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Abstract 

Background: Quaternary climate fluctuations have been acknowledged as major drivers of the geographical distri-
bution of the extraordinary biodiversity observed in tropical biomes, including Madagascar. The main existing frame-
work for Pleistocene Malagasy diversification assumes that forest cover was strongly shaped by warmer Interglacials 
(leading to forest expansion) and by cooler and arid glacials (leading to forest contraction), but predictions derived 
from this scenario for forest-dwelling animals have rarely been tested with genomic datasets.

Results: We generated genomic data and applied three complementary demographic approaches (Stairway Plot, 
PSMC and IICR-simulations) to infer population size and connectivity changes for two forest-dependent primate 
species (Microcebus murinus and M. ravelobensis) in northwestern Madagascar. The analyses suggested major demo-
graphic changes in both species that could be interpreted in two ways, depending on underlying model assumptions 
(i.e., panmixia or population structure). Under panmixia, the two species exhibited larger population sizes across the 
Last Glacial Maximum (LGM) and towards the African Humid Period (AHP). This peak was followed by a population 
decline in M. ravelobensis until the present, while M. murinus may have experienced a second population expansion 
that was followed by a sharp decline starting 3000 years ago. In contrast, simulations under population structure sug-
gested decreasing population connectivity between the Last Interglacial and the LGM for both species, but increased 
connectivity during the AHP exclusively for M. murinus.

Conclusion: Our study shows that closely related species may differ in their responses to climatic events. Assuming 
that Pleistocene climatic conditions in the lowlands were similar to those in the Malagasy highlands, some demo-
graphic dynamics would be better explained by changes in population connectivity than in population size. However, 
changes in connectivity alone cannot be easily reconciled with a founder effect that was shown for M. murinus during 
its colonization of the northwestern Madagascar in the late Pleistocene. To decide between the two alternative mod-
els, more knowledge about historic forest dynamics in lowland habitats is necessary. Altogether, our study stresses 
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Background
Marked Quaternary climatic oscillations have been 
largely acknowledged as a major driver of evolutionary 
and biogeographical patterns of species worldwide [1, 2]. 
The present-day distribution, genetic diversity patterns 
and demography of many temperate and tropical species 
have been shaped by historical warming–cooling cycles 
that forced species to retract and expand according to 
their ecological requirements [2–8]. Accordingly, there 
is an increasing interest in reconstructing the climate, 
biome and fire regimes of the late Quaternary. Most stud-
ies focus on the well-pronounced climate fluctuations 
that occurred during the last Interglacial–Glacial cycle, 
which included the Last Interglacial (LIG; ca. 132–112 
kyr; kyr = thousand years) and the Last Glacial Maxi-
mum (LGM; ca. 26.5–19 kyr) [9].

There is a general consensus that the climate during the 
LGM was globally cooler than today, even if the magni-
tude of the cooling was not spatially uniform across the 
globe [1, 10, 11]. However, there is less general knowl-
edge about the effects of the last glaciation across the 
tropics [1, 11–13], partly due to the scarcity of high-
resolution paleoenvironmental records in the southern 
tropics. In contrast to these uncertainties about the last 
Interglacial–Glacial cycle, the so-called African Humid 
Period (AHP; ca. 15 to 5 kyr [14–16], but timing dif-
fered slightly across Africa) represents a well-established 
climatic event in various African regions. The AHP was 
characterized by a sudden increase in summer precipi-
tation that was followed by an abrupt shift toward more 
arid conditions, strongly impacting the vegetation cover 
across continental Africa and Madagascar [14, 17, 18]. 
The demographic history of a species, e.g., the timing and 
extent of population expansions or bottleneck events, 
should indirectly mirror past environmental fluctuations 
and can provide information about species resilience to 
past [19] and possibly future climatic oscillations.

Madagascar is a natural evolutionary laboratory, allow-
ing to investigate how past climatic changes shaped 
species demographic history. First, the island is char-
acterized by exceptional levels of species richness and 
endemism [20]. Second, Madagascar has been isolated 
from other landmasses for over 80 million years (Mya) 
[21] and exhibits marked environmental gradients. 
These conditions promoted multiple adaptive radiations 
and resulted in many cases of micro-endemism that 
evolved in response to a particular set of local or regional 

environmental and climatic conditions [22]. Third, Mada-
gascar was one of the last major landmasses on Earth set-
tled by humans (e.g., [23–27] but see [24, 28, 29]), which 
enables us to control for the confounding effect of the 
anthropogenic impact on endemic species demography 
until recent times. It has long been assumed that the cli-
mate in Madagascar was generally cooler and more arid 
during glaciations, and that the extent of the forest cover 
dramatically contracted during these periods [30–32], 
likely resulting in high levels of specialization [33]. How-
ever, solid evidence for historical forest cover dynamics 
across different regions and habitat types on the island is 
still missing.

More than 90% of the Malagasy species and almost 
all lemurs live exclusively in forests and woodlands [34]. 
Among the lemuriforms, mouse lemurs (Microcebus 
spp.) provide a suitable model for demographic studies, 
because they have a very young age at first reproduc-
tion (ca. 8  months) [35] and therefore a relatively short 
generation time (ca. 2.5 years) [36]. Moreover, as forest-
dwelling species they should be susceptible to vegetation 
shifts, and their Pleistocene demographic dynamics can 
therefore be expected to correspond to past environmen-
tal changes. While mouse lemurs are typically micro-
endemic species, M. murinus is the only mouse lemur 
species with a large geographic distribution, inhabiting 
various forest habitats from southern to northwestern 
Madagascar [37]. Across its range, M. murinus co-occurs 
with five other locally restricted mouse lemur species, 
including M. ravelobensis in one northern part of its 
distribution [38, 39]. M. ravelobensis occurs exclusively 
in the so-called Inter-River-System Ia (IRS Ia; Fig.  1a) 
delimited by the Betsiboka and Mahajamba rivers [40, 
41]. The two species have most likely undergone very dif-
ferent evolutionary trajectories. While M. ravelobensis 
is thought to have diverged allopatrically from its sister 
species M. bongolavensis also distributed in northwestern 
Madagascar [40], M. murinus likely diverged allopatri-
cally from its sister species M. griseorufus at about 3–6 
Mya in southwestern [38] and colonized northwestern 
Madagascar only during the Late Pleistocene [42].

The present study aims to investigate the impact of the 
Late Quaternary environmental changes on the demo-
graphic dynamics of these two mouse lemur species (M. 
murinus and M. ravelobensis) living in partial sympatry 
in the lowland forests of northwestern Madagascar in 
spite of their different phylogeographical background. 

that demographic inferences strongly depend on the underlying model assumptions. Final conclusions should there-
fore be based on a comparative evaluation of multiple approaches.

