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Abstract: In the last years, predictive maintenance has gained a central position in condition-based maintenance tasks 

planning. Machine learning approaches have been very successful in simplifying the construction of prognostic models 

for health assessment based on available historical labeled data issued from similar systems or specific physical models. 

However, if the collected samples suffer from lack of labels (small labeled dataset or not enough samples), the process of 

generalization of the learning model on the dataset as well as on the newly arrived samples (application) can be very 

difficult. In an attempt to overcome such drawbacks, a new deep supervised learning approach is introduced in this 

paper. The proposed approach aims at extracting and learning important patterns even from a small amount of data in 

order to produce more general health estimator. The algorithm is trained online based on local receptive field theories of 

extreme learning machines using data issued from a propulsion system simulator. Compared to extreme learning 

machine variants, the new algorithm shows a higher level of accuracy in terms of approximation and generalization 

under several training paradigms. 

Keywords: Predictive maintenance; Decay detection; Extreme learning machine; Deep learning; Prognostic and health 

management; Naval propulsion systems. 

Nomenclature 

ANN: artificial neural network 

C-DBN: combinatorial DBN 

CNN: convolutional neural network 

CODLAG: COmbined Diesel eLectric And Gas 

propulsion plant 

DBN: deep belief neural network 

ELM: extreme learning machine 

ELM-LRF: ELM with local receptive fields 

GT: gas turbine 

GTC: gas turbine compressor 

HP: high-pressure turbine 

LP: low-pressure turbine 

ML: machine learning 

OS-ELM: online sequential ELM 

RLS: recursive least squares 

RMSE: root means squared error 

RNN: recurrent neural network 

SLFN: single hidden layer feedforward neural network 

SVM: support vector machine  

�: regularization parameter 

H: hidden layer 

I: identity matrix 

M: covariance matrix 

N: number of neurons 

T: targets 

��: single input observation 

X: inputs 

a: input weights 

b: biases 

���: GT decay coefficients 

���� : GTC decay coefficients 

e: estimation error 

k: index of the training mini-batches 

l: error rate 

L: number of hidden layers 

n: number of samples 

S: mini-batch size  

�: output weights 

	: forgetting factor 
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1. Introduction 

Predictive maintenance can be considered as a concept strongly related to the computer-assisted maintenance 

management field. It consists in anticipating maintenance requirements in order to prevent alteration or secession of such 

a system earlier by following damages propagation [1], [2]. This prediction approach needs an accurate prognostic system 

through which failure conditions can be analyzed to directly address associated causes[3], [4]. Predictive maintenance 

makes it possible to predict technical incidents rather than suffer them [5]. Thanks to this strategy, it is thus possible to 

plan interventions in advance and thus avoid an unexpected immobilization of equipment or a machine. It therefore 

pushes things a step further than preventive maintenance. 

Many modeling approaches can be involved to determine the operating behavior such as physical, numerical, and 

mathematical modeling [5]. However, the complexity and flexibility of recent systems, which are due to the massive 

evolution in industrial technologies, have resulted in difficult manipulation besides the lack of precision at the level of the 

aforementioned modeling tools. Hence, these shortcomings may lead to reduced reliability for health monitoring systems 

[6]. 

Motivated by both the remarkable advances in sensor technologies and the low implementation cost, Machine Learning 

(ML) tools are becoming more relevant for the generation of more reliable training models in comparison to conventional 

strategies [4], [7], [8]. 

In the literature, several ML tools with different training paradigms and architectures have been investigated. These 

studies are involved in the analysis of the faults of many industrial systems, in particular the most critical ones such as 

propulsion systems. In fact, a small defect or failure in any of the sub-components of these systems, can lead to probable 

catastrophes. 

