
HAL Id: hal-03412575
https://hal.science/hal-03412575

Submitted on 3 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

When Neural Networks Using Different Sensors Create
Similar Features

Hugues Moreau, Andréa Vassilev, Liming Chen

To cite this version:
Hugues Moreau, Andréa Vassilev, Liming Chen. When Neural Networks Using Different Sensors
Create Similar Features. EAI MobiCase 2021, Nov 2021, Online, China. �hal-03412575�

https://hal.science/hal-03412575
https://hal.archives-ouvertes.fr

When Neural Networks Using Different Sensors
Create Similar Features

Hugues Moreau1,2[0000−0002−0569−4190], Andréa Vassilev1, and Liming
Chen2[0000−0002−3654−9498]

1 Université Grenoble Alpes, CEA, Leti, F-38000 Grenoble, France
name.surname@cea.fr

2 Department of Mathematics and Computer Science, Ecole Centrale de Lyon,
University of Lyon, Ecully, France name.surname@ec-lyon.fr

Abstract. Multimodal problems are omnipresent in the real world: au-
tonomous driving, robotic grasping, scene understanding, etc... Instead
of proposing to improve an existing method or algorithm: we will use
existing statistical methods to understand the features in already-existing
neural networks. More precisely, we demonstrate that a fusion method
relying on Canonical Correlation Analysis on features extracted from
Deep Neural Networks using different sensors is equivalent to looking at
the output of the networks themselves.

Keywords: Multimodal Sensors · Deep Learning · Transport Mode
Detection · Inertial sensors · Canonical Correlation Analysis

1 Introduction

Picture a rural scenery: in the countryside, the wind blows through a batch of
trees. One can imagine hearing the sound of the wind in the leaves, seeing the
branches bend to the gusts of wind, or even feeling the cold air on their skin.
All of these stimuli are linked to a single event. Our world is multi-modal: at
all times, any event can be captured using a broad diversity of channels. Many
real-life problems rely on using multiple modalities: vision and LIDAR sensors
for autonomous driving, visual and haptic feedback for robotic grasping, humans
even use multiple modalities to understand each other, reading on the lips of
their interlocutors.

In the Machine Learning community, a great deal of literature exists to
leverage multiple sensors. Some publications use problem-specific solutions, but
some approaches are generic: one can, for instance, give the information from
all sensors to a single neural network. Or, one can choose to create one network
per sensor, to train them to solve the problem the best they can, and to merge
the predictions afterwards. In particular, Ahmad et al. and Imran et al. ([2,5]
respectively) performed the fusion using a statistical tool named Canonical
Correlation Analysis (CCA), in order to find correlations within two sets of
features produced by neural networks trained separately. Their goal was to create
a new common representation from all sensors for a gesture recognition problem.

2 H. Moreau et al.

The CCA operation has been used in multiple publications to understand deep
neural networks working on a single-modality problem, [12,11,8]. In particular,
Roeder et al. [13] demonstrated that several architectures, using the same input
data, are approximately equal up to a linear transformation. This impressive
result was soon followed by McNeely-White et al. [10], who showed a similar
result for networks working on face recognition.

The present work extends this claim and helps to understand the similarity
between the feature neural networks learnt from different sensors. More precisely,
we show that the most correlated components between the features from different
sensors are equal to the class components, i.e., the vectors forming the column of
the weight matrix from the classification layer. The most short-term consequence
is that the fusion method introduced in [2,5] is equivalent to an average of
predictions. To sum up, our contributions are the following:

– we demonstrate that the CCA recomputes the information from the classifi-
cation layer of the network

– we apply this reasoning to show the fusion methods introduced in [2,5] is
identical to a mere average of class logits.

We want to emphasize that we use existing methods and algorithms to reach
a new conclusion, which is to show that the use of CCA for data fusion can be
replaced by a much less complex equivalent. The rest of this work is organized as
follows: section 2 introduces some notations, reviews the Canonical Correlation
Analysis, and explains some fundamental concepts to understand our work. Then,
we show how the present work is novel compared to the rest of the literature in
section 3. Finally, section 4 explains the experiments we led and analyzes the
results.