Keywords: Quaternary climatic oscillations, Genomics, Demographic modelling, Madagascar, Mouse lemurs
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Notwithstanding recent advances in analytical tools to 
reconstruct populations dynamics of non-model organ-
isms (e.g., [43, 44]), previous studies on lemurs were 
mostly based on a reduced number of molecular mark-
ers (but see [45–47]) or a single demographic method 
(but see [19, 48]). Also, with the exception of very few 
studies (e.g., [19, 48, 49]), possible effects of population 
structure (i.e., non-random mating) on demographic 

inferences have been largely neglected and results were 
often interpreted exclusively as size changes of panmictic 
populations (e.g., [45, 46]). However, it has been shown 
that population structure can generate spurious signals 
of population size changes, even when the populations 
were stationary through time [50–54]. To overcome these 
limitations, we used two types of genome-wide data 
(Restriction site Associated DNA sequencing (RADseq) 
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Fig. 1 Study area and sampling strategy. a Distribution range of M. murinus and M. ravelobensis across northwestern Madagascar and location 
of study sites. Individual capture locations of mouse lemurs in b Ravelobe and c Ankomakoma along four forest transects that were arranged in 
proximity to one lake each (in blue). The two forest sites were approximately 10 km apart. a The river shape files were provided by [141] and the 
outlines of the Ankarafantsika National Park were obtained from the Protected Planet Database [142]. b and c Individual coordinates can be found 
in Additional file 1: Table S8. M.mur = M. murinus; M.rav = M. ravelobensis; ANP = Ankarafantsika National Park
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and whole-genome sequences) and three complemen-
tary demographic approaches (Stairway Plot, PSMC and 
IICR-simulations) to model both changes in effective 
population size (Ne) and connectivity over time in M. 
murinus and M. ravelobensis in northwestern Madagas-
car. The Stairway Plot [55] and PSMC [56] methods have 
been widely used to detect population size changes. The 
first typically uses genomic data from independent loci 
obtained from a population sample of several individu-
als, whereas the second method uses the whole-genome 
of a single diploid individual. The methods also differ in 
the fact that the Stairway Plot method has been shown 
to perform best towards the recent past whereas the 
PSMC is more informative about events occurring in a 
more distant past [55, 57–60]. Results from both meth-
ods have been interpreted by assuming that the genomic 
data used for the analyses stem from a panmictic popu-
lation. However, theoretical work and simulations have 
shown that the PSMC dynamics observed for many 
species that is interpreted as reflecting population size 
changes might also be caused by population structure 
and changes in connectivity. More specifically, the PSMC 
curves are actually estimates of a complex temporal and 
sample-based function called the IICR (Inverse Instanta-
neous Coalescence Rate). Under panmixia, the IICR and 
the PSMC should be interpreted as changes in population 
size, but the same PSMC plot may also have been gen-
erated under vastly different modelling conditions, such 
as a stationary n-island model that undergoes a series 
of changes in connectivity [53]. For this reason, we also 
tested the impact of different modeling parameters on 
the estimated IICR in order to evaluate whether the tra-
jectories revealed by coalescent-based methods such as 
the PSMC [56] may also be the result of potential changes 
in connectivity in a structured population of a constant 
size [53, 61].

Based on our knowledge about Quaternary climatic 
oscillations in Africa/Madagascar and in the ecology 
of our study species, we hypothesize that (I) M. muri-
nus should have undergone a founder effect during its 

relatively recent colonization of northwestern Mada-
gascar and should subsequently have expanded its 
population size in the region but not during the LGM 
(hypothesis I); (II) M. ravelobensis shows signals of a 
demographic decline and/or reduced levels of popula-
tion connectivity during the LGM (hypothesis II); (III) 
both M. murinus and M. ravelobensis show signatures of 
population size increase and/or higher levels of popula-
tion connectivity during the AHP (hypothesis III); and 
finally (IV) both mouse lemur species underwent a popu-
lation decline and/or a decrease in population connectiv-
ity after the termination of the AHP (hypothesis IV) (see 
Table 1). The results of our study will provide a first step 
towards a better understanding of species responses to 
past climatic changes in Malagasy lowland forests.

Results
Genomic resources
Both species of mouse lemurs were trapped in two forest 
sites within the Ankaranfantsika National Park (ANP), 
Ravelobe and Ankomakoma. Similar to previous stud-
ies in the region, the capture data revealed that the two 
species were not evenly distributed within the two for-
est sites, even though the trapping effort was the same 
along all transects [41] (Fig.  1b,c and Additional file  1: 
Table  S1 for details). Two genomic datasets were gen-
erated based on the RADseq data for complementary 
analyses. The Analysis of Next Generation Sequenc-
ing Data (ANGSD; dataset 1) [62] pipeline resulted in 
genotype likelihood information from a total of 324,608 
variable sites for M. murinus (n = 22) and 601,571 vari-
able sites for M. ravelobensis (n = 56). The number of 
SNPs in the called genotype dataset (dataset 2) yielded 
122,053 SNPs for M. murinus (n = 22) and 242,121 for 
M. ravelobensis (n = 56). The mean depth per individual 
ranged between 13.82X and 42.18X for M. murinus, and 
between 13.96X and 47.88X for M. ravelobensis (Addi-
tional file 1: Tables S2 and S3). Additionally, we generated 
whole-genome sequences of three female individuals. 
Whole-genome sequencing and mapping of the single M. 

Table 1 Summary of the expected demographic dynamics for M. ravelobensis and M. murinus under population panmixia and 
population structure

The demographic hypotheses are based on available knowledge about past Quaternary climatic dynamics in Madagascar and on the species ecology. LGM = Last 
Glacial Maximum; AHP = African Humid Period; ↑ MIG = higher migration rate; ↓ MIG = lower migration rate

Hypothesis Climatic event M. ravelobensis M. murinus

Panmixia Structure Panmixia Structure

Hypothesis I Late Pleistocene _ _ Founder event _

Hypothesis II LGM Bottleneck ↓ MIG – –

Hypothesis III AHP Expansion ↑ MIG Expansion ↑ MIG

Hypothesis IV AHP termination Bottleneck ↓ MIG Bottleneck ↓ MIG
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murinus and the two M. ravelobensis individuals resulted 
in 2,197,400,000 (M. murinus), 2,154,480,000 (M. 
ravelobensis, Ravelobe) and 2,159,200,000 (M. raveloben-
sis, Ankomakoma) sites for the PSMC analyses. The mean 
depth of coverage ranged between 16.02X (M. murinus, 
Ankomakoma), 17.04X (M. ravelobensis, Ravelobe) and 
18.79X (M. ravelobensis, Ankomakoma).