For instance, ensemble algorithms[9], deep learning [7], [10], [11] and hybrid architectures [12]–[14] were studied as part 

of the analysis of deterioration and propagation of damage for different operating systems including propulsion systems 

associated to marine vessels. In this regard, Coraddu et al. [5] constructed the numerical model of a COmbined Diesel 

eLectric And Gas propulsion plant (CODLAG) to generate data corresponding to fatigue growth of the propulsion 

system. Two different ML tools, namely Support vector machine (SVM) and recursive least squares (RLS) have been used 

to model data behavior under several sub-sampling methods jointly with different data fractioning paradigms. In this 

study, it has been proven that SVM was able to achieve more accurate results. Cipollini et al. [3] performed a comparative 

study to investigate the use of several supervised learning methods to determine the most suitable model for decay 

detection using the same training data of the previous work. Moreover, the use of hybrid models that combines two paths 

for both unsupervised and supervised learning, with the aim of providing more reliable learners under the lack of data 

have been presented by Cipollini et al. [1]. Tan et al. [2] used one-class SVM-based approach for a dataset classification 

attempting to keep the prediction accuracy as lower as possible even under the use of a small amount of samples during 

the training process. Furthermore, Tan et al. [6] proposed to study the same topic using a new ML approach based on the 

combination of a hybrid SVM and an isolation forest. 



In the context of ML modeling, the availability of labeled training data allows obtaining well-generalized universal 

approximators. Nevertheless, these universal approximators suffer from insufficient precision when the recorded data 

representing the history of the operating systems suffer for the lack of labels, according to the theories of deep learning 

[15]. In addition, a multitude of time varying data collected from various and varied sensors that change over time and 

distribution makes dynamic adaptation really important to maintain the stability of training models [16]. 

The emergence of deep learning algorithms in ML has gained an excellent reputation as it can handle both generalization 

and approximation based on an unsupervised training process. Moreover, a fine tuning can be performed based on a 

small set of training samples [17], [10], [18], [19]. However, supervised training or fine tuning of deep networks based 

gradient descent algorithms such as backpropagation or contrastive divergence, or unsupervised learning approaches, 

could make the training process more difficult and not precise enough because of the following issues[20]–[24]: 

• These training algorithms can easily be trapped within local minima and suffer from stopping criteria; 

• Numerous components including iterative tuning, repeating learning sequences for Recurrent Neural Networks 

(RNN), multiple layers of convolutional mapping and pooling for Convolutional Neural Networks (CNNs), 

forward and backward propagation for autoencoders and restricted Boltzmann machines entail a huge amount of 

computational costs and training time, especially under big data environments; 

• The learning rate, the dropout, regularization based L1 and L2 norms minimization, the overlapping step, the size 

of the local receptive field and many other hyperparameters should be adjusted in each iterative settings. This 

issue does not address the biological learning of the human brain and leads to more human intervention or some 

other combined random search algorithms; 

• Data from the actual process are required to be divided by experts into training and test sets, as familiar in well-

known benchmarks. Otherwise, another problem of randomized validation or k-fold cross-validation 

investigations should be achieved attempting to find the most suitable training samples avoiding the empirical 

risks or other ill-posed problems. 

The training tool known as extreme learning machine (ELM) has brought many enhancements to the realm of artificial 

neural networks (ANN) [25]. The ELM has been proposed in an attempt to eliminate the barriers between human 

thinking and the ANN by discarding the employment of both iterative adjustment of the hidden nodes parameters during 

training besides the learning rate [26]. As a matter of fact, ELM aims to design a well generalized universal approximators 

by considering only the hyperparameters of the output layer [27].The ELM was first unleashed for the training of single 

hidden layer feedforward neural networks (SLFN) [26].Then, it spreads so as to adapt to all the paradigms of ANNs for 

different domains such as the current health assessment and predictive maintenance field [28], ranging from multilayer to 

deep and hierarchical architectures under both online or offline learning attitudes [25]. In addition, ELM provides easy 

integration of adaptive learning which deals with environmental variables as well as fast robust extractors of features 

such as denoising autoencoders, like those that have been investigated in previous work in [29]. 