2 Problem position

2.1 Deep Feature Extraction

Let us consider two networks, either two initializations of networks using the same
sensor, or networks using different sensors. The most common way to extract
features from a network is to record the hidden features right before the last layer
(the classification layer), as fig. 1 illustrates. We name these feature matrices
X1 and X2. An important point to note is that these features are computed
from the same samples: if the ith line of X1 is recorded using an accelerometer
segment recorded at a given date, the ith line of X2 must be computed from data
(for instance, magnetometer data) recorded at the same exact moment as the
accelerometer segment. The sensors may differ, but the intrinsic samples (and
their order in the feature matrices X1,2) must correspond.

We call Wi ∈ Rnc×ni (where nc is the number of classes and ni is the number
of features from each feature matrix) the class components, that is, the column
vectors of the weights of the last fully-connected layer (the middle layer in fig. 1).
As with every other matrix multiplication, one can understand the classification

When Neural Networks Using Different Sensors Create Similar Features 3

Fig. 1. The extraction of deep features. nc is the number of classes, ni is the number of
features from each feature matrix, and s is the number of samples

process x→Wi.x (we omit the bias) as a series of scalar products with the nc
column vectors of Wi: for each class c, the scalar product between each feature
vector x and the cth column of Wi gives the logit of class c, a real number giving
the likelihood for the sample to belong in class c (the higher the number, the
higher the chances that the sample belongs in the class). These logits are then
fed into the softmax operation, in order to obtain a series of probabilities (nc
numbers between 0 and 1 that sum to 1).

2.2 Canonical Correlation Analysis

Canonical Correlation Analysis is a statistical tool that takes two feature matrices
X1, X2, and returns a series of linear combinations of each of these features
X ′1 = B1.X1, X ′2 = B2.X2 (where B1, B2 are basis change matrices). These
new features are defined recursively: the first column of X ′1 and the first column
of X ′2 (the first canonical variables) are computed such that the correlation
between them is maximized. Then, the second columns of these matrices maximize
the correlation between each other while being decorrelated to the previously
computed (the correlation between the first and the second columns of X ′1 is
zero). The subsequent columns are constructed the same way, by maximising
the mutual correlation between matrices X ′1 and X ′2, while being decorrelated to
previously computed components. Note that this requires the matrices Xi to be
full-rank so that we have enough components. In practice, we use PCA to obtain
full-rank feature matrices (we remove the components that account for less than
0.01 % of the cumulative variance).

Similarly to the class components, the canonical components are the column
vectors of the Bi, and we will compare the first of them to the class components.
There are as many canonical components as there are input features in the

4 H. Moreau et al.

feature matrix X1,2, but we are only interested in the first nc components. They
correspond to the nc most correlated components one can find in the features.
We want to show there is a linear relationship between these first nc canonical
components and the nc class components.

2.3 A simplistic example

Let us consider an unrealistic, but illustrative, example, and let us imagine that
the class logits were equal across networks Y1 = Y2. One should notice that the
logits are linear combinations of features Yi = Wi.Xi

3. This means that one
can find linear combinations of features that correlate perfectly with each other.
Yet, because of the way the canonical components are computed, these class
components will always appear first among the canonical components. In practice,
the logits are not equal, but they only need to be correlated enough to each
other.

Once this is understood, it is easier to understand the main claim of this
work. If we consider two networks, producing the sets of features X1 and X2, that
succeed fairly at the same classification task, then, the logits Y1 and Y2 produced
by those networks will be correlated. The last layer of the networks is linear, in
other words, the class components can be found among both feature vectors X1

and X2 with a simple linear transformation (Yi = Wi.Xi). This means that if
one applies CCA to the couple of feature matrices (X1, X2), one can find the
class components Wi among the first components of Bi.

In particular, this means computing the sum of the canonical variables
(X ′1 + X ′2, as [2,5] do) is equivalent to summing the logits Y1 + Y2. Figure 2
illustrates how the equality of the canonical components and the class components
make the CCA fusion equivalent to a sum of the logits.

2.4 Extensions

Section 4.2 will detail the experiments we lead to demonstrate the correspondence
between CCA components and classification components, both in the case of
networks using the same sensor, and in the case of networks using different
sensors.

One might wonder what are the causes of the phenomenon. If we sum up the
previous sections, for CCA to pick up the class components, two conditions must
be verified:

– The class logits of two networks must be more correlated than any other
component of the feature space.

