOC [34].

Li-ion battery manufacturers’ datasheets show that the value
of c-rate below 1 does not affect the energy capacity. However,
when increasing the c-rate above 1, the energy capacity of a Li-
ion battery starts decreasing [35, 36]. The charge and discharge
rate limits of a high energy capacity Li-ion battery storage sys-
tem do not go beyond 0.5, which is discussed in [37], based on
technical investigations. Therefore, the c-rate effect on battery
degradation modeling is ignored. Moreover, effects of charge
and discharges rate on battery cyclelife is negligible and it can
be ignored too [38, 39]. Hence, a BDC model is proposed con-
sidering the effects of temperature and DOD on its energy ca-
pacity and cyclelife.

2.1. Temperature
Temperature affects the chemical reaction rate of Li-ion bat-

tery, thus affecting its capacity. Arrhenius equation describes
the increasing exponential dependence of reaction rate on tem-
perature. Therefore, battery capacity increases with tempera-
ture due to increase in its chemical reaction rates. This increase
in battery capacity means that the battery can provide more
power at high temperatures. Arrhenius effect is expressed as
[40]:

Φ = Φre f

[
Ea(Φ)

R

(
1

Tre f
−

1
T

)]
(1)

The regression model for temperature dependent battery energy
capacity relation is determined using the data from Li-ion bat-
tery datasheet as shown in Fig. 2 [35]. The battery loses ca-
pacity to provide the same power at low temperatures due to
metallic Lithium plating that causes electrolyte decomposition
[41]. Equation (2) describes the relation between battery capac-
ity and temperature.

hΞ(T ) = αe−βT + c (2)

where α = −0.354, β = 0.0310, and c = 1.157.
Li-ion battery usage at very high temperatures results in

severely decreasing the cyclelife. This is caused by higher solid
electrolyte interphase film accumulation, thus causing faster de-
cay in cyclelife and increasing battery aging process [42, 43].
The graphical relation between cyclelife and temperature pro-
vided in [34] and shown in Fig. 3, can be modeled as:

hΥ(T ) =


α1e−β1T + γ1, −40◦C ≤ T < 0◦C
α2T + β2, 0◦C ≤ T < 18◦C
α3T + β3, 18◦C ≤ T < 50◦C
α4e−β4(T−50) + γ4, 50◦C ≤ T ≤ 80◦C

(3)

where α1, α2, α3, α4, β1, β2, β3, β4, γ1, γ4 are the parameters of
the aforementioned model that provide best fit to the experi-
mental data. α1 = −3050.056, β1 = 0.023, γ1 = 7811.54, α2 =

14.964, β2 = 4767.474 in this study. Similarly, α3 = −6.99, β3 =

5169.082, α4 = −149.889, β4 = 0.117, γ4 = 4981.68.

2.2. Depth of Discharge
Theoretically, DOD is defined as the absolute discharge rel-

ative to the related battery capacity. It is represented as SOC

20 10 0 10 20 30 40 50
Temperature ( C)

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Ba
tte

ry
 c

ap
ac

ity
 (p

u)

Regression model
Data

Figure 2: Effect of temperature on Li-ion battery capacity.

40 20 0 20 40 60 80
Temperature ( C)

0

1000

2000

3000

4000

5000

Cy
cle

 li
fe

Regression
Data

Figure 3: Effect of temperature on Li-ion battery cyclelife at 50% DOD.
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Figure 4: Regression curve of Li-ion battery cyclelife vs DOD.

subtracted from 100% charge (1 − S OC). DOD has a minimal
effect on battery power fading [44] and is ignored in power fad-
ing modeling. However, DOD causes mechanical stresses and
side reactions in battery, which result in decreasing its cyclelife.
Therefore, cyclelife is strongly dependent on DOD. The higher
the DOD is, the lesser battery cyclelife will be. A relation be-
tween cyclelife and DOD of a Li-ion battery is obtained using
practical results taken from [35], as presented in Fig. 4. Equa-
tion (4) presents the logarithmic model that describes the effects
of DOD on a battery cyclelife.

hΥ(d) = α log(d) + β (4)

where d represents DOD of Li-ion battery. α and β are regres-
sion coefficients of cyclelife dependence on DOD. In this case,
α = −5440.35 and β = 1191.54.

2.3. Battery Degradation Cost
Several studies have proposed various battery degradation

cost models incorporating mainly DOD and temperature ef-
fects. However, temperature effects are only considered in de-
termining cyclelife or capacity fading of battery. In this paper,
power fading due to temperature change is also performed by
considering its effects on battery capacity. The effect of temper-
ature on battery capacity is defined as the ratio of ΞT to Ξre f , as
presented in (5).

χΞ
T =

ΞT

Ξre f
(5)

Similarly, the effects of temperature and DOD on cyclelife
are also defined as ΥT to Υre f and Υd to Υre f , respectively.
Equations (6) and (7) describe these two factors.