In this work, the main objective is the design of an accurate learning and prediction tool based on ELM theories for the 

analysis of the damages propagation in naval propulsion plants. The main contributions of the present work as regarding 

the naval propulsion systems maintenance scheduling are as follows: 

• The use of ELM theories to train a deep belief neural network (DBN) for both unsupervised learning and 

supervised fine tuning stages. This allows taking advantage of both deep architecture of the DBN precision under 

the lack of labeled data and the reduction in computational time; 

• The integration of locally connected combinatorial neural sub-networks into the hidden nodes based on ELM 

local receptive fields theories (ELM-LRF). Hence, the hidden layers take advantage of the convolutional mapping 

of CNNs [30], [31]; 

• The introduction of a regularized online learning-based on online sequential ELM (OS-ELM) to address adaptive 

training, which prevents from structural risks [32]. 

The novelty of the proposed algorithms lies in the combination of all these characteristics in a very fast adaptive learning 

with both a convolutional mapping and a deep reconstruction of features with a stack of autoencoders in a single 

framework of a multilayer neural network. 

The proposed combinatorial deep belief neural network (C-DBN) is evaluated as part of the prediction of the decay of the 

frigate using the same data taken from a simulation model of CODLAG [5]. The results of the evaluation are compared 

with basic variants of the proposed algorithm namely OS-ELM and ELM. The comparative study proves the effectiveness 

of the proposed approach over the ELM and OS-ELM learning rules. 

The rest of the paper is organized as follows: Section 2 describes the materials used in this work. Section 3 presents the 

proposed methodology as well as the adopted algorithms. Section 4 is dedicated to experimental results analysis and 

discussions. Finally, section 5 concludes this paper and gives some directions for future works in this field. 

2. System and dataset description  

CODLAG system is a hybrid naval propulsion system with a double shaft arrangement that employs electric motors 

powered by diesel engines as illustrated by Figure (1-a). The gas turbine (GT) depicted by the diagram of Figure (1-b) 

powers the shafts via an interconnected gearbox as an alternative drive source [6]. The GT consists of a single compressor 

(C) and a high pressure turbine (HP) designed for the production of exhaust gas in which it drives the low pressure (LP) 

turbine for the production of enough thrust power to move the vessel [5]. The numerical model of the engine has been 

previously simulated by Coraddu et al. [5] using Matlab/Simulink library and the recovered data were released for the 

public at the data repository of the University of California at Irvine [33]. More description about the modeling process 

and the vessel propulsion system can be found in [5]. 



 

Figure 1. (a) CODLAG propulsion system, (b) diagram of the gas turbine [5]. 

The dataset describes both GTC and GT decay variation (���� , ���) as defined by equations (1) and (2) with 16 different 

sensors measurements gathered in 11934 samples. All parameters, which are organized in a dataset are obtained from [19] 

and their computed statistical characteristics are presented in Table 1. Collected samples are recorded sequentially with a 

higher level of dynamic disturbance, which may drive any approximation function towards structural risks if the loss 

function is not optimally minimized without considering regularization.  

 ���� 
 1 � . 0.001,  ∈ �0,1,2, … ,51�. (1) 

 ��� 
 1 � . 0.001,  ∈ �0,1,2, … ,26�. (2) 

Table 1. Dataset features and their characteristics. 

Index Features Unit Min(���) Max (���) Mean (���) 
Standard  

deviation (���) 