– We must apply CCA on the features from the last layer (so that there is a
linear relationship between the features and the class logits)

3 in the following sections, we will omit the bias in the equation Yi = Wi.Xi+bi. As the
CCA assumes that X1,2 have zero mean, a necessary step prior to the computation
of the canonical components is to remove the mean of the features Xi. This is why
adding the constant bias bi does not change anything to the reasoning

When Neural Networks Using Different Sensors Create Similar Features 5

Fig. 2. The principle of the equality between class components and the first canonical
components on a three-class problem. The colours in the different feature matrices
denote the different information about the three classes. The feature vectors will undergo
a matrix multiplication (denoted by the arrows under the left matrix); and the rows of
the matrix the features are multiplied by are the class components.

The first condition seems to be verified in practice. For instance, [9] studied
the prediction similarity of networks working on the same problem, and found
that they are much more similar to each other than what their accuracies could
lead to believe. As for the second condition, some publications work with CCA
in other layers than the last [12,11] to explore the behaviour of neural networks.
However, the verification of this second condition (especially finding an equivalent
to the classification components in the earlier layers), is out of scope for this
work.

3 Related Works

3.1 CCA as a fusion method

Two works [2,5] used the Canonical Correlation in a multimodal setting: in a
problem with several sensors (each of them being able to bring some information
about the problem), they both considered the following process: first, they trained
one neural network per sensor. Then, they extracted the hidden representations
from the last layer of each network. They computed the canonical variables
(X ′1 and X ′2 with the notations from the previous section), then summed these
components (X ′1 + X ′2), before using a Machine Learning algorithm (SVM or
KELM) to guess the final prediction from the result of the addition.

Table 7 from [5] shows the results are not very different from averaging of the
output probabilities of each network. One of our contributions is to show that
the CCA operation isolated the class logits in the first components of X ′1 and

6 H. Moreau et al.

X ′2 and that classifying the sum X ′1 +X ′2 is roughly equivalent to summing the
output logits of each network, class by class.

3.2 Similarity of different neural networks

The similarity between two neural networks is a well-studied subject. The closest
publications to our work are the ones from Roeder et al. [13]. In 2020, they
discovered that the representations learnt by different architectures working using
the same input data are equal up to a linear transformation; for a broad diversity
of tasks including classification. Since this publication, other works, such as [10],
expanded the claim to a broad diversity of monomodal architectures and brought
new experiments validating this information.

To uncover the similarity between deep models, others looked more at the
predictions of networks. For instance, [3] studied the order in which different
models learn to classify each sample, while [9] demonstrated that two neural
networks classify the samples the same way.

However, all these studies work on monomodal problems, that is, problems
with a single input (in most cases, image classification). In the other hand, we
provide an example of the similarity between representations learnt with the same
architectures, using different sensors. The implications are important: this means
the networks learnt to exploit the information that remains common between
sensors.

3.3 SVCCA and improvements

Several publications worked to improve the computation of the similarity between
two bases of features. The first one is SVCCA [12], a famous publication that
popularized the use of CCA to measure the similarity between two networks.
The idea is to use PCA (Singular Vector decomposition, hence the SV in the
abbreviation) on each of the feature matrices to remove low-variance components
(which are assumed to be noise), before applying CCA on the reduced feature
matrices. We too apply PCA, but only to remove the components with negligible
variance (we keep 99.99% of the variance). That is, we keep the ’noisy’ low-
variance components. To compare, the authors from [12] keep only 99% of the
variance, that is, they remove 100 times more variance than us. This means the
results we draw are more robust. Morcos et al. [11] also noticed the components
found by the classic CCA could be noisy. When measuring the proximity between
two sets of features X1 and X2, they still compute the CCA components X ′1,2, but
instead of using the average of the correlations between X ′1 and X ′2, they choose
one of the feature sets (let us say, X1), and weight the correlation proportionally
to the variance which is kept by each CCA component (i. e., the variance of
each component of X ′1 divided by the total variance of X1). This method, named
Projection-Weighted CCA (PWCCA), is better at rejecting noise than SVCCA.

Finally, Kornblith et al. [8] extended upon this approach, by dividing the
correlation by the relative variance of both bases (X ′1 and X ′2). They named their

When Neural Networks Using Different Sensors Create Similar Features 7

method CKA (Centered Kernel Alignment) because they use the kernel trick to
find better alignments than mere linear combinations.