χΥ
T =

ΥT

Υre f
(6)

χΥ
d =

Υd

Υre f
(7)

In respect of consideration of temperature and DOD, the
BDC of a Li-ion battery, Cb, can be calculated using Eq. (8).
A factor of 1

2 is used to account for both charge and discharge
actions during a cycle. The residual value (RV) is defined as
economic value of the Li-ion battery at the end of its useful life.
The proposed BDC model is developed based on engineering
economic principles [45]. The BDC model computes present

values of RV and annual operation and maintenance costs of
the Li-ion battery with a discount rate dr and a lifetime of n
years.

Cb =
1
2

[
Cb

inv +
∑n

i=1 Cb
om(1 + dr)−i

]
(1 + dr)n − RV

(1 + dr)nχΞ
Tχ

Υ
Tχ

Υ
d Υre f Ξre f

(8)

3. PV System Cost Modeling

A need for distribution generation, energy supply to remote
areas, and maturity in technology development pave the way
for large deployment of PV systems worldwide. The over-
all global deployment status of PV systems is 385.6 GW un-
til 2017, among which China, Japan, Germany, and USA are
major contributors with the installation of 130.6 GW, 48.6 GW,
42.4 GW, and 41.1 GW of PV systems, respectively [46]. Ex-
ternal factors, such as solar irradiance, temperature, and geo-
graphical location, affect the power generation output of PV
systems. In this paper, the estimated power output of a PV sys-
tem, with standard test conditions (STC) and nominal operating
cell temperature (NOCT) conditions, is calculated as [47]:

Ppv = N pvPpv
S TC

[
G

GS TC
{1 − γ(Tc − TS TC)}

]
(9)

Tc = T +
G

GNOCT
(NOCT − 20) (10)

LCOE is a widely used metric to determine the electricity
generation cost of various energy technologies over the system
lifespan. Therefore, electricity production cost of a PV sys-
tem is calculated based on LCOE. The investment cost of PV
system includes capital cost of module and converters, labour
installation cost, construction cost, land acquisition cost, and
other hardware balance of system cost. Based on engineering
economic principles, Eq. (11) can be used to calculate the PV
system LCOE, Cpv, [48]. The energy output of the PV system
is determined by averaging solar power over a time interval of
one hour and summing it up all to get Epv

an . The present values
of Cpv

om and Epv
an are computed each year with a dr over system

life of n years. As PV system performance decreases with time,
degradation factor, σ, is associated with Epv

an after first year.

Cpv =
Cpv

inv +
∑n

i=1 Cpv
om(1 + dr)−i∑n

i=1 Epv
an(1 − σ)i−1(1 + dr)−i

(11)

The degradation in PV energy output is accounted to start
from second year. Degradation occurs due to oxidation, thermal
stresses, degradation of interconnections, weather effects, and
microscopic cracks [49].

4. Incentive-based Demand Response Modeling

DMO uses IDR in the proposed model as consumers give
control access to DMO for shiftable load entities and receive in-
centives for it in return. Therefore, DMO can adjust the shiftable
loads to off-peak periods, less generation supply periods, and
scheduled islanding periods, while satisfying system constraints.
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t t fts
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Figure 5: DR mechanism.

There are many types of shiftable loads that can be used in
DR. Heating, ventilation, and air conditioning (HVAC), dish-
washer, electric water heater, electric vehicle, and lightning are
few examples. However, integration of these shiftable loads
in the DC MG energy management model makes the problem
non-convergent and requires higher computational time. There-
fore, DMO aggregates shiftable load demand for each time t
that helps in solving the developed model efficiently.

Consumers provide information to DMO about quantity and
shiftable duration of their deferrable loads. These loads can be
shifted backward, forward, or both. It is assumed that these
informations are available to DMO. The process flow of DR
mechanism with forward and backward shift time instants is
shown in Fig. 5. The forward and backward shift instants can be
consecutive or non-consecutive. They should remain between
final time, t f , and start time, ts. Moreover, the cardinality of
set of shiftable time instants, Tsh, should be less than the total
simulation time, as presented in (12). The cardinality refers to
the size of a set.

|Tsh| ≤ t f − ts (12)

DMO offers IDR to customers to participate in DR during nor-
mal and scheduled islanding periods. Scheduled islanding re-
sponsive IDR is introduced to encourage customers to shift load
to normal operation period. It results in reducing lost load dur-
ing scheduled islanding period. The IDR model is provided in
(13).