1 Lever position (lp)  [ ] 0.0011 0.0009 0.0005 0.0003 

2 Ship speed (v)  [knots] 0.0030 0.0027 0.0015 0.0008 

3 Gas Turbine shaft torque (GTT)  [kN m] 0.2535 7.2785 2.7247 2.2148 

4 Gas Turbine rate of revolutions (GTn)  [rpm] 1.3077 0.3561 0.2136 0.0774 

5 Gas Generator rate of revolutions (GGn)  [rpm] 6.5890 0.9797 0.8201 0.1091 

6 Starboard Propeller Torque (Ts)  [kN] 0.0053 0.0645 0.0227 0.0200 

7 Port Propeller Torque (Tp)  [kN] 0.0053 0.0645 0.0227 0.0200 

8 HP Turbine exit temperature (T48)  [C] 0.4424 0.1116 0.0735 0.0174 

9 GT Compressor inlet air temperature (T1)  [C] 0.2880 0.0288 0.0288 0 

10 GT Compressor outlet air temperature (T2)  [C] 0.5404 0.0789 0.0646 0.0073 

11 HP Turbine exit pressure (P48)  [bar] 0.0011 0.0005 0.0002 0.0001 

12 GT Compressor inlet air pressure (P1)  [bar] 0.0010 0.0001 0.0001 0.0000 

13 GT Compressor outlet air pressure (P2)  [bar] 0.0058 0.0023 0.0012 0.0005 

14 Gas Turbine exhaust gas pressure (Pexh)  [bar] 0.0010 0.0001 0.0001 0.0000 

15 Turbine Injection Control (TIC)  [%] 0 0.0093 0.0034 0.0026 

16 Fuel flow (mf)  [kg/s] 0.0001 0.0002 0.0001 0.0001 

17 GTC decay state coefficient (����)). [] 0.0010 0.0001 0.0001 0.0000 

18 GT Turbine decay state coefficient (���). [] 0.0010 0.0001 0.0001 0.0000 

 



According to [1], GTC and GT are not decaying if the decay coefficients of GTC and GT belong to the 

intervals �0.98,1� and �0.99,1�, respectively. Contrariwise, they can be considered as decaying if their decay coefficient 

belongs to [0.95,0.98� and �0.975,0.99�, respectively. 

As indicated in [5], the decay variation for both GTC and GT is defined according to equations (1) and (2), respectively. 

Figure 2 illustrates the dataset issued from different sensors and the corresponding decay variations in both GTC and GT 

as delivered by the simulation model. It depicts the normalized data versus observation and sensors indices (Table 1). 

This figure shows the huge amount of the collected data and the difficulty to analyze such a database in order to get any 

information about the operating and health state of both sub-systems, namely GTC and GT.  

As it is known from deep learning theories, in such a big data problem, the well-designed deep learning model has more 

meaningful feature representations than ordinary feature mapping. Hence, the reduction of the complexity of data and 

the extraction of meaningful patterns was one of the main reasons that led to combine two well known deep learning 

techniques (convolutional mapping, feature reconstruction) at the same time within one algorithm with a very fast 

learning scheme of OS-ELM.  

 

Figure 2. (a) Normalized measurements versus number of observations and sensors index (b) Variation of decay coefficient with 

respect to observation index. 

3. Methodology 

The flowchart in Figure 3 depicts the proposed methodology for training model construction. It can be noticed from this 

figure that the training stage is composed of four distinctive parts: dataset preparing, model training, results post 

processing and model validation. These consecutive stages are further described in the following sub-sections. 
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Figure 3. Flowchart of the proposed methodology. 

3.1. Dataset preparing  

Raw data from the current dataset cannot be directly exploited by the prediction model for training or prediction 

purposes due to the incompatibility between the measurement scales of the sensors and their unknown degree of 

correlation. Therefore, simple standardization and some correlation investigations must be performed to ensure the 

accuracy and the effectiveness of the training process. 

In the current study and according to the ELM learning constraints, the input learning samples �� are scaled to fit within 

the range [0, 1] using the min-max normalization formula shown in equation (3). After that, the correlation matrix is used 

to decide which parameters are critical for the elaboration of the decay prediction model. 

 � 
 �� � � �!� "# � � �!. (3) 

The heat map in Figure (4-a) shows the correlation density between dataset features before and after selection. It shows, 

for example, that sensors T1 and P1, corresponding to the inlet air temperatures and inlet air pressure of the GT 

compressor, respectively, can probably lead the model to an overfitting or to other ill-posed problems due to the non-

correlation between them under the same criteria of decay variation. Consequently, these measurements must be 

eliminated to increase the correlation of the data as it can be seen in the Figure (4-b). 

Labels of each observation are defined according to the equations (1) and (2).  Regarding the current study, the dataset is 

divided randomly into training and testing sets according to different ratios. 