As [8] states, these two methods are closely related. PWCCA [11] consists
in re-weighting the CCA components by the variance of one base, while linear
CKA consists in re-weighing the components by using both variances (relatively
to the variance of the original sets X1,2). To summarize, one can see PWCCA
and CKA as different mixtures between PCA and CCA. One could wonder if
the conclusions we drew here also apply in the case of PWCCA and CKA. We
argue that this is the case, for the following reason: Kamoi et al. [7] showed
that when a network deals with inliers (non-outliers), the components with the
highest variance among the features are approximately equal to a combination of
the class logits. This explains the high results of the ’PCA’ curve in section 4.2.
We showed that the most correlated components are very similar to logits. As a
consequence, we expect re-weighting the importance of the CCA components by
the amount of variance accounted for by each component to enforce even further
the proximity between class logits and most important components. However,
this paper focuses on regular CCA, which means that the experiments extending
our conclusions to kernel-CCA or CKA are out of scope.

4 Experiments

In this section, we will first reproduce the results from [12], in order to illustrate
our experimental protocol (section 4.2). Then, we will repeat this experiment
mixing data from different sensors to show our main claim in section 4.2.

4.1 Datasets

CIFAR10 We use the famous ResNet-56 network [4] on the CIFAR-10 Dataset.
This is a Computer Vision classification problem, where the model has to classify
low-resolution (32 × 32) images into ten classes. The dataset contains 50,000
training samples and 10,000 validation samples. We trained the network hyper-
parameters and architecture as the original publication [4] thanks to the code
from [1].

The dataset has only one sensor (the RGB images), but we work with different
initializations of networks that use the same modality. We use this dataset to
provide a comparison with the rest of the literature on CCA with deep features,
as most works chose to include a ResNet trained on CIFAR-10 [12,11,8].

SHL 2018 dataset The Sussex-Huawei Locomotion 2018 dataset is a Transport
Mode detection problem. Organizers asked three participants to record the sensor
values from several smartphones while travelling using different modes (walking,
running, driving, etc.). Then, the data is published, and a yearly challenge is
organized to get a precise evaluation of the state of the art. The 2018 dataset is
the first version of the challenge: only the data from a single user and a single

8 H. Moreau et al.

sensors Accelerometer, Gravity, Linear Acceleration, Gyrometer,
Magnetometer, Orientation quaternion, barometric Pressure

classes Still, Walk, Run, Bike, Car, Bus, Train, Subway

segment duration 60s

sampling frequency 100Hz

training samples 13, 000

validation samples 3, 310
Table 1. An overview of the SHL 2018 dataset

smartphone (the one in the hand) is available for classification. The organizers
released 16,310 annotated samples for training and validation.

The dataset includes seven sensors (accelerometer, gravity, linear acceleration,
gyrometer, magnetometer, orientation vector, barometric pressure), most of them
having several axes (x,y,z). We will study three signals among them: the y axis
of the gyrometer (Gyr_y), the norm of the acceleration (Acc_norm, as in [6]), and
the norm of the magnetometer (Mag_norm). The accelerometer and gyrometer
encode similar information (they record the inertial dynamics of the sensor) and
are most useful when detecting walk, run, or bike segments. On the other hand,
the norm of the magnetometer mostly changes when the sensor is close to a
strong magnetic field: far from any ferromagnetic object, its values stays close
to 40µT (the value of the Earth’s magnetic field). But this sensor can go up to
200µT when a strong magnetic field is present (for instance, when the sensor is
close to a ferromagnetic object or even an electrical engine). This is why we think
this sensor will be best to detect the train or subway classes from the rest. To
summarize, the accelerometer and gyrometer are expected to be similar to each
other, while these sensors encode different information than the magnetometer.
This is intended to represent different relatedness between sensors.

We use the same approach as in [6], each signal is first converted into a two-
dimensional spectrogram (a time-frequency diagram) using short term Fourier
transform. The frequency axis of the spectrogram is rescaled using a logarithmic
scale, in order to give more resolution to the lower frequencies. This method aims
to give better resolution to the 2 − 3Hz frequency bands (which are the most
useful to distinguish the Walk, Run, and Bike segments), while still keeping the
highest frequencies available. See [6] for more information and illustrations. For
each sensor, we obtain a 48× 48× 1 spectrogram, that is fed into a CNN which
architecture is simple: three convolutional layers (with 16, 32, and 64 filters), and
two fully-connected layers (with 128 hidden features and 8 output features). See
[6] for details about hyperparameter or training process.

To illustrate, on three random initializations, the average validation F1-score
of each of these individual sensors is 89 % for the accelerometer, 80 % for the
gyrometer, and 67 % for the magnetometer.