πdr
t =


(δ1 + ρ1zt)π

g+
t , t ∈ T1

(δ2 + ρ2zt)π
g+
t , t ∈ T2

(δ3 + ρ3zt)π
g+
t , t ∈ T3

T1 ∪ T2 ∪ T3 = T (13)

IDR scaling factors are defined in range of 0 ≤ δ1, δ2, δ3 < 1
for off-peak, mid-peak, and on-peak periods, respectively. Sim-
ilarly, scheduled islanding responsive IDR scaling parameters
are also defined in the same range of 0 ≤ ρ1, ρ2, ρ3 < 1. T1,T2,
and T3 are sets of off-peak, mid-peak, and on-peak energy price
time instants, respectively.

5. Energy Management Model

It is considered a grid-connected scalable DC MG consist-
ing of a PV system, a Li-ion battery storage system, and shiftable
and critical load demand. The proposed energy management
model considers battery degradation model, DR, network power
flow, and pre-determined islanding duration to optimize its op-
timal energy management operation while satisfying technical
constraints. A centralized optimal operation is achieved by con-
sidering a central controller, DMO, that collects all the necces-
sary information and optimizes the day-ahead energy manage-
ment operation over a 24h time horizon T := {ts, ts + ∆t, ts +

2∆t, ...., t f }. Detail of the energy management model are de-
scribed in the following.

5.1. Objective Function

The objective of DMO is to ensure the optimal operation of
the microgrid by minimizing its operating cost. The objective
function considers energy trading cost with UG, LCOE of a
PV system, battery degradation cost, load shedding cost, and
DR incentive cost. Equation (14) presents the cost-function of
DMO. As discussed in section II, BDC for each battery w and
time t is described in (15). Selling energy price from DMO side
is considered to be πg−

t = λπ
g+
t , where λ should be 0 ≤ λ < 1.

It is assumed that buying, selling, and DR incentive prices are
defined with order πdr

t < π
g−
t < π

g+
t for any t ∈ T .

min
t f∑

t=ts

(πg+
t Pg+

t − π
g−
t Pg−

t ) +
∑

v∈NV

CpvPpv
v,t

+
∑

w∈NW

Cb
w,t

ηchPch
w,t +

Pdch
w,t

ηdch


+

∑
x∈NX

(CvollPls
x,t + πdr

t Pdr+
x,t )

 ∆t

NV ⊆ N ,NW ⊆ N ,NX ⊆ N (14)

Cb
w,t =

1
2

[
Cb

inv +
∑n

i=1 Cb
om(1 + dr)−i

]
(1 + dr)n − RV

(1 + dr)nχΞ
Tt
χΥ

Tt
χΥ

d Υw,re f Ξw,re f

w ∈ NW, t ∈ T (15)

5.2. Grid Connection Constraints

The maximum power, transferred between UG and micro-
grid, is restricted by grid-tie line capacity. It is represented by
Pg

max and provided in (16). For maintenance of grid-tie line,
scheduled islanding status is denoted by zt to present DC MG
operation in islanded mode, as described in (17). The ¬zt is
logical negation of zt.

0 ≤ Pg+
t , Pg−

t ≤ Pg
max(¬zt) t ∈ T (16)

zt =

1, if islanding
0, otherwise

t ∈ T (17)

5.3. PV System Constraints

The PV system output power is discussed in section III. It
is well known that the power output of PV systems varies with
irradiance and temperature. Therefore, equations (18) and (19)
are modified to take into account the time t dependence of the
generated power.

Ppv
v,t,av = N pv

v Ppv
S TC

[
Gt

GS TC
(1 − γ(Tc,t − TS TC)

]
v ∈ NV, t ∈ T (18)
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Tc,t = Tt +
Gt

GNOCT
(NOCT − 20) t ∈ T (19)

Power output of the PV system for each bus v should remain
within the limit of the maximum available PV power Ppv

v,t,av.

0 ≤ Ppv
v,t ≤ Ppv

v,t,av v ∈ NV, t ∈ T (20)

5.4. Li-ion Battery Constraints

Charing and discharging power of the Li-ion battery is con-
trolled by the charging and discharging rate variables. The re-
lations between these variables are provided by equations (21)
and (22). These rates are restricted by the maximum limit de-
fined in (23) and (24). Equation (25) ensures that battery should
either charge or discharge at any time t ∈ T , but not both si-
multaneously. Equation (26) defines intertemporal nature of
battery, where its energy capacity changes with time t. In real
time, DMO decides the final energy state of the battery accord-
ing to the statistical analysis of the DC MG operation history.
However, for this case study, it is assumed that initial and final
state of energy capacity of the Li-ion battery should remain the
same, as defined by (27). Equations (28) and (29) define max-
imum and minimum bounds on energy capacity of the Li-ion
battery and the minimum energy capacity controlled by DOD
at time t, respectively. Maximum energy capacity of the bat-
tery depends on temperature to consider power fading. How-
ever, temperature changes with time, thus changing maximum
energy capacity of battery with time and making the proposed
optimization problem intractable. Therefore, its average value,
denoted by µT , is considered in calculating the maximum en-
ergy capacity in (30).