 
Figure 4. (a) Correlation density between dataset features before selection. (b) Correlation density between dataset 

features after selection. 

3.2. Training algorithm  

The new training rules of the proposed deep neural network are inspired from basic OS-ELM [32]. This is one of the ELM 

variants that have been developed attempting to address online learning as a feedback of environmental data 

accumulation of real world problems. OS-ELM with the single hidden layer architecture is presented in Figure 5. It can be 

trained for any dataset of n mini-batches $%& , '&(&)*!  with the size of $+&(&)*!  based on ELM theories in two main phases, 

which are: the initialization phase and the recursive phase, where $%& , '&( represent the training inputs and outputs, 

respectively. 

 

Figure 5. Single hidden layer based ELM notations [25]. 



In the initialization phase, hidden nodes parameters, namely weights and biases (-, .), are randomly and independently 

generated from the training data and must be scaled within the range��1,1�. After that, the hidden layer H can be 

mapped and activated according to any chosen activation function (0) as shown in equation (4). 

 1& 
 0(-%& + .). (4) 

The initial training weights �*of the output layer can be analytically determined using the Moore-Penrose pseudo-inverse 

of the matrix as shown in equation (5), using the covariance matrix 3*in (6). 

 �* 
 3*1*'* , (5) 

 3* 
 (1*�1)4*. (6) 

In the recursive phase, the output weights � are updated using formula (9) depending on the updated covariance matrix 

3&5* and estimation error 6&5* in equations (7) and (8), where 7 denotes the identity matrix. 

 3&5* 
 3& � 3&1&5*1&5*� 3&
7 + 1&5*� 3&1&5*

, (7) 

 6&5* 
 ('&5* � 1&5*� �&), (8) 

 �&5* 
 �& + 3&5*6&5*. (9) 

The proposed algorithm given by Figure 6 is a result of a combination of two deep learning models: the local receptive 

fields (LRF) and deep belief neural networks. The deep network is trained for unsupervised learning with 8 number of 

serially connected autoencoders and then fine-tuned for supervised learning using OS-ELM theories. The hidden nodes in 

each autoencoder could be locally connected to sub-networks that address both convolutional mapping and pooling in a 

simple mapping theories based on ELM-LRF [30]. 

Each sub-network of the hidden layer is either fully connected or locally connected. The decision regarding the types of 

hidden nodes is chosen randomly by following ELM theories of randomness in parameters selection. The locally 

connected hidden nodes are designed to analyze local fields of random size from each sequence of training data. Inside 

each combinatorial node, the resulting feature maps are followed by a pooling process involving a fully connected layer 

with a single output and random weights to fill in the gaps in full rank mapping and to satisfy the learning constraints of 

the least squares method.  



 

Figure 6. Architecture of the proposed combinatorial DBN algorithm. 

In deep belief neural networks, feature mapping resulted in unsupervised reconstruction of inputs and the next stack of 

hidden layers, can help the multilayer neural network to get the best approximation during the fine tuning process [21]. 

Therefore, in the designed network, the feature mapping of the training inputs, which is resulted by convolutional 

filtering of each autoencoder, will be the input of the next autoencoder. The transpose matrix of the tuned weights will be 

used as the encoding key for the new coming samples. After the unsupervised learning, tuned weights of the encoders 

will be used to the multilayer neural network for supervised learning. Thus, a process of fine-tuning at the last output 

layer is necessary. The convolutional filtering under deep architecture will allow scanning multiple possibilities of 

representations of the features space, which will allow the neural network to be aware of any variation of data and to 

guarantee its adequate approximation. 

According to regularized ELM (R-ELM) theories [34] and forgetting mechanism of OS-ELM [35], regularization and 

forgetting parameters $�, 	( can be  added to reduce the amount of structural risk of OS-ELM training as well as to adapt 

the training weights towards data variations. As a result, equations (5) and (7) must be changed into (10) and (11) to fit the 

new training process. Besides, the target in equations (5) and (8) needs to be equal to the input in order to satisfy the 

unsupervised training process.  