In both experiments, we will use a train set to train the models, extract the
features, compute the base change with CCA, and, when applicable, retrain the

When Neural Networks Using Different Sensors Create Similar Features 9

models. The validation sets only go through trained models and already-computed
base changes, before being used to display a result. We want to emphasize that
when dealing with multimodal sensors, each network was only trained on a
single modality: the network using the accelerometer never saw the gyrometer or
magnetometer data, and so on.

4.2 Studying component similarity with subspace projection

In this section, we will reproduce and extend the experiments from [12] (Figure
2 from this work). As fig. 3 illustrates, we start from a trained network, we
extract the hidden features form the last layer, then we project on a subspace of
inferior dimension, before re-injecting the features in the network to measure the
performance. If the performance is intact, it means that the nc class components
are unaffected by the projection. In other words, it means the class components
already belong in the image of the projection. In particular, when the dimension
of the image of the projection is ns = nc, and if the performance is unchanged,
it means that the nc class components belong in the subspace spanned by the ns
most correlated components, which implies the existence of a linear relationship
between the families (as the canonical components and class components are
both linearly independent families of vectors).

Fig. 3. The principle of the subspace projection experiment: P1 = B−1
1 .Ins

n .B1 projects
X1 onto a linear space with dimension ns.

Note that when we use all features, we project on the original space, i.e.,
we leave the data unchanged. The difference between the end of the curves
(performance on pristine data) and the rest (altered data) will indicate the
proximity between the considered subspace and class components.

The dimension and the way of choosing the subspace will vary: as in [12], we
consider choosing the nmost correlated components found with CCA (CCA_highest),
the n features with the highest activation in absolute value (max_activation),
and n features chosen randomly (random_selection). In order to provide com-
parisons, we add four reductions methods that are not included in [12]:

10 H. Moreau et al.

– random orthogonal projection (random_projection). Comparing the random
selection of n components versus the projection on n components shows that
the canonical basis does not play a particular role (i.e. selecting the values of
n features is not particularly meaningful).

– PCA: Kamoi et al. [7] showed that the nc components with the most variance
are the components that will be used for classification. We project the features
on the components with most variance to validate their findings.

– least correlated components (CCA_lowest): if the most correlated components
are the class components, the components with lowest correlation should not
include any relevant information for the problem.

– CCA with random components (CCA_random): one may argue that the CCA
curve is above the others in [12] because CCA allows to create decorrelated
components, which would mean that its components are less redundant than
random directions. If this was the case, selecting random CCA components
would be better than selecting components with a random projection.

To save time, we do not consider all the possible number of components:
because we want a high resolution around nc, we only considered the 2 ∗ nc first
components (where nc is the number of classes, 8 for SHL and 10 for CIFAR),
and, after that, the number of components which are powers of 2 (16, 32, ...), up
to the maximal number of components (128 for SHL, 64 for CIFAR)

In addition to this, after measuring the performance of the layer when using
projected features, we also try retraining the classification layer on a projected
version of the validation set, with the same hyperparameters as the initial training
of the network. The goal of this retraining is to illustrate the difference between
the components a network actually uses for classification and the components that
carry some information about the problem. If the performance of the retrained
layer is low, this means we can be sure that the projection removed all useful
information. If only the performance of the original layer is low, this only means
that we got rid of the information that was used by the network.

Note that the CCA operation requires two databases. When we use CCA, we
use a second matrix of features X2, but only to compute X ′1 (we discard X ′2).
In the next section, this second network is another initialization of a network
working with the same sensor, while the section after that shows experiments
made with two networks using different sensors.

Similarity between identical sensors Figure 4 shows the result of this
experiment. We can draw several conclusions from it:

– The performance of the projection on the ns highest variance components
(’pca’, green curve) is maximal for ns = nc: this verifies the findings of Kamoi
et al. [7], the nc components with highest variance are the class components.

– Similarly to Figure 2 from [12], the most correlated components are more
useful for the classification problem than a random choice of components
from the canonical basis.

When Neural Networks Using Different Sensors Create Similar Features 11

(a) (b)

Fig. 4. The performance of the networks after projecting their features on subspaces
with varying dimensions, on the CIFAR (a) and SHL (b) validation sets. The top row
indicates the validation performance of the network as is, while the bottom row indicates
the performance when retraining the classification layer on a projected training set. For
each curve, the experiment was repeated 5 times, and the standard deviation is given by
the width of the curve (which is sometimes too small to see). The dotted line highlights
the performance with the nc most correlated components. Best view in colour.