Present day population structure and isolation‑by‑distance
A weak to moderate genomic signal of population struc-
ture was detected in the two mouse lemur species. First, 
pairwise  FST estimates suggested low levels of genetic 
differentiation between the two forest sites, although 
the value was significant for M. ravelobensis (M. muri-
nus:  FST = 0.011, p = N.S.; M. ravelobensis:  FST = 0.015, 
p < 0.0001). Second, individuals of both species were 
rather continuously spread along the first axis (> 22% 
variation explained) of a Principal Component Analy-
ses (PCA), although no overlap existed between both 
sites (Additional file 1: Fig. S1a, b). Third, a rather fine-
scale population-genomic structure was revealed among 
the two sites for M. murinus and M. ravelobensis by the 
NGSadmix analyses, as the admixture plots revealed no 
complete separation under K = 2 (Fig.  2, but see Addi-
tional file 1: Figs. S2 and S3). Instead, substantial levels of 
admixture were observed in both species and both loca-
tions, indicating the occurrence of gene flow between 
the two close-by sites. Finally, a Mantel test based on all 

dyadic comparisons revealed a positive and significant 
correlation between geographical and genetic distance in 
both mouse lemur species (Mantel statistic r = 0.2344 for 
M. murinus and r = 0.2173 for M. ravelobensis, p < 0.001), 
supporting a pattern of isolation-by-distance.

Demographic modelling
The demographic history of M. murinus and M. 
ravelobensis was inferred using three complementary 
approaches (Stairway Plot, PSMC, IICR-simulations). 
The Stairway Plot [55] and the PSMC (Pairwise Sequen-
tially Markovian Coalescent, [56]) were used to infer 
population size changes from the RADseq data and 
whole-genome sequences, respectively. The Stairway 
Plot analyses with the entire dataset for each forest site 
(Additional file 1: Fig. S4) and for the two sites together 
(Fig.  3b) suggested the same overall demographic trend 
for M. murinus and M. ravelobensis. Both species exhib-
ited an increase of population size < 100 kyr and unex-
pectedly reached their largest size between the LGM 
and the African Humid Period  (Ne ~ 210,000 for M. 
ravelobensis and ~ 60,000 for M. murinus). These max-
ima were followed by a subsequent continuous decline 
in population size that started at the onset of the AHP 
and lasted until the present. Stairway Plot results consist-
ently suggested a higher Ne for M. ravelobensis than for 
M. murinus, even after standardizing the number of indi-
viduals in the analyses (n = 7 per forest site and species, 

RavelobeAnkomakoma

b
RavelobeAnkomakoma

a

Fig. 2 Population genomic structure of the two mouse lemur species. a Clustering assignment of 22 M. murinus individuals, and b Clustering 
assignment of 56 M. ravelobensis individuals to two genetic clusters (K = 2) using dataset 1, respectively. Each single vertical bar represents an 
individual and each color a distinct genetic cluster. Samples are sorted according to sampling site and respective latitude. Animal illustrations 
copyright 2013 Stephen D. Nash / IUCN SSC Primate Specialist Group. Used with permission
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Additional file 1: Fig. S5). Despite the sex-biased disper-
sal patterns suggested for our study species [63–65], the 
Stairway Plot analyses performed with the M. raveloben-
sis dataset (n = 22 males and 22 females) confirmed an 
identical demographic history when considering males 
and females separately (Additional file 1: Fig. S6).

The PSMC suggested a similar demographic trend for 
M. ravelobensis as the previous method, but different 
dynamics for M. murinus (Fig. 3a). Specifically, it inferred 
a rather stable population size of M. ravelobensis between 
the LIG period (~ 130 kyr) and about 30 kyr which was 
followed by a population increase that reached its maxi-
mum around the onset of the AHP in Madagascar (~ 15 

kyr; [18]; Ne ~ 45,000 for Ravelobe and ~ 55,000 for 
Ankomakoma). Population sizes then decreased towards 
the present. The recent peak observed in both curves 
could be interpreted as an increase of population size. 
However, this peak was no longer present in the PSMC 
when using a different free atomic time interval (Addi-
tional file  1: Fig. S7). Therefore, the recent peaks most 
likely represent a common artefact (also present in other 
studies; e.g., see [6, 56]) rather than a real demographic 
event.

The PSMC for M. murinus suggested an ancient mas-
sive population decline which started before the LIG 
period and reached a minimum at ~ 70 kyr (Ne ~ 10,000). 
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Fig. 3 Reconstruction of history of M. murinus and M. ravelobensis using three complementary methods. The grey vertical bars identify three 
well-pronounced climatic events in Africa: LIG (Last Interglacial), LGM (Last Glacial Maximum) and AHP (African Humid Period). All analyses were 
performed considering 2.5 years as generation time and 1.2 ×  10–8 as mutation rate. a Demographic history inferred by the PSMC method using 
“4 + 25*2 + 4 + 6” free atomic time intervals. The thick lines represent the inferred mean trajectories for three populations, and each light line 
represents 100 subsampled bootstrap replicates for each individual. The humps observed in PSMC plots of the two mouse lemur species during 
the last 2–5 kyr seem to be a common artefact (e.g., see [6, 56]) and do not correspond to a real demographic event. Note that those humps are no 
longer present when we consider a different free atomic time interval (see Additional file 1: Fig. S6). b Reconstruction of the demographic history 
of M. murinus (N = 22) and M. ravelobensis (N = 55) using the Stairway Plot method, considering the two forest sites together. c and d PSMC plots 
estimated from the genomic data and IICR obtained from simulated data for both species assuming (i) a n-island model of migration; (ii) a constant 
population size over the time, (iii) the occurrence of five changes in population connectivity. The color code for the top horizontal bars summarizes 
the inferred changes in connectivity across time for each species. According to the simulation results, population connectivity changed in M. 
murinus at ~ 129.1 kyr (LIG), 42.7 kyr, 30.7 kyr, 13.7 kyr (onset of AHP) and 5.1 kyr (termination of AHP, Fig. 3c). Accordingly, population connectivity 
changed in M. ravelobensis at ~ 338.9 kyr, 135.6 kyr (LIG), 27.1 kyr, 20.1 kyr (LGM) and 7.9 kyr (Fig. 3d). RAV = Ravelobe; ANK = Ankomakoma
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This bottleneck was followed by a population recovery 
that reached an unexpected moderate maximum dur-
ing the LGM (19–26.5 kyr, Ne ~ 25,000). Afterwards, M. 
murinus experienced a second population decline that 
lasted until the AHP. This event was followed by a popu-
lation size increase until ~ 3 kyr that may be partly, but 
not entirely, due to the above mentioned artefact, and a 
subsequent population decline towards the present (see 
Additional file 1: Fig. S7).

The previous interpretations of the PSMC rely on the 
assumption that population structure can be neglected 
and that individuals were part of panmictic populations. 
Alternatively, it is possible that mouse lemur populations 
are structured into sub-populations (= islands) and that 
changes in the PSMC are caused by changes in migration 
rate between them over time (= changes in connectiv-
ity). As a first approximation we estimated the effects of 
connectivity changes in a n-island model under constant 
population size using simulations of the IICR (Inverse 
Instantaneous Coalescence Rate) as in [61]. These simu-
lations suggested that models with a large number of 
islands (n = 61 for M. ravelobensis and n = 84 for M. 
murinus) and five major historical changes in population 
connectivity per species may best explain the dynamics 
inferred for the IICR (Fig. 3c, d). The congruence between 
the two IICR curves inferred by the PSMC and by simu-
lations is relatively high for the dynamics older than 7 
kyr in both species. The timing of the changes in popu-
lation connectivity overlapped only partly between the 
two mouse lemur species (horizontal bars above curves 
in Fig.  3c, d). In both species, population connectivity 
appeared to have been higher during and after the LIG 
than during the LGM. However, whereas population con-
nectivity stayed relatively low for M. ravelobensis across 
the last 30 kyr, population connectivity was again higher 
during the AHP for M. murinus, the species thought to 
have undergone a recent expansion into northwestern 
Madagascar [42].