 �* 
 9 7
� + 1*�1*: 1�'*, (10) 

 3&5* 
 3&	 � 3&1&5*1&5*� 3&
	(7 + 1&5*� 3&1&5*). (11) 

Where 	;�0,1� and �;�0, +∞). 



According to ELM learning theories of autoencoders as in[36],there is no need after the initial phase to use the random 

feature mapping with local receptive fields. Instead of that, the transpose of the determined output weights will be used 

for the mapping process as shown in equation (12). 

 - 
 = -, > 
 1
�&5*� , > > 1. (12) 

The proposed C-DBN approach is summarized in Algorithm 1. 

Algorithm1. C-DBN-based OS-ELM 

Inputs: %& , '& , +& , �, 	, 8, @, A. 

Outputs: Fully trained C-DBN. 
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1 For j = 1: 8 

2 Load initial mini-batches; 

3 If j = 1 

4 Xk = Xk;  

5 Else 

6 Xk = Hk; 

8 End 

9 Generate input weights and biases (a, b); 

10 Map the inputs to the sub-networks via randomly connected receptive fields; 

11 Activate the feature mapping as an initial hidden layer using equation (4); 

12 Calculate the initial covariance matrix   based on (6); 

13 Determine the initial output weights of the autoencoders using (10) by putting the target same as the input ; 

14 If j == 8 

15 Tune initial output weights of the supervised learning using equation (10); 

16 End 
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17 For k = 2: @ 

18 Load new mini-batches;  

19 If j == 1 

20 Xk = Xk;  

21 Else 

22 Xk = Hk; 

23 End 

24 Calculate the hidden layer by replacing the input weights as mentioned in equation (12); 

25 Update the output weights of the autoencoders using (8), (9) and (11) by putting the target same as the input ; 

26 If j == 8 

27 Update the output weights for supervised learning, equation (8), (9) and (11); 

28 End 

29 End 

30 End 

3.3. Model validation 

The training algorithms in this case are evaluated using the error rate formula presented in equation (13), which is 

proposed by Coraddu et al. [5] for studying this benchmark. 

 B 
 1
@ C D'E� � '�'� D

!

�)*
. (13) 

Where, @ denotes the number of training or testing samples, 'E  represents the estimated target, ' describes the desired 

target and B refers to the error metric function. 



4. Experiments results and discussions 

In current experiments, two main targets are considered, which are GTC and GT decay coefficients. Therefore, two 

training paradigms have been studied in the case of a single output and multiple outputs for trained neural networks. In 

each experiment, we use different manually tuned hyperparameters based on a simple grid search mechanism to enhance 

the accuracy of results. Experimental dataset processing  has been performed by running the proposed algorithms in a 

personal computer with an Intel (R) Core (TM) i5-3427U CPU @ 1.80 GHz 2.80 GHz with 4.00 GB of RAM. 

Since ELM depends on Moore Penrose pseudo-inverse method, which in general suffers from the interpolation problem 

caused by the least squares method [37], the best suggestion of results adjustment is rescaling according to initial 

condition from the targets values. In the current experiment, we have adjusted the targets using min-max normalization 

depending on the original values of the decay coefficients, to fit into a range of meanings and ensure that their statistical 

inferences make sense relatively to the original ones. 

Tables 2 and 3 give the results of the comparative study by considering all of the three cases of predictions (GTC, GT, 

GTC & GT). The training ratio was tuned according to [5] in order to avoid complicating validation problem and to keep 

the originality of the prediction problem. In the  proposed approach of Coraddu et al. in [5], the authors  used different 

sub-sampling approaches (uniform distribution, bimodal distribution and monomodal distribution) with different 

prediction cases (single output and multiple outputs). Different training sets of different sizes were made in each case. In 

our training scheme, we followed a simple random sampling process because it is easier to implement and leads  to less 

algorithmic complexity. However, the dataset partitioning is defined the same way by taking only the largest training set  

in each case, which is shown in Tables 2 and 3. 