Pch
w,t = Rch

w,tΞw,re f w ∈ NW, t ∈ T (21)

Pdch
w,t = Rdch

w,t Ξw,re f w ∈ NW, t ∈ T (22)

0 ≤ Rch
w,t ≤ CRw,max w ∈ NW, t ∈ T (23)

0 ≤ Rdch
w,t ≤ DCRw,max w ∈ NW, t ∈ T (24)

Rch
w,tR

dch
w,t = 0 w ∈ NW, t ∈ T (25)

Ξw,t = Ξw,t−1 +

ηchPch
w,t −

Pdch
w,t

ηdch

 ∆t w ∈ NW, t ∈ T (26)

Ξw,t f = Ξw,ts w ∈ NW (27)

Ξw,min ≤ Ξw,t ≤ Ξw,max w ∈ NW (28)

Ξw,max = Ξre fχ
Ξ
µT

w ∈ NW (29)

Ξw,min = Ξw,max(1 − d) w ∈ NW (30)

5.5. DR Constraints

Equations (31) and (32) define the shifted load from time
t and recovered load at time t, respectively. Equation (33) de-
fines that DR load demand can be either shifted or recovered
at time t, but both these processes cannot happen at the same
time. Modified load demand after DR is presented in (34) and
it cannot be more than the maximum value of the base load de-
mand, which is controlled by (35). Equation (36) assures that

the total recovered DR load must be equal to the shifted DR
load. Shifted DR load from time t to i and total shifted DR load
from t are constrained by the maximum shiftable DR load, as
established by (37). All the defined variables are non-negative,
as presented in (38).

Pdr+
x,t =

∑
i∈Tsh

i,t

Pdr
x,t,i x ∈ NX, t ∈ T (31)

Pdr−
x,t =

∑
i∈Tsh

i,t

Pdr
x,i,t x ∈ NX, t ∈ T (32)

Pdr+
x,t Pdr−

x,t = 0 x ∈ NX, t ∈ T (33)

Pl
x,t = Lb

x,t − Pdr+
x,t + Pdr−

x,t x ∈ NX, t ∈ T (34)∑
x∈NX

Pl
x,t ≤ ‖

∑
x∈NX

Lb
x,t‖∞ t ∈ T (35)

t f∑
t=ts

∑
x∈NX

Pdr+
x,t =

t f∑
t=ts

∑
x∈NX

Pdr−
x,t (36)

Pdr
x,t,i, P

dr+
x,t ≤ Pdr

x,t,max x ∈ NX, t ∈ T (37)

nb, n f , Pdr+
x,t , P

dr−
x,t ≥ 0 x ∈ NX, t ∈ T (38)

5.6. Network Constraints

In a DC MG system, voltage of each bus should be consid-
ered and system losses have to be accounted while optimizing
each generation source scheduling and DR. Otherwise, the pro-
posed energy model cannot provide accurate results. Therefore,
power flow constraints of the DC MG network are considered.
Equation (39) is the power injection equation for bus i. Bus
voltages are constrained by lower and upper bounds, as pre-
sented in (40). Line losses and total system losses at time t are
given in (41) and (42), respectively.

Pi
t =

N∑
j=1
j,i

V i
t (V

i
t − V j

t )yi j i ∈ N (39)

V i
min ≤ V i

t ≤ V i
max i ∈ N (40)

Ploss
i j,t = (V i

t − V j
t )2yi j j , i, (i, j) ∈ N , t ∈ T (41)

Ploss
t =

N−1∑
i=1

N∑
j=i+1

Ploss
i j,t t ∈ T (42)

5.7. Power Balance Constraint

Equation (43) ensures that the generated total power must
be equal to the total demand, lost load, and system losses of the
DC MG at each time t. Pl

x,t relation is already given in (34).

(Pg+
t − Pg−

t ) +
∑

v∈NV

Ppv
v,t −

∑
w∈NW

(Pch
w,t − Pdch

w,t )

=
∑
x∈NX

(Pl
x,t − Pls

x,t) + Ploss
t t ∈ T (43)
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6. Numerical Studies