Discussion
The baseline: present‑day population structure 
and connectivity among forest sites
The relatively low levels of genetic differentiation and the 
relatively high levels of genomic admixture between sam-
pling sites suggest the existence of gene flow and there-
fore genetic connectivity among the two sampling sites 
in both mouse lemur species at present times. Ravelobe 
and Ankomakoma are separated only by about 10  km 
straight-line distance, but some larger patches of savan-
nah would preclude straight-line dispersal between them 
(e.g., [42, 66]). Although the two sub-populations showed 
an isolation-by-distance effect, our results suggest that 
the two forest sites were still connected via some forest 

corridors that surrounded the savannah (see Additional 
file  1: Fig. S8) and may facilitate the dispersal of small 
organisms such as mouse lemurs [67]. Nevertheless, 
dispersal events are likely limited to small geographical 
distances, and should by all means be smaller than the 
geographic distance between both sites, since disper-
sal distances of mouse lemurs were previously shown to 
reach a maximum of up to 1 km (M. murinus in western 
Madagascar; [68] but see also [66, 69, 70]). Furthermore, 
multiple genetic studies showed that most dispersal 
events in mouse lemurs (e.g., M. murinus; M. raveloben-
sis; M. tavaratra) [64, 66, 68–71], but also in larger body 
sized lemur species with longer dispersal distances (e.g., 
Propithecus tattersalli and P. perrieri) [72, 73] occur 
among neighboring social groups. Altogether, our results 
suggest that mouse lemurs from both forests are part of 
a larger set of sub-populations that were connected, and 
maybe still are.

Taking stock: historical ecological changes inferred 
for northwestern Madagascar
The longest paleoenvironmental record available for 
Madagascar stems from a sediment core from Lake Tri-
trivakely in the central highlands (154 kyr) [32]. This 
record is the only one from the island reaching back to 
the Last Interglacial, and suggested that the vegeta-
tion of the highlands during this period was dominated 
by a grassland/woodland mosaic. This vegetation was 
replaced by Ericaceae (adapted to survive strong sea-
sonal droughts) [31, 32] during the LGM as a result of the 
abrupt decrease in temperature (~ 4 ℃ cooler than today) 
[31, 74]. Multiple paleoenvironmental records from other 
parts of the island and corresponding to more recent 
periods confirmed substantially drier and cooler condi-
tions during the LGM (e.g., [18, 30, 75, 76] but see [77]), 
suggesting that a general contraction of forest habitats 
across Madagascar at that time period is likely [30]. Such 
conditions during the LGM probably induced lowland 
forests to contract, possibly to riverine refugia, as those 
areas would have secured access to water and generated 
rather mesic local conditions [33]. As a consequence, 
many forests would have become partly isolated or only 
connected via mosaic forest corridors. This period was 
followed by an abrupt warming and increasing levels of 
moisture across the island, largely in congruence with 
the African Humid Period in continental Africa [17, 18, 
31, 32]. A paleoenvironmental record from the Anjo-
hibe Cave in northwestern Madagascar confirmed that 
the climatic conditions were wetter in the early-Holo-
cene (9.1–4.9 kyr; AHP). It can therefore be expected 
that the wetter conditions favored the expansion of the 
woodland/grassland vegetation in the Malagasy lowland 
forests [25]. Finally, the period that followed the AHP 
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was marked by a climatic warming and aridification in 
northwestern Madagascar, resulting in a vegetation shift 
towards a grassland-dominated landscape at ~ 4.8 kyr 
[17]. This ecosystem shift was likely intensified by the 
introduction of swidden agriculture and spread of pasto-
ralism in the region during the last two millennia [17, 75, 
78].

Demographic history of M. ravelobensis
Assuming that population structure is negligible, the 
PSMC and Stairway Plot inferred a population expansion 
of M. ravelobensis starting before the LGM, whereas the 
IICR-simulations under population structure suggested 
that the same PSMC dynamics could be the result of a 
decreased population connectivity under constant popu-
lation size. Considering the presumably rather cold and 
arid environmental conditions in northwestern Mada-
gascar across the LGM [30, 33], a population expansion 
was rather unlikely. However, a decrease in connectivity 
between sub-populations of M. ravelobensis would be 
concordant with the hypothesized contraction of forests 
during this period, since animal populations in the result-
ing mosaic landscapes would be less connected than 
before (hypothesis II; see introduction).

The PSMC and Stairway Plot suggested that M. 
ravelobensis subsequently underwent a demographic 
decline that started before the onset of the AHP. Such a 
scenario is also rather unlikely, given that lowland for-
ests were presumably at their maximum extension at 
these times due to warmer temperatures and sufficient 
water supply [14, 15]. Our IICR-simulations suggested 
that the same PSMC curve could be the result of low lev-
els of population connectivity for M. ravelobensis during 
the AHP. This scenario also contradicts our predictions 
for mouse lemur populations during the AHP (hypoth-
esis III). Moreover, they are not in congruence with the 
ecological preference of M. ravelobensis for mesic micro-
habitats that should have been widespread during this 
time (e.g., [41, 79]). One possible explanation for these 
conflicting results could be the potential interspecific 
competition with M. murinus after its expansion into an 
inter-river system that was previously only inhabited by 
one mouse lemur species, M. ravelobensis [40]. Previ-
ous field studies confirmed that M. murinus has a higher 
competitive potential than M. ravelobensis in an experi-
mental setting [80]. The spatial expansion of M. murinus 
may have required new patterns of habitat partitioning 
and resulted in new direct or indirect interspecific com-
petition (e.g., for food resources, sleeping sites). These 
species interactions may have precluded establishing 
large population sizes and/or higher population connec-
tivity for M. ravelobensis during the AHP.

The PSMC and Stairway Plot inferred a continuing 
population decline for M. ravelobensis after the termi-
nation of the AHP, which would be in concordance with 
hypothesis IV. The increasing aridification during the 
mid-Holocene and the ecosystem shift towards a grass-
land-dominated landscape [17, 75, 78] might have con-
tributed to this development. Such a decline was already 
inferred in previous studies on this and other lemur spe-
cies inhabiting the northwestern region (e.g., Microcebus 
bongolavensis, M. danfossi, and Lepilemur edwardsi) [81, 
82] and in multiple Malagasy species distributed across 
the island (e.g., frogs, birds of prey and rodents) [83–85] 
and was mostly attributed to intensified human pressures 
on the island during the last thousand years. It should be 
noted that the IICR-simulations did generate the same 
dynamics under a model of population structure and 
constant population size. This approach required similar 
population connectivity levels during recent times than 
in the LGM. Such reduced levels of population connec-
tivity would be congruent with the loss of suitable mouse 
lemur habitats across the late-Holocene [17, 75, 78]. In 
conclusion, it appears that both changes in population 
connectivity (LGM) and size (late-Holocene) may have 
happened and shaped the demographic dynamics of M. 
ravelobensis populations over time.