Table 2. Comparison results in case of random sampling (training ratio = 0.98, approximately 200 testing samples). 

 Decay estimation of GTC in case of multiple outputs,  

 Training time(s) Testing time(s) Training error Testing error 

C-DBN 2.2932 0.0312 0.0016 5.4639×10-04 

OS-ELM 2.5584 0.0312 0.0143 0.0136 

ELM 3.1044 0.0624 0.0138 0.0132 

 Decay estimation of GT in case of multiple outputs, training ratio: 0.98 

 Training time(s) Training time(s) Training error Testing error 

C-DBN 2.2932 0.0312 0.0022 4.8814×10-04 

OS-ELM 2.5584 0.0312 0.0070 0.0067 

ELM 3.1044 0.0624 0.0068 0.0066 

Table 3. Comparison results in case of random sampling (training ratio = 0.95, approximately 500 testing samples). 

 Decay estimation of GTC in case of multi-outputs 

 Training time(s) Testing time(s) Training error Testing error 

C-DBN 2.1060 0.0312 1.3279×10-04 2.8132×10-05 

OS-ELM 0.8736 0.0312 8.5208×10-05 7.4560×10-05 

ELM 1.1388 0 5.1762×10-05 1.7372×10-05 

 Decay estimation of GT in case of multi- outputs, training ratio: 0.95 

 Training time(s) Testing time(s) Training error Testing error 

C-DBN 0.9204 0.0312 4.3501×10-04 2.0366×10-04 

OS-ELM 0.9048 0.0312 0.0104 0.0066 

ELM 2.0748 0.0312 0.0073 0.0090 



On one hand, it can be seen from Tables 2 and 3 that the proposed algorithm outperforms offline training paradigms. 

Improvements in the prediction accuracy of the online learning attitude are the result of the dynamic adaptation with a 

forgetting mechanism. Unlike the basic ELM which is based on the offline least squares method, the sequence learning 

forgetting factor of OS-ELM acts as a temporal memory that allows the learning weights to decide which samples are 

much important to remember. In addition, the setting of new multi-feature maps based on the feature space resulting 

from both random convolutional filtering and pooling techniques which are integrated inside the hidden units as sub-

networks, can push the hidden layers towards robust feature extraction and allow expressing more meaningful 

representations. Moreover, These tables also shows that ELM variants can handle single output better than multiple 

outputs under the current decay prediction problem. Besides, even in the current deep complex architecture of the 

algorithm, the computational time during training stage is less than 3 seconds. This is almost a negligible amount of time 

compared to the computational burden of the ordinary gradient descent DBNs and other old deep learning architectures. 

The current learning speed is the result of simplified learning rules driven by both non-iterative adjustments and fewer 

hyperparameters that allow less human intervention. On the other hand, by sub-sampling the training and test sets 

randomly from the original dataset with the proviso that the test samples encompass samples of sequences similar to the 

training set, the results of curve fitting can be viewed as an indicator of performances that visually explains the 

magnitude of variation in predicted samples. 

Figures 7 and 8 illustrate the proposed network behavior in case of a single target. Results of the curve fitting in training 

and testing are much closer to the original samples than those in Figure 8, which slightly deviated. This therefore leads to 

the same conclusion that recursive least squares methods can handle a single output better than multi-outputs. 

It is known that in ELM theories, more nodes in the hidden layer leads to more accurate tuning of the output weights by 

the Pseudo-inverse method. On this basis, a new comparative study is carried out in an attempt to prove the stability of 

the deep architecture, even under random feature mapping. By increasing the number of hidden nodes iteratively, the 

main goal is to ensure that the network always achieves the best results over the others. 

Figures 9 and 10 describe the studied networks error behavior during increasing the number of hidden nodes. Both 

figures highlight the network stability responses during model validation phases by showing less fluctuations and 

dynamic disturbances in the error rate behavior. In addition, under different incremental learning circumstances, C-DBN 

is still stable and has higher performance accuracy than ELM and OS-ELM. 