Time of use (TOU) energy prices of buying electricity for
summer and winter seasons are taken from the Ontario Energy
Board [50]. The TOU rates are divided into three zones of off-
peak, mid-peak, and on-peak hours. The TOU energy prices of
selling electricity and DR incentive benefits are derived from
TOU energy rates of buying electricity. The TOU energy prices
of buying and selling eletricity are shown in Fig. 6. DR in-
centive benefits are given in Table 1. Value of the lost load is
assumed to be 2 $/kWh. A PV system of 15 kW is considered
in this study. The rated capacity of the Li-ion battery is 38.4
kWh. Charging and discharging efficiency of Li-ion battery are
taken to be 0.9. Residual value is assumed to be 30% of capital
cost at the end of the battery life. It is assumed that the battery
is 70% charged before starting operation. Value of investment
cost of the PV system for DC applications is taken from [51].
Capital cost of the Li-ion battery is obtained from [52]. Oper-
ation and maintenance costs of the PV system and the Li-ion
battery are considered 22 $/kW-year and 20 $/kW-year, respec-
tively. Degradation factor of the PV system is assumed to be
0.05% and the discount rate is considered as 5%. The hourly
temperature profiles of Dammam and Brest regions, in July and
December months, are shown in Fig. 7 [53] for 24h operation.
These months are considered to take into account the effects of
temperature on performance of the PV system and the Li-ion
battery for summer and winter seasons, respectively. Figure 7
shows the modified hourly load profiles of 24h of Dammam and
Brest regions during July and December [54, 55]. The hourly
irradiances of these regions are taken from [56] for a period of
24h. Figure 7 also shows the power output of 15 kWp PV sys-
tem. These load profiles and PV system are considered for a
6-bus system, shown in Fig. 8. The line data and base volt-
age of this 6-bus system are taken from [57]. The power de-
mand at load buses 4, 5, and 6 are assumed to be 25%, 45%,
and 30% of total load, respectively. The minimum and maxi-
mum limit on each bus voltage is 0.95 pu and 1.05 pu, respec-
tively. The proposed nonlinear programming model is solved
by the primal-dual interior point method with GEKKO package
in Python [58, 59].

6.1. PV System Cost and Energy Output

Hot and cold weather climate regions are selected to as-
sess the power output and LCOE of the PV system. Dammam,
Saudi Arabia is considered for hot weather climate, while Brest,
France is chosen for cold weather climate region. Tempera-
ture and irradiance data of these cities are taken from [53, 56].
The comparison of the PV system LCOE for these cities is car-
ried out. LCOE and annual energy output of Dammam and
Brest regions are shown in Fig. 9. The LCOE of PV system at
Dammam and Brest regions are 0.067 $/kWh and 0.1 $/kWh,
respectively. The main reason of a higher LCOE for the later
region is low irradiance. The annual energy output of first year

Table 1: Time-of-use DR incentive.
Off-Peak Mid-Peak On-Peak

DR incentive (grid connected) [$/MWh] 0 5 10
DR incentive (scheduled islanding) [$/MWh] 10 10 10
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Figure 6: TOU energy rates for summer (top) and winter (bottom).
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Figure 7: Temperature profiles of Dammam and Brest regions (top), Power
generation output of 15 kWp PV system for Dammam and Brest regions during
December and July (mid), Load profiles of Dammam and Brest regions (bot-
tom).
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Figure 8: Single line diagram of 6-bus system.

of the PV system at Dammam and Brest regions is calculated to
be 33.01 MWh and 22.05 MWh, respectively.

6.2. Impact of Temperature

The ideal operating temperature range, 10◦C to 50◦C, for a
Li-ion battery operation is discussed in [60]. It shows that de-
creasing this temperature range leads to wasteful thermal man-
agement of the battery and increasing it leads to fast rise in the
aging process. Temperature strongly affects discharged capac-
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Figure 11: Maximum available discharged capacity (Left) and degradation cost
variation (right) of Li-ion battery during 24h in December.

ity of BDC of the Li-ion battery. Figure 10 shows the change in
the BDC with DOD and temperature. BDC strongly increases
with the decrease in temperature below 10◦C and increase in
DOD. BDC cost analysis shows that a DOD of 0.6 and a tem-
perature above 10◦C provide lower cost for Li-ion battery oper-
ation.

As temperature depends on geographical locations, the BDC
is therefore location-dependent. Therefore, two hot and cold
climate regions are considered to study the Li-ion battery degra-
dation. The discharged capacity and variation in BDC of the Li-
ion battery during a 24h period in December is shown in Fig.
11. The discharged capacity of battery at Dammam is higher

Table 2: Impact of temperature on operating cost of DC MG without PV
Trading Cost (pu) Battery Cost (pu) Total Cost (pu)

Dammam 0.947 0.053 1.0
Brest 0.957 0.054 1.011
Cost increase at Brest 0.01 0.001 0.011 (1.1%)

than Brest due to temperature differences of these regions. At
Brest, low temperature causes reduction in available discharge
capacity, thus rising the BDC cost. Moreover, the BDC varia-
tion at Brest is higher than Dammam.

The operating cost of the DC MG is also analyzed consid-
ering temperature dependence of the Li-ion battery degradation
cost. For this purpose, a grid-connected DC MG without PV
is considered for both Dammam and Brest winter cases. The
same values of load demand are taken for this study. Results
presented in Table 2 show an increase in the operating cost of
the DC MG at Brest site due to lesser availability of discharge
capacity and higher BDC. Hence, operating cost of the DC MG
increases by 1.1% for 24h operation at Brest. These results
show that the temperature considerably increases the operating
cost of a DC MG system in cold weather regions. Therefore, a
temperature-dependent BDC model of a Li-ion battery is more
practical in deciding daily optimal scheduling of a DC MG sys-
tem.