Demographic history of M. murinus
The late Pleistocene demographic dynamics of M. muri-
nus were expected to be shaped by its rather late colo-
nization of northwestern Madagascar [42]. Such a 
colonization would be a classical example of a founder 
effect with a relatively small number of individuals arriv-
ing in this region via a highland corridor [86, 87]. Such 
an event would very likely mirror a population bottle-
neck and would have been followed by a rapid spatial and 
demographic expansion into the lowland forests between 
the Betsiboka and Mahajamba rivers (hypothesis I). Our 
demographic analyses, if interpreted in terms of popula-
tion panmixia, indeed suggested that M. murinus under-
went a strong population bottleneck at around 70 kyr, 
and that the effective population size (Ne) subsequently 
increased and reached a maximum during the LGM. In 
fact, our time estimate for the founder effect (~ 70 kyr) 
does agree very well with that of the previous study 
(26.5–33.5 kyr) [42] if taking into account that the gener-
ation time used in both studies differed by the factor 2.5 
(2.5 years [this study, 18, 36] versus 1 year [42]; see meth-
ods for details on generation time). However, the IICR-
simulations revealed that the IICR dynamics may also 
have been the result of changes in population connectiv-
ity under stable population size. Indeed, the IICR-simula-
tions suggested higher levels of population connectivity 
during and after the LIG than during the LGM, which 



Page 9 of 18Teixeira et al. BMC Ecol Evo          (2021) 21:197  

would be in concordance with the predicted forest con-
tractions during the LGM [30, 33]. These two competing 
interpretations cannot be easily reconciled, since both 
scenarios do partially fit hypothesis I for this species. 
Information about the definite time point of coloniza-
tion by M. murinus or details of the paleoenvironmental 
dynamics in this inter-river-system back to the LIG are 
needed to evaluate the two alternative scenarios.

Towards more recent times and in contrast to our 
expectations, the PSMC and Stairway Plot suggested that 
M. murinus underwent a temporary demographic decline 
that started before the onset of the AHP. Conversely, 
the IICR-simulations point towards higher connectivity 
levels during the AHP under constant population size, 
which would be in line with hypothesis III. Assuming 
that increasing humidity after the LGM likely resulted in 
an expansion of dry deciduous forests [17], higher lev-
els of gene flow among sub-populations would be rather 
expected, and were previously documented for M. arn-
holdi in northern Madagascar [18].

Finally, both PSMC and the Stairway Plot revealed a 
population decline for M. murinus during the late-Hol-
ocene (hypothesis IV), which is congruent with the cli-
matic warming and aridification that followed after the 
AHP [17] and the presumably increasing degree of habi-
tat fragmentation in the region [17, 75, 78]. The timing 
of the M. murinus population decline coincided well with 
previously documented bottlenecks for other Malagasy 
species and with the collapse of the Malagasy megafauna 
(< 3 kyr; e.g., [25, 30, 88]).The lower levels of popula-
tion connectivity during recent times suggested by the 
IICR-simulations would also be in concordance with the 
hypothesis IV.

Conclusions
The present study suggests that climatic fluctuations 
have been important drivers of evolutionary trajectories 
for mouse lemurs in northwestern Madagascar. Inter-
estingly, our demographic reconstructions also revealed 
distinct dynamics for M. murinus and M. ravelobensis, 
suggesting that even closely related species may differ 
in their responses to the same climatic events. Different 
demographic scenarios emerged for both mouse lemur 
and the decision for one of possible alternative explana-
tions was not always straight forward. Population struc-
ture and changes in connectivity very likely impacted the 
demographic dynamics of mouse lemurs in this region of 
Madagascar (see Additional file 1: Table S4), while forest 
contractions and expansions may have extensively shaped 
the history of lowland forests during the Late Pleistocene 
(e.g., [33]) like in other regions of the world (e.g., [89–
93]). For example, a decrease in population connectivity 
may explain the IICR dynamics during the LGM better 

than population size changes in both species. However, 
it also became clear that changes in connectivity alone 
may not explain well all findings. For instance, if the 
PSMC dynamics before the LGM would be the result of 
changes in connectivity alone, this would imply that M. 
murinus must have colonized northwestern Madagascar 
already earlier than the LIG, because a founder event and 
subsequent colonization of this IRS would necessarily 
include population size changes. Systematic simulations 
are needed to clarify the consequences of a founder event 
and a subsequent spatial expansion on the IICR dynamics 
when considering a n-island model of migration.

The two alternative models studied here represent end-
points on a scale of possible events, and mixed scenarios 
including both population size and connectivity changes 
may ultimately explain best the historic population 
dynamics of mouse lemurs in northwestern Madagas-
car (e.g., see [18, 19]). Therefore, the implementation of 
model-based approaches such as the Approximate Bayes-
ian Computation [94] or composite-likelihood methods 
[95] is crucial to test and compare alternative demo-
graphic hypotheses including both population size and 
connectivity changes (e.g., [19, 96, 97]). In addition, fur-
ther high-resolution paleoenvironmental reconstructions 
for northwestern Madagascar are urgently needed to bet-
ter understand the impact of the last Interglacial–Glacial 
cycle on the lowland dry forest dynamics. Altogether, our 
study shows that it is essential to consider the impact of 
different model assumptions (e.g., panmixia and popula-
tion structure) when exploring, weighting and inferring 
alternative species demographic scenarios. In particu-
lar, the application of the PSMC should in the future be 
always complemented with a simulation approach in 
order to avoid oversimplification.

Methods
Study species
The sympatric M. murinus and M. ravelobensis display 
marked differences in their distribution, evolutionary 
history and ecology. It was previously estimated that M. 
murinus and M. ravelobensis diverged by about 9.60 Ma 
[98], although diversification dates for mouse lemurs 
were recently challenged [47]. While M. murinus is 
regarded as a habitat generalist due to its wide distribu-
tion across various forest types in western and north-
western Madagascar (reviewed in [39]), M. ravelobensis 
is assumed to be more specialized, although it was shown 
to reach higher local abundancies and a broader distri-
bution within the Ankarafantsika National Park than its 
congener [41]. Both species occur in partial sympathy in 
northwestern Madagascar but were shown to respond 
differently to habitat fragmentation [79]. While M. muri-
nus can be often found in even small forest fragments 
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and seems to have a higher overall vagility across mixed 
and partially open landscapes, M. ravelobensis is typically 
found in larger forests and may be less able to connect 
across open landscapes [79]. Both species were shown 
to have different microhabitat preferences [41, 99], and 
direct competition between the two species is therefore 
not regarded as main mechanism of abundance regula-
tion [41, 79]. Both species forage solitarily during the 
night, but form sleeping groups during the day that vary 
in composition between the species. M. murinus males 
sleep alone and females form groups of related individu-
als in wooden tree holes, while M. ravelobensis forms 
mixed‐sex sleeping groups consisting of matrilinear rela-
tives of varying degree of relatedness who use diverse 
substrates as sleeping site (e.g., lianas and leaves) [65, 
100, 101]. Natal dispersal in M. murinus is male-biased 
[63, 64], whereas M. ravelobensis displays only moderate 
and delayed male-biased dispersal which was suggested 
to lead to a higher risk of inbreeding [65].