12 H. Moreau et al.

– The red curve (performance of the components with the highest correlation)
is almost at its maximum for nc components even before retraining, there is
almost nothing to gain after nc components. This validates our original claim
these components correspond to the subspace used by the classification layer.

– The yellow curve (the components with lowest correlations), is under all
the others. Before retraining, the performance of a projection on the n
components with the lowest correlation is minimal, even when we select
half the components. After retraining, the performance of these components
is still well under the performance of random components: selecting the
least correlated components effectively removed most of the classification
information.

– The orange curve (random CCA components) is lower than the random
choice of components (blue curves). This means that the performance of the
components with the highest correlation is not due to an efficient encoding.
Additionally, the standard deviation of this curve is unusually high: as the
CCA operation isolates the classification components from the rest, selecting
some of its components at random creates extremes situations: either a
classification component is selected, or it is not. The standard deviations of
the other random methods are not as high because the random choices allow
to span partly the classification components.

– Before retraining, the two blue curves are equivalent, this indicates that the
canonical components do not play any specific role in regards to classification.
After retraining, the dark blue curve (random projection) is higher than light
blue (random selection of canonical components). We hypothesize that the
canonical components carry some redundancy between them because of the
dropout we used to train our networks, and that re-training the network
allows it to stop expecting this redundancy in the features it sees.

Similarity between two different sensors We now lead experiments to
verify our main contribution: the fact that the most correlated features are
equal to classification components, even when the correlation is computed across
sensors. This time, when computing CCA, we use features from a network
using different sensors. In this section, we do not include any of the other
dimensionality reduction methods (PCA, random projection and selection of
components, maximal activation components) because those methods work with
only one database: the results would be copies of the curves presented in fig. 4.

Figure 5 shows that the performance is maximal when the number of com-
ponents is close to 10 or 20, approximately. However, contrary to fig. 4b, the
performance is off by a few points when the number of selected components is
equal to 8, the number of classes. This means that the equality between most
correlated components and classification vectors is less strong than in the previous
case when the CCA was computed from the same sensor. Still, the performance
with only 8 components is high enough for us to conclude that the components
computed with CCA overlap significantly with the classification components.

When Neural Networks Using Different Sensors Create Similar Features 13

Fig. 5. The classification performance of classification layer using features projected
on a subspace with varying dimension, when the CCA is computed thanks to data
from another sensor. As in fig. 4, one can see that the performance with the nc most
correlated components is close to the performance with all components. The graphs in
the diagonal were generated using the same protocol as the first row of graphs in fig. 4b.
The dotted line highlights the performance with the nc most correlated components.
Best view in colour.

14 H. Moreau et al.

5 Conclusion

We began by demonstrating the experiments from previous publications: the
findings from Kamoi et al. [7], who showed that the components with most
variance are the classification components, and Roeder et al. [13], who showed
that CCA found the classification components when it is applied to features from
monomodal networks using the same dataset. In a later section, we showed the
same result held when applied to features learnt from different sensors, indicating
that the networks exploit information that can be found across multiple sensors.
The exact nature of this information, however, is yet to be found.

In addition to showing that the fusion method from [2,5] is unnecessarily
complex, these results have strong implications for multimodal learning: in this
situation, it may be unnecessary to add too many sensors, for neural networks
would compute similar information.

Future work might include finding exactly the nature of the common informa-
tion which is present in all sensors’ signals and exploited by neural networks. Or,
we could try to explain a paradox about the similarity we measured: the networks
using the accelerometer, gyrometer, and magnetometer have average F1-scores of
about 90%, 80%, and 67% (respectively). How can couples of features that are
so similar have such different performance levels?

References

1. 3.2.2 ResNet_cifar10 - PyTorch Tutorial, https://pytorch-tutorial.
readthedocs.io/en/latest/tutorial/chapter03_intermediate/3_2_2_cnn_
resnet_cifar10/

2. Ahmad, Z., Khan, N.: Human Action Recognition Using Deep Multilevel Multimodal
(M^2) Fusion of Depth and Inertial Sensors. IEEE Sensors Journal 20(3), 1445–
1455 (Feb 2020). https://doi.org/10.1109/JSEN.2019.2947446

3. Hacohen, G., Choshen, L., Weinshall, D.: Let’s Agree to Agree: Neural Networks
Share Classification Order on Real Datasets. In: International Conference on Ma-
chine Learning. pp. 3950–3960. PMLR (2020)

4. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 770–778 (2016), http://openaccess.thecvf.com/content_cvpr_2016/html/
He_Deep_Residual_Learning_CVPR_2016_paper.html

5. Imran, J., Raman, B.: Evaluating fusion of RGB-D and inertial sensors for multi-
modal human action recognition. Journal of Ambient Intelligence and Humanized
Computing 11(1), 189–208 (Jan 2020). https://doi.org/10.1007/s12652-019-01239-9,
https://doi.org/10.1007/s12652-019-01239-9

6. Ito, C., Cao, X., Shuzo, M., Maeda, E.: Application of CNN for Human Ac-
tivity Recognition with FFT Spectrogram of Acceleration and Gyro Sensors.
In: Proceedings of the 2018 ACM International Joint Conference and 2018 In-
ternational Symposium on Pervasive and Ubiquitous Computing and Wearable
Computers - UbiComp ’18. pp. 1503–1510. ACM Press, Singapore, Singapore
(2018). https://doi.org/10.1145/3267305.3267517, http://dl.acm.org/citation.
cfm?doid=3267305.3267517

https://pytorch-tutorial.readthedocs.io/en/latest/tutorial/chapter03_intermediate/3_2_2_cnn_resnet_cifar10/
https://pytorch-tutorial.readthedocs.io/en/latest/tutorial/chapter03_intermediate/3_2_2_cnn_resnet_cifar10/
https://pytorch-tutorial.readthedocs.io/en/latest/tutorial/chapter03_intermediate/3_2_2_cnn_resnet_cifar10/
https://doi.org/10.1109/JSEN.2019.2947446
http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://doi.org/10.1007/s12652-019-01239-9
https://doi.org/10.1007/s12652-019-01239-9
https://doi.org/10.1145/3267305.3267517
http://dl.acm.org/citation.cfm?doid=3267305.3267517
http://dl.acm.org/citation.cfm?doid=3267305.3267517

When Neural Networks Using Different Sensors Create Similar Features 15

7. Kamoi, R., Kobayashi, K.: Why is the Mahalanobis Distance Effective for Anomaly
Detection? arXiv:2003.00402 [cs, stat] (Feb 2020), http://arxiv.org/abs/2003.
00402, arXiv: 2003.00402

8. Kornblith, S., Norouzi, M., Lee, H., Hinton, G.: Similarity of Neural Network Rep-
resentations Revisited. In: International Conference on Machine Learning. pp. 3519–
3529. PMLR (May 2019), http://proceedings.mlr.press/v97/kornblith19a.
html

9. Mania, H., Miller, J., Schmidt, L., Hardt, M., Recht, B.: Model Similarity Mitigates
Test Set Overuse. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F.d.,
Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems.
vol. 32. Curran Associates, Inc. (2019), https://proceedings.neurips.cc/paper/
2019/file/48237d9f2dea8c74c2a72126cf63d933-Paper.pdf

10. McNeely-White, D., Sattelberg, B., Blanchard, N., Beveridge, R.: Exploring the
Interchangeability of CNN Embedding Spaces. arXiv:2010.02323 [cs] (Feb 2021),
http://arxiv.org/abs/2010.02323, arXiv: 2010.02323

11. Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural
networks with canonical correlation. Advances in Neural Information Processing
Systems 31, 5727–5736 (2018)

12. Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular Vector
Canonical Correlation Analysis for Deep Learning Dynamics and Interpretability.
In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan,
S., Garnett, R. (eds.) Advances in Neural Information Processing Systems 30, pp.
6076–6085. Curran Associates, Inc. (2017)

13. Roeder, G., Metz, L., Kingma, D.P.: On Linear Identifiability of Learned Represen-
tations. arXiv:2007.00810 [cs, stat] (Jul 2020), http://arxiv.org/abs/2007.00810,
arXiv: 2007.00810

http://arxiv.org/abs/2003.00402
http://arxiv.org/abs/2003.00402
http://proceedings.mlr.press/v97/kornblith19a.html
http://proceedings.mlr.press/v97/kornblith19a.html
https://proceedings.neurips.cc/paper/2019/file/48237d9f2dea8c74c2a72126cf63d933-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/48237d9f2dea8c74c2a72126cf63d933-Paper.pdf
http://arxiv.org/abs/2010.02323
http://arxiv.org/abs/2007.00810

	When Neural Networks Using Different Sensors Create Similar Features