6.3. Brest and Dammam During Summer
In this case, the DC MG operation is studied for the cases

of no DR, DR, and short period scheduled islanding in Brest
and Dammam for 24h in July. Figures 12 and 13 show line
losses, voltage profiles of buses, and optimal power scheduling
for Brest and Dammam, respectively for 24h operation without
DR. The system losses remain very low, below 0.08 kW dur-
ing 24h period. Simulation results for Brest and Dammam with
DR of 6h shift, line losses, voltage profiles of buses, load be-
fore and after DR, and dispatch for energy balance of the DC
MG are given by Figs. 14 and 15, respectively. The 6h DR
shift consists of 3h consecutive forward shift and 3h consecu-
tive backward shift. The maximum shiftable load is assumed
to be 10% of the total load at bus x and time t. These figures
show that the load demand shifts from high energy price pe-
riod, thus reducing the operating cost of the DC MG with the
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Figure 12: Power losses (top left), bus voltages (top right), and scheduling
(bottom) of DC MG without DR at Brest in summer.
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Figure 13: Power losses (top left), bus voltages (top right), and scheduling
(bottom) of DC MG without DR at Dammam in summer.
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Figure 14: Power losses (top left), bus voltages (top right), load with DR (mid),
and dispatch (bottom) for DC MG with DR at Brest in summer.

introduction of DR. In this study, the shiftable power consump-
tion can be either increased or decreased at time instant t and
3h consecutive forward and backward shift duration are consid-
ered. Therefore, load at t = 14h will not shift as load is being
decreased at three time instants before and after it. Moreover,
shiftable load moves to mid-peak periods due to the allowed
3h forward and backward shifts. However, in case of all-day
shift, shiftable load shifts from on-peak energy price periods
to off-peak energy periods, thus achieving the minimum DC
MG operation cost. However, the DC MG cost reduces with in-
creasing DR shift duration, which is shown in Table 3. For 10%
of shiftable load, the DC MG cost reduces from 0.99 pu (1%)
for 6h shift duration to 0.944 pu (5.6%) for all-day shift. For
shiftable load equal to 20% of total load, the DC MG cost re-
duces from 0.985 pu (1.5%) for 6h shift to 0.912 pu (8.8%) for
10h shift. If shiftable load availability is 30% of total load, the
DC MG cost reduces from 0.983 pu (1.7%) for 6h shift to 0.881
pu (11.9%) for all-day shift. No load shedding happens for nor-
mal operating conditions. Hence, the DMO should have a con-
tract with consumers of all-day shift to achieve cost-effective
DC MG operation and consumers will therefore receive incen-
tives in return.
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Figure 15: Power losses (top left), bus voltages (top right), load with DR (mid),
and dispatch (bottom) for DC MG with DR at Dammam in summer.
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Figure 16: Power losses (top left), bus voltages (top right), load with DR (mid),
and dispatch (bottom) for DC MG with DR and islanding at Brest in summer.

Considering scheduled maintenance of grid tie-line connec-
tion, islanding may happen for short interval of time during a
24h period. This case is also studied. Figures 16 and 17 show
line losses, voltage profiles of buses, load before and after 6h
shift DR, and dispatch for energy balance of the DC MG dur-
ing islanding for Brest and Dammam, respectively. The Li-ion
battery discharges during high price period and charges back to
the maximum threshold to provide energy during the islanding
period. Before islanding, battery charges at high rate and volt-
age of battery bus steeply decreases to around 1.03 pu, which
results in higher system losses. Scheduled islanding is shown
during the PV power absence periods. If islanding happens dur-
ing excess PV power periods, the PV system will supply power
to load buses, thus no load shedding will happen.

The operating cost comparison of the DC MG for different
DR levels and DR duration periods for Brest is presented in
Table 4. This table presents the cost comparison considering an

Table 3: Operating cost of DC MG without islanding for Brest in summer.

DR limit
DR duration

No DR (pu) 6h (pu) 10h (pu) 23h (pu)

10% of
∑

x∈NX Lb
x,t 1.0 0.990 0.957 0.944

20% of
∑

x∈NX Lb
x,t 1.0 0.985 0.942 0.912

30% of
∑

x∈NX Lb
x,t 1.0 0.983 0.932 0.881
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Figure 17: Power losses (top left), bus voltages (top right), load with DR (mid),
and dispatch (bottom) for DC MG with DR and islanding at Dammam in sum-
mer.

islanding period of 3h. As the islanding period is considered for
3h only, operating cost of the DC MG remains the same with
respect to the demand shift period of 6h onwards, but it strongly
decreases with the increase in DR shift value.