Study area and sample collection
The Ankarafantsika National Park (ANP) is located in 
northwestern Madagascar, in an area of about 135,000 ha 
of dry deciduous forest that is delimited by the Betsi-
boka (western limit) and the Mahajamba rivers (east-
ern limit; IRS Ia; Fig. 1a) [40, 41]. The ANP is one of the 
largest remaining forest blocks in western Madagascar 
[42], although it shows some degree of forest fragmenta-
tion towards the edges [41, 79]. The locally sympatric M. 
murinus and M. ravelobensis were sampled around two 
natural lakes on the western part of the ANP, Ravelobe 
(Rav, –16.302413°N, 46.821346°E) and Ankomakoma 
(Ank, -16.342752°N, 46.740293°E, Fig. 1b, c). The sites are 
approximately 10 km apart and characterized by a mosaic 
of savannah and forest corridors. Ravelobe (85–176  m 
above sea level, a.s.l.) is situated near Ampijoroa next 
to the National Road RN4 that connects Antananarivo 
to Mahajanga, while Ankomakoma (105–185 m a.s.l.) is 
part of a mosaic landscape consisting of dry deciduous 
forest with interspersed savannah patches (Additional 
file 1: Fig. S8).

Fieldwork took place during the dry season of 2017 
(April–July). Four 1 km transects were installed for field 
work in each site in order to cover various forest parts 
around the lakes. All transects followed pre-existing 
dirt roads or foot paths. A total of 1200 Sherman Traps 
(Sherman Traps Inc, Tallahassee, FL, USA), baited with 
banana, were installed overnight in Ravelobe across 12 
nights, and 1000 traps were installed in Ankomakoma 
across 10 nights (see [102] for details). M. murinus and 
M. ravelobensis were distinguished in the field based on 
their head coloration (greyish in M. murinus vs. brownish 
in M. ravelobensis) [103] and their distinctive tail length 

(130.81 ± 6.15  mm in M. murinus vs. 155.48 ± 7.57  mm 
in M. ravelobensis) [40]. All animals were released at dusk 
of the same day at their individual capture position. Small 
ear biopsies (approx. 2–3  mm2) were taken from all cap-
tured animals for genomic analyses. Tissue samples were 
stored in Queen’s lysis buffer [104] during the field sea-
son and subsequently at − 20 °C in the laboratory.

RADseq library & whole‑genome sequencing
A total of 24 M. murinus (7 from Ravelobe and 17 from 
Ankomakoma) and 60 M. ravelobensis (33 from Ravelobe 
and 27 from Ankomakoma) individuals were available for 
RADseq, based on the spatial distribution and abundance 
of each mouse lemur species per transect and sampling 
site. Total genomic DNA was extracted from the ear 
biopsies using the DNeasy Blood & Tissue Kit (Qiagen) 
following the manufacturer’s protocol with few modi-
fications (see [46] for details), and the DNA concentra-
tion was estimated with the Qubit® Fluorometer (Life 
Technologies). DNA samples (~ 200  ng of DNA) were 
then digested with the restriction enzyme SbfI at the 
GenoToul-GeT-PlaGE Core Facility (Toulouse, France). 
RAD Libraries were prepared in sets of 24 samples sorted 
by original DNA concentration, where each sample was 
assigned to one of 48 unique barcode sequences during 
adapter ligation. Sub-libraries were randomly sheared 
[105, 106] using a Covaris M220 ultrasonicator, result-
ing in fragments with an average size of 550 bp. Sheared 
DNA fragments were ligated to the second adapter and 
all fragments with both adapters were amplified in 10 
Polymerase Chain Reaction (PCR) cycles. DNA concen-
tration and fragment sizes of the amplified libraries were 
verified using qPCR and Fragment Analyzer. The sub-
libraries were sequenced using 150 bp paired-end reads 
on an Illumina HiSeq3000 platform at the GenoToul-
GeT-PlaGE Core Facility (Toulouse, France). Raw data 
was initially demultiplexed using the tool splitbc imple-
mented on the FASTX-toolkit (http:// hanno nlab. cshl. 
edu/ fastx_ toolk it/), and the quality of the raw data was 
verified with FastQC v0.11.7 (http:// www. bioin forma tics. 
bbsrc. ac. uk/ proje cts/ fastqc). Trimmomatic v0.36 [107] 
was used to remove Illumina adapters from the reads, 
remove reads with low quality bases, and to trim the 
reads to a minimum 4-base sliding window with quality 
score below 15. Additionally, reads with less than 60 bp 
length after the filtering steps were removed from the 
analyses. After quality filtering, BWA-MEM (http:// bio- 
bwa. sourc eforge. net/) was used to align the paired-end 
reads to a high quality genome assembly of Microcebus 
murinus (GCA_000165445.3) [108]. Finally, the software 
SAMtools v1.8 [109] was used to remove PCR duplicates 
(i.e., sequence reads that result from sequencing two or 
more copies of the exact same DNA fragment; [110]) and 

http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/
http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc
http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc
http://bio-bwa.sourceforge.net/
http://bio-bwa.sourceforge.net/
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to convert the Sequence Alignment Map (SAM) format 
to the corresponding binary version (BAM). To ensure 
that only autosomal data was used for the analyses, the 
M. murinus scaffold NC_033692.1 (designated as the 
X-chromosome) as well as the M. murinus mitochon-
drial genome (NCBI Accession Number: KR911908.1) 
were excluded from the aligned BAM files. The autoso-
mal BAM files were then used as input files for all down-
stream genomic analyses.

In addition to the RADseq dataset, one M. muri-
nus (Ankomakoma) and two M. ravelobensis samples 
(Ravelobe and Ankomakoma) were selected for whole-
genome sequencing. All samples were females which are 
the philopatric sex in both species [65, 69]. Given that no 
female M. murinus was caught at Ravelobe, no whole-
genome sequence was generated at this site for that spe-
cies. Libraries were prepared at the Institute for Animal 
Breeding and Genetics of the University of Veterinary 
Medicine Hannover using the NEBNext Ultra DNA 
Library Prep Kit from Illumina (New England BioLabs, 
Ipswich, MA, USA). DNA samples (~ 200  ng of DNA) 
were first sheared with an ultrasonicator (Covaris M220, 
Woburn, Massachusetts, USA) and the respective sizes 
were selected according to the manufacturer’s recom-
mendations. Whole-genome sequencing was performed 
on an Illumina NextSeq 500 (Illumina, San Diego, CA, 
USA) for 300 cycles in paired‐end mode. Visual quality 
control of whole-genome sequencing data was performed 
using FastQC version 0.11.7. Reads were trimmed using 
PRINSEQ version 0.20.4 [111] and mapped to the M. 
murinus reference genome (“Microcebus_murinus.
Mmur_3.0.dna.toplevel.fa.gz”) using the BWA-MEM 
algorithm implemented in the BWA version 0.7.17 [112]. 
Similarly to the RADseq dataset, the reads that mapped 
against the M. murinus X-chromosome and mitochon-
drial genome were discarded from our analyses (see 
details above). For all analyses with the whole-genome 
sequences, the read depth and quality of the variant sites 
were controlled by applying the following quality filters: 
base quality above 20, mapping quality above 30, mini-
mum read depth of 3 and a maximum read depth of 100. 
See Additional file 1: Text S1 and S2 for details about the 
sequencing libraries.