The new training scheme seems clearly more resistant against empirical risk. Indeed, as shown by Figure 9 (testing with 

single output (GTC)), it can achieve better results than the other ones under less than 100 neurons. This leads to the 

conclusion that, the new network allows hidden layer in deep architecture to be more extended to give better a 

representation leading to an increased accuracy without suffering from overfitting compared to old paradigms. 

 



 

Figure 7. Behavior of the proposed neural network in case of a single output. 

 

Figure 8. Behavior of the proposed neural network in case of multi-outputs. 
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Figure 9. Error rate behavior in case of a single output. 

 

Figure 10. Error rate behavior in case of multi-outputs. 
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When feeding each mini-batch entering the training model, a certain correlation between the last training model and the 

new driven data must be observed because this will prove that the model is generalized on the two sequences; The 

current and the last ones. Therefore, in order to prove the effectiveness of the adaptive learning of the C-DBN on the 

generalization process towards the newly arrived samples, additional experiments were investigated during the training 

process. The root-mean squared error (RMSE) of the prediction error (Equation (8)) using the latest output weights is 

recorded in each single iteration and the results are shown in Figure 11. In these experiments, the training data were 

divided into small mini-batches (20 samples) to study the behavior of the RMSE during sequential training. These results 

prove that the uniform gradual degradation of RMSE linked to C-DBN in the three cases (GTC, GT, GTC & GT) is more 

stable and show the generalization ability of the proposed approach. Indeed, unlike C-DBN, ordinary OS-ELM shows less 

generalization ability and learning stability to new samples by showing more fluctuations towards multiple sequences. 

These results show the effectiveness of the combination between convolutional mapping and deep learning under the 

recursive learning of OS-ELM. 

In basic algorithms that have been previously discussed, such as SVM [5], SVM with isolation forest [6], and one-class 

SVM combined with global K-nearest neighbor [1], training algorithms have been developed attempting to solve the 

aforementioned condition-based maintenance problem by studying either a regression or a classification. Compared to 

the proposed algorithm, SVM is an offline learning method that is not able to address dynamic programming during 

adaptive learning with time varying data. Additionally, hybridization with SVM will produce more algorithmic 

complexity, which will ultimately result in higher computational costs. Moreover, unlike the OS-ELM, iterative gradient 

descent algorithms suffer from convergence problems when trying to find an optimal local minimum of the loss function. 

However, and due to the need for least squares methods of OS-ELM for full rank feature mapping, the flow of the 

mapping process to hidden layers in a deeper hierarchical architecture will cause important descriptive patterns to 

disappear. Therefore, careful selection of architecture is of a paramount importance. 



 

Figure 11. RMSE behavior during training process. 

 

5. Conclusion  

This paper dealt with a new data-driven approach for predicting the decay of a combined Diesel electric and gas 

propulsion plant for naval propulsion systems. The proposed approach is a type of deep belief neural network (DBN) 

based on online sequential extreme learning machine (OS-ELM) rules, which has the capacity to perform 

convolutional mapping as well as the pooling in each single sub-network from its hidden layers according to ELM 

with local receptive fields theories. The introduced framework has been evaluated under time varying data, obtained 

from the system numerical model and compared with its original variants (ELM, OS-ELM). The results have shown 

that combinatorial DBN (C-DBN ) is more efficient in terms of prediction capability, especially under single output. 

This makes it very promising for real world implementation of scheduled maintenance operations. This efficiency lies  

on the dynamic adaptation with the forgetting mechanism and regularization paradigm of the designed approach. In 

addition, extracting more significant features representation based on the designed filtering process and deep 

reconstruction proves that it plays an important role in accurate approximation as well as generalization. 

This comparative study was carried out using random sampling and limited conditions. Consequently, further 

investigations need to be carried out to study such dataset using additional probabilistic distributions for sub-

sampling and for more activation functions under cross-validation. Moreover, it should be interesting to investigate 

the use of random search algorithms for hyperparameters tuning to reach higher levels of accuracy and 

generalization. 
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