Table 5 provides the cost comparison of the DC MG for
different DR values and DR shifting hours for Dammam re-
gion. For 6h shift, operating cost of the DC MG decreases by
1.1%, 1.6%, 1.9% for DR of 10%, 20%, and 30% of the base
load, respectively. However, it noticeably decreases with the in-
crease in DR time shift for the same values of the shifted load.
Similarly, Table 6 presents the cost comparison considering an
islanding period of 3h. This table shows that the operating cost
decreases with the increase in the value of the shifted load.

6.4. Brest and Dammam During Winter
In this case, the DC MG operation at Brest and Dammam

in December is studied for the cases of no DR, DR, and short
period scheduled islanding of 3h. Figures 18 and 19 show line
losses, voltage profiles of buses, and optimal power scheduling
at Brest and Dammam, respectively, for 24h operation without
DR. At Brest, due to battery charging and high load demand,
load and battery bus voltages decreases sharply and produces
maximum line losses of 0.31 kW. Optimization results with DR

Table 4: Operating cost of DC MG with islanding for Brest in summer.

DR limit
DR duration

No DR (pu) 6h (pu) 10h (pu) 23h (pu)

10% of
∑

x∈NX Lb
x,t 1.0 0.858 0.845 0.838

20% of
∑

x∈NX Lb
x,t 1.0 0.720 0.704 0.685

30% of
∑

x∈NX Lb
x,t 1.0 0.584 0.564 0.533

Table 5: Operating cost of DC MG without islanding for Dammam in summer.

DR limit
DR duration

No DR (pu) 6h (pu) 10h (pu) 23h (pu)

10% of
∑

x∈NX Lb
x,t 1.0 0.989 0.964 0.950

20% of
∑

x∈NX Lb
x,t 1.0 0.984 0.951 0.911

30% of
∑

x∈NX Lb
x,t 1.0 0.981 0.941 0.873

Table 6: Operating cost of DC MG with islanding for Dammam in summer.

DR limit
DR duration

No DR (pu) 6h (pu) 10h (pu) 23h (pu)

10% of
∑

x∈NX Lb
x,t 1.0 0.889 0.885 0.877

20% of
∑

x∈NX Lb
x,t 1.0 0.780 0.774 0.757

30% of
∑

x∈NX Lb
x,t 1.0 0.671 0.663 0.657
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Figure 18: Power losses (top left), bus voltages (top right), and scheduling
(bottom) of DC MG without DR at Brest in winter.
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Figure 19: Power losses (top left), bus voltages (top right), and scheduling
(bottom) of DC MG without DR at Dammam in winter.

of 6h shift are given by Figs. 20 and 21 for Brest and Dammam
regions, respectively. DR load is shifted to mid-peak price pe-
riods as 3h forward and backward shifts are considered. How-
ever, with the increase in DR shift duration, the shiftable load
moves to off-peak price periods, thus reducing the DC MG op-
eration cost effectively. There is no load shedding in normal
operation.

Figures 22 and 23 show line losses, voltage profiles of buses,
and optimal power scheduling at Brest and Dammam, respec-
tively, for 24h operation in December for a 3h scheduled island-
ing period with a DR of 6h shift. These figures show that the
battery charges at a high c-rate just one hour before islanding.
At this time, the battery bus voltage decreases sharply to just
below 1.0 pu and increases line losses.

The operating cost comparison of the DC MG at Brest for
different DR levels and DR duration periods is presented in Ta-
ble 7. This table shows that operating cost of the DC MG is
decreasing with the increase of the demand shift period and the
DR shift limit. For 6h DR shift, on-peak instants load can be
shifted to mid-peak price periods only, thus reducing cost by
only 1.8%, 2.2%, and 3.1% for a shiftable load of 10%, 20%,
and 30% of the total load, respectively. However, the shiftable
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Figure 20: Power losses (top left), bus voltages (top right), load with DR (mid),
and dispatch (bottom) for DC MG with DR at Brest in winter.
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Figure 21: Power losses (top left), bus voltages (top right), load with DR (mid),
and dispatch (bottom) for DC MG with DR at Dammam in winter.
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Figure 22: Power losses (top left), bus voltages (top right), load with DR (mid),
and dispatch (bottom) for DC MG with DR and islanding at Brest in winter.

load moves to off-peak price periods in all-day shift duration,
thus resulting in higher cost reduction of 4.3%, 6.0%, and 8.0%
for a shiftable load of 10%, 20%, and 30% of the total load,
respectively. Similarly, Table 8 presents the cost comparison
considering an islanding period of 3h. As the islanding period
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Figure 23: Power losses (top left), bus voltages (top right), load with DR (mid),
and dispatch (bottom) for DC MG with DR and islanding at Dammam in winter.

is considered for 3h only, therefore operating cost of the DC
MG remains the same with respect to the demand shift period
of 6h onwards, but it remarkably decreases with the increase in
DR shifting values with respect to the base load.