RADseq datasets: genotype likelihoods & SNP calling
Next-Generation Sequencing platforms can gener-
ate large amounts of sequencing data but are prone to 
sequencing errors [113–115]. It is therefore advisable 
to keep the data in form of genotype likelihoods dur-
ing downstream analyses, because genotype likelihoods 
retain information about uncertainty in base calling, 
which enable to control for some problems commonly 
associated with RADseq datasets (e.g., unevenness in 

sequencing depth and allelic dropout) [114, 116, 117]. 
Consequently, most of our analyses were carried out on 
genotype likelihoods estimated with ANGSD [115], con-
sidering the following filters: a minimum base quality of 
20, a minimum mapping quality of 30, minimum Minor 
Allele Frequency below 0.5, a minimum mean depth of 
coverage of 4X [115, 117, 118], and sites present in at least 
75% of the individuals (dataset 1: genotype likelihoods). 
In addition to the genotype likelihoods, genotypes were 
called for each mouse lemur species for complementary 
analyses. Genotypes were called with SAMtools v1.8 
[109] using the same quality filters previously used in 
ANGSD (see above), but considering a minimum depth 
of coverage of 10× to ensure high-confidence genotype 
calls (dataset 2: genotype calls) [119].

Knowing that population genetics analyses can be 
biased by social structure and relatedness between indi-
viduals (e.g., [120, 121]), a relatedness analyses was per-
formed next. Relatedness between two individuals is 
usually described by the concept of identity-by-descent 
(IBD), where two alleles are considered identical by 
descent if they recently descended from a common 
ancestral allele [117, 122]. NGSrelate [117] was used to 
calculate the IBD coefficients  (k0,  k1 and  k2; probability 
of two individuals sharing 0, 1 or 2 alleles from a single 
ancestor at any locus, respectively) between pairs of indi-
viduals using dataset 1 [122]. First-degree relatives were 
then inferred based on the comparison of the obtained 
IBD coefficients with the expected IBD probabilities 
(i.e., parent-offspring:  k0 = 0,  k1 = 1 and  k2 = 0; full sibs: 
 k0 = 0.25,  k1 = 0.50 and  k2 = 0.25) [122]. Only one indi-
vidual of each dyad of closely related individuals was 
retained in our dataset for downstream analyses (see 
Additional file 1: Text S3).

Population‑genomic structure & isolation‑by‑distance
Population-genomic structure patterns were investi-
gated in M. murinus (n = 22) and M. ravelobensis (n = 56) 
using three distinct approaches. First, genetic differen-
tiation between both sites was estimated per species 
using Wright’s F-statistics  FST [123]. The analyses were 
performed with ARLEQUIN [124] and significance was 
tested using 10,000 permutations (dataset 2). Second, 
signals of population genetic structure were evaluated by 
Principal Component Analysis (PCA) computed using 
PCAngsd (dataset 1) [125]. The PCA Eigenvalues that 
explained most of the genetic variation between indi-
viduals (PC1 and PC2) were extracted and individuals 
were plotted using R (R CoreTeam 2014). Third, NGSad-
mix [114], a maximum-likelihood clustering method, was 
used to assign individuals to a specific number of clus-
ters (K) using dataset 1. For both species, the number 
of explored clusters ranged between 1 and 3, and a total 
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of 10 independent runs were performed for each value 
of K. The most suitable value of K was determined with 
Clumpak [126], following the Evanno method [127].

Geographically restricted gene flow results in a sig-
nificant correlation between genetic and geographic dis-
tance, known as isolation-by-distance [128], where the 
genetic dissimilarity increases with the increase of geo-
graphical distance [67]. The effect of geographic distance 
on genomic differentiation over our small geographic 
scale was investigated using the individual as the unit 
of the analyses [71]. Genetic dissimilarity between any 
two individuals was measured by the Rousset’s genetic 
distance (â) [129], an estimator analogous to the  FST/
(1-FST) ratio using pairs of individuals instead of popu-
lations. Geographic distance was measured as the linear 
geographical distance in km separating each pair of indi-
viduals. Both Rousset’s genetic distance and geographic 
distance were computed with SPAGeDi [130] based on 
dataset 2. The occurrence of isolation-by-distance was 
finally investigated with a Mantel test [131] using the 
VEGAN package [132] available in R (R Development 
Core Team 2005). Significance was determined via 10,000 
permutations.

In addition, genetic summary statistics were calculated 
for each species and forest site (see Additional file  1: 
Text S4 and Table S5 for details). Inbreeding coefficients 
per individual (F) were also estimated using dataset 2 
to detect deviations from Hardy–Weinberg equilib-
rium (Additional file 1: Tables S6 and S7) [133]. One M. 
ravelobensis individual captured at Ravelobe showed a 
highly negative F value and was therefore excluded from 
the demographic analyses (Additional file  1: Table  S6) 
[133]. For details about the set of individuals used in each 
step of this study see Additional file 1: Table S8.

Mutation rate and generation time
The demographic history of both species was investi-
gated using three complementary modeling approaches: 
Stairway Plot [55], PSMC [56] and IICR-simulations [53]. 
All analyses were performed assuming a mutation rate 
value of 1.2 ×  10–8 [47, 134]. This mutation rate is the 
most accurate estimate available for mouse lemurs and 
was calculated from average pedigree-based estimates 
of seven primates species [47, 135]. During the last dec-
ade, generation time (GT) values between 1 and 4.5 years 
have been used for genetic studies on mouse lemurs [36, 
40, 134]. Since a recent study on free-living M. murinus 
from the ANP estimated a 2.5  year generation time as 
the average age of parents [36], we recently compared the 
performance of three GT values (1, 2.5 and 4.5 years) for 
another mouse lemur species (M. arnholdi) using alterna-
tive demographic methods. As the results under 2.5 years 
fitted best to on-site high-resolution paleoenvironmental 

reconstructions [18], we decided to also use this estimate 
for M. murinus and M. ravelobensis in this study.

Stairway plot
The Stairway Plot [55] method uses the Site Frequency 
Spectrum (SFS; i.e., the distribution of the allele fre-
quencies of a given set of SNPs in a population) [136] 
from population genomic sequence data to estimate a 
series of population mutation rates (θ =  4Neµ) following 
a multi-epoch demographic model, where epochs coin-
cide with coalescent events [55]. The realSFS tool imple-
mented in ANGSD [115] was used to estimate a folded 
one-dimensional SFS for each mouse lemur species 
(i.e., considering the two forest sites together) based on 
dataset 1, because we lack a suitable outgroup to deter-
mine the ancestral state of each allele [136]. The folded 
1d-SFS of each species was used as input data to generate 
199 additional SFS by bootstrap, following the software 
guidelines [55]. Inferences were then made based on the 
200 1d-SFS for each species with Stairway Plot v2.0 [55]. 
Given the observed isolation-by-distance pattern in both 
M. murinus and M. ravelobensis, the Stairway Plots were 
also repeated considering the two forest sites separately. 
Knowing that changes in Ne through time are dependent 
on the number of possible coalescent events, this method 
is sensitive to the number of individuals and SNPs in 
the dataset [59, 60, 137]. Therefore, analyses were first 
performed considering the entire dataset of each forest 
site and species (n ranging between 7 and 30), and also 
repeated with an equal sample size (n = 7) per site and 
species. For this analysis individuals of each site were 
randomly selected using R (R Development Core Team 
2005). Finally, to evaluate the effect of sex-biased disper-
sal in the demographic inferences of mouse lemurs, we 
reran the Stairway Plot for the M. ravelobensis dataset 
considering males and females separately. The analyses 
were performed considering all M. ravelobensis females 
available in our dataset (n = 22) and an equal number of 
males to avoid differences in Ne related to sample size. 
The males were randomly selected using R (R Develop-
ment Core Team 2005).

PSMC & IICR‑simulations
The PSMC [56] method makes use of the distribution 
of heterozygous sites along the entire genome of a sin-
gle diploid individual to estimate the population size 
change history that best explains the corresponding 
coalescence times. As shown by [53] the PSMC method 
is actually inferring the IICR of the sampled individual. 
This IICR can be interpreted as a history of population 
size change under panmixia, but under structured mod-
els it is more difficult to interpret. Here we focused on 
the interpretation of PSMC plots under either panmixia 
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or piecewise-stationary n-island models. In the latter, 
we allowed gene flow to be constant for certain periods 
of time and to change between periods of time that we 
call components, always assuming that the population 
structure can be approximated by an n-island model. 
For instance, if we assumed that there were three com-
ponents this means that there were three period of time 
with respective migration rates  M1,  M2 and  M3, and two 
times at which the migration rates changes, namely  t1 
and  t2  (t0 is assumed to be the most recent time of sam-
pling, i.e.,  t0 = 0). The three whole-genome autosomal 
sequences (one M. murinus and two M. ravelobensis) 
generated as part of this study were submitted to PSMC 
analyses, considering the following parameters: mini-
mum read depth per site of 3 (-d3), maximum read depth 
per site of 100 (-D100), upper limit of the TMRCA and 
initial θ/ρ value of 5 (-t5 and -r5). The Ne was inferred 
using 4 + 25*2 + 4 + 6 free atomic time intervals, with a 
total of 100 bootstrap replicates (command line: ‐N30 –
t5 –r5 –p “4 + 25*2 + 4 + 6” ‐D100 –d3 –q30). The PSMC 
analyses were repeated considering the same parameters 
but using -p “64*1” free atomic time intervals. Since the 
mean genome coverage of two of our sequences was close 
to but below the recommended 18X (see [6]), simulations 
for variant coverage divergence were performed to evalu-
ate the impact of lower genome-wide coverages in the 
PSMC inferences for mouse lemurs. The analyses were 
performed for the M. ravelobensis individual sampled 
in Ankomakoma by varying the minimum read depth 
option per site (-d) between one and twelve. Results are 
discussed in the Additional file 1: Text S5 and Fig. S9.

In order to find a demographic scenario that could 
explain the observed PSMC curves under a piecewise sta-
tionary n-island model as mentioned above, we used the 
SNIF (Structured Non-stationary Inference Framework) 
inferential method of [138]. This method uses the PSMC 
plot as a summary statistic of genomic information and as 
a target for an optimization algorithm under a piecewise 
stationary n-island models with unknown parameter val-
ues (N, n,  ti,  Mi), where N is the deme size, n is the num-
ber of demes, and the  ti values correspond to the times at 
which the migration rates  Mi change. SNIF uses a search 
algorithm that explores the parameter space and uses an 
optimality criterion to select the structured scenario that 
best explains a given target IICR (simulated) or PSMC 
(observed or simulated) curve. The method has been 
validated using target IICRs generated under piecewise 
stationary n-island models of increasing complexity (i.e., 
number of components or periods during which the  Mi 
can change) by comparing inferred and simulated param-
eter values. Technical details of the search algorithm and 
distance computation can be found in [138]. Here we 
simply note that the method finds the parameter values 

that minimize a distance between the IICR curve gener-
ated under a very large number of piecewise stationary 
n-island models, and the observed PSMC. The algorithm 
stops its search when it reaches a minimum distance set 
by the user or a pre-set number of optimization steps. 
The final scenario is then validated by generating an IICR 
curve under these "best parameter values" and by run-
ning SNIF on this IICR to test whether the method would 
indeed re-infer the same values. If SNIF does not manage 
to infer the right scenario, this suggests that the scenario 
is not to be trusted as even if it were correct the method 
would not infer it properly. If we infer the right param-
eters, this suggests that the scenario is inferable by our 
method, but it cannot be seen as a proof that it is cor-
rect. This is the best scenario under the piecewise sta-
tionary n-island model that (i) explains the data and (ii) 
is of reasonable complexity and (iii) can be inferred and 
thus trusted to some extent. In order to produce a well 
estimated IICR curve we simulated 100,000 T2 values for 
the M. murinus and the M. ravelobensis individuals sam-
pled in Ankomakoma using the ms software [139]. The 
IICR was plotted with the observed PSMC using a python 
script available at: https:// github. com/ willy rv/ IICRE 
stima tor [61]. The SNIF program and its documentation 
can be found in github.com/arredondos/snif. The ms 
commands used to generate the best-fitting IICR plots 
can be found in the Additional file 1: Text S6.

Impact of repeat regions in the demographic modelling
It has been recently shown that genomic repeat regions 
may affect demographic inferences using diverse meth-
ods, including the Stairway Plot and PSMC [140]. To 
evaluate the impact of repeat regions in our demographic 
inferences, we reran the Stairway Plot for the entire M. 
ravelobensis dataset (n = 55) and the PSMC analyses for 
the three whole-genome sequences without the repeat 
regions. We firstly removed all repeat regions from our 
BAM files following the RepeatMasker output file kindly 
provided by J. Rogers for the Microcebus murinus refer-
ence genome (GenBank Assembly Accession Number: 
GCA_000165445.3 [108]). We then reran the Stairway 
plot and PSMC using the same command options afore-
mentioned. Results are presented in the Additional file 1: 
Text S7 and Fig. S10.
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