Table 9 refers to operating cost of the DC MG at Dammam
for different DR values and DR shift periods in terms of base
load. This table clearly shows that the operating cost of the DC
MG is decreasing with the increase of the demand shift and the
DR shift limit. Similarly, Table 10 presents the cost comparison
considering an islanding period of 3h. Operating cost consider-
ably decreases for 6h shift period by 32.9% for 30% shiftable
demand of the base load. It cannot decrease more due to the
maximum limit on recovered demand that can be shifted at any
time t. However, it decreases by 39% and 39.8% for 10h and
23h period for the same amount of shiftable demand.

Table 7: Operating cost of DC MG without islanding for Brest in winter.

DR limit
DR duration

No DR (pu) 6h (pu) 10h (pu) 23h (pu)

10% of
∑

x∈NX Lb
x,t 1.0 0.982 0.978 0.969

20% of
∑

x∈NX Lb
x,t 1.0 0.968 0.957 0.938

30% of
∑

x∈NX Lb
x,t 1.0 0.957 0.940 0.920

Table 8: Operating cost of DC MG with islanding for Brest in winter.

DR limit
DR duration

No DR (pu) 6h (pu) 10h (pu) 23h (pu)

10% of
∑

x∈NX Lb
x,t 1.0 0.907 0.906 0.901

20% of
∑

x∈NX Lb
x,t 1.0 0.816 0.815 0.806

30% of
∑

x∈NX Lb
x,t 1.0 0.725 0.719 0.715

Table 9: Operating cost of DC MG without islanding for Dammam in winter.

DR limit
DR duration

No DR (pu) 6h (pu) 10h (pu) 23h (pu)

10% of
∑

x∈NX Lb
x,t 1.0 0.982 0.964 0.952

20% of
∑

x∈NX Lb
x,t 1.0 0.967 0.946 0.918

30% of
∑

x∈NX Lb
x,t 1.0 0.953 0.929 0.890

Table 10: Operating cost of DC MG with islanding for Dammam in winter.

DR limit
DR duration

No DR (pu) 6h (pu) 10h (pu) 23h (pu)

10% of
∑

x∈NX Lb
x,t 1.0 0.872 0.867 0.862

20% of
∑

x∈NX Lb
x,t 1.0 0.752 0.738 0.728

30% of
∑

x∈NX Lb
x,t 1.0 0.671 0.61 0.602
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6.5. Real World Applications

In energy management operation of the DC MG, decision
strategies and informations are exchanged between local con-
trollers and the DC MG operator using communication links.
In DC MGs, such as rural, residential, and remote areas mi-
crogrids, communication technologies are decided on the ba-
sis of data rate and infrastructure cost. ZigBee, Wi-Fi, and Z-
Wave are more suitable options. Low cost embedded systems,
like Arduino, STM32, Rasberry Pi, and BeagleBone, can be
adopted by local controllers to collect information and perform
neccessay control actions. The DC MG operator is a human-to-
machine system that performs energy management operation
with the help of local controllers and a SCADA platform. The
developed energy management model makes decision strate-
gies with the information from all external factors and energy
sources. It can be integrated in microgrid energy management
modules, which are currently being developed by many energy
companies as Schneider Electric, ABB, EDF, ENGIE, Alstom,
Siemens, Tesla, and so forth, for optimal and efficient opera-
tion of microgrids. Hence, the developed model can be used for
economic operation of a DC MG in the future.

7. Conclusion

In this paper, an optimization model was developed to min-
imize the operating cost of a DC microgrid. The proposed
model includes aging factors-dependent practical degradation
cost model of a Li-ion battery using real data. This model
can be generalized to other types of batteries as they depict al-
most the same behavior. The optimization model also includes
islanding-dependent demand response incentive to encourage
active participation of customers during scheduled maintenance
of grid-tie line. Levelized cost of photovoltaic system was also
calculated using real data to obtain accurate cost for hot and
cold climate regions. System losses and nodal voltages were
also studied, as they are imperative in achieving realistic and
efficient operation of a DC microgrid. Results analysis proves
that, introducing islanding responsive demand response incen-
tive and increasing the value of the shifted load demand and the
demand response shift duration, greatly reduces the operating
cost of the DC microgrid. Finally, temperature effects on oper-
ating cost of the DC microgrid without a photovoltaic system
were analyzed. They show higher cost for cold climate region
due to increased power fading of a Li-ion battery at low tem-
perature. The obtained results confirmed that the integration of
battery degradation cost and islanding responsive demand re-
sponse incentives in DC microgrid applications would signifi-
cantly influence the operating cost.
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