Algorithm Compile

This script has been wrote to automate the compilation process. It gather gcc, g++ and fortran for each version of them. It has been thinked as a multiplexer defining the differents branchs of the switch. Each branch correspond to a specific way to act (with options, wit a given name, etc). To understand it, I will explain the differents steps of the algorithm. The first switch is ruled by the mode parameter defining the compilation directives as chain, modular, mpi, openmp and lib associations compilation. Each af these branchs will be splitted into differents sections ruled by a main loop coursing parameters list :

• We read extension and define differents flags used to get the correct path

• For each extension we split again the algorithm using a switch for new falgs as :

-exe_flag : It determine if the exe filename is specified or not -rep_flag : It determines if the repertory name is specified or not • Once the path determined by the differents flags, we automate the compilation process calling the right method, for example :

-gcc $parameters $lib -o $name $lib_option || gcc $lib -L $parameters -o $name || error will give a compilation via variables substitution. The || allow to test the first command, goes to the second if failed and finally call the error method to get a print. The differents used variables in this example are :

This script has been developped to automate the compilation process. It treat c, c++ and fortran source files. Compilation can be ruled with four modes :

• The chain mode realize a chain compilation mode : Each source file is compiled independantly from each other

• The modular mode realize a modular compilation using one main source file and the dependency modules and functions as source files.

• The Mpi compilation mode allow parallel compilation using Open Mpi

• The Openmp compilation mode allow parallel compilation using Open MP

• The Librairies Linking Mode allow modular compilation using Unix Librairies This mode must be specified as argument.

The script take 2 types of arguments : the first one determine the mode between

• 1 (chain)

• 2 (modular)

• 3 (mpi compilation)

• 4 (openmp compilation)

• 5 (Librairies linking mode)

The others parameters are the source files to compile. The source file must be .c, .cpp or fortran files. Others extensions files WILL NOT BE TREATED.

You have to use the correct syntaxe specifying the mode for each execution :

./compile.sh mode source file 1 source file 2 . . . source file n

In case of modular compilation, please to keep this parameter structure :

./compile.sh mode Main source file Module source file 1 Module source file 2 . . .

• -O : In case of additionnal features like Librairies using an option like math.h or compilater directive options as -lpthread, etc. . . It will act as enlarged compilater options directive. Option(s) as following arguments (MUST be specified as the last parameters) : ./compile.sh mode source file 1 source file 2 . . . source file n -O -lm . . . printf" An error occured, please to check the help file using --help option or -˓→h option.

" echo $USER #| mail -s "error" matthieu.cabos@tse-fr.eu

} rep= echo $1 | grep [0-9] if ["$rep" = ""] || [$# -eq 0] || ["$1" = "--help" -o "$1" = "-h"] || [$# -lt 2]␣ ˓→|| [$1 -gt 5] || [echo $1 | grep [0-9] = ""] || [$1 -le 0] then help exit fi rep_flag=0 repertory="" lib="" ind=0 exe_name="" exe_flag=0 param_list="" lib_option="" lib_opt_flag=0 mode=$1 arguments="" exe=0 for i in $@ do if ["$i" != "1"] && ["$i" != "2"] && ["$i" != "3"] && ["$i" != "4"] && [
˓→"$i" != "5"] then arguments=$arguments" "$i fi done for i in $arguments # Treating options flags do # Getting lib parameters ˓→= "f95"]&& ["$e" != "F90"]&& ["$e" != "F"] && ["$e" != "f03"] && ["$e" != "F03

(continues on next page) if [echo $i | grep "\-\d.*" != ""] 2> /dev/null then ((rep_flag+=1)) repertory= echo $i | sed -e "s|-d||g" test= echo $repertory | grep "/$" if ["$test" = ""] 2> /dev/null then repertory=$repertory"/" fi elif ["$i" = "-l"] && [$ind -eq 0] then ((ind+=1)) elif [$ind -ne 0] then lib="$lib"" ""$i" elif ["$i" = "-o"] && [$exe_flag -eq 0] then exe_flag=1 elif [$exe_flag -ne 0] then exe_name=$i ((exe_flag=0)) ((exe=1)) elif ["$i" = "-O"] then lib_opt_flag=1 elif [$lib_opt_flag -ne 0] then lib_option=$lib_option" "$i elif [echo $i | grep "\-\L.*" != ""] 2> /dev/null then lib_option=$lib_option" "$i elif [echo $i | grep "\-\I.*" != ""] 2> /dev/null then lib_option=$lib_option" "$i else param_list=$param_list" "$i fi done if [$exe -eq 1] then ((
˓→"] 2> /dev/null then e=${i#*.*.} fi while ["$e" != "c"] && ["$e" != "cpp"] && ["$e" != "f90"] && ["$e ˓→" != "f95"]&& ["$e" != "F90"]&& ["$e" != "F"] && ["$e" != "f03"] && ["$e" !=

$lib -L $relative_way$i -o $relative_way$name || error elif [$exe_flag -eq 1] && [$rep_flag -eq 1] then g++ $relative_way$i $lib -o $relative_way$exe_name $lib_option␣ ˓→|| g++ $lib -L $relative_way$i -o $relative_way$exe_name || error fi else if [$exe_flag -eq 0] && [$rep_flag -eq 0] then g++ $i -o $name $lib_option || error elif [$exe_flag -eq 1] && [$rep_flag -eq 0] then g++ $i -o $exe_name $lib_option || error elif [$exe_flag -eq 0] && [$rep_flag -eq 1] then g++ $relative_way$i -o $relative_way$name $lib_option || error elif [$exe_flag -eq 1] && [$rep_flag -eq 1] then g++ $relative_way$i -o $relative_way$exe_name $lib_option ||␣ ˓→error fi (continues on next page) 8
Chapter 1. Compile fi # Compiling the code file as parameter elif ["$e" = "f90" -o "$e" = "f95" -o "$e" = "F90" -o "$e" = "F" -o "$e ˓→" = "f03" -o "$e" = "F03"] then e=".""$e" name= basename $i $e # Getting the .exe filename

if [$exe_flag -eq 0] && [$rep_flag -eq 0] then gfortran -o $name $i $lib_option || error elif [$exe_flag -eq 1] && [$rep_flag -eq 0] then gfortran -o $exe_name $i $lib_option || error elif [$exe_flag -eq 0] && [$rep_flag -eq 1] then gfortran -o $relative_way$name $relative_way$i $lib_option ||␣ ˓→error elif [$exe_flag -eq 1] && [$rep_flag -eq 1] then gfortran -o $relative_way$exe_name $relative_way$i $lib_option␣ ˓→|| error fi # fi fi done elif [$mode -eq 2] # Executing script profile in Modular Compilation mode then for i in $param_list do if ["$i" != "1"] # Rebuilding the file name parameters list then if [$rep_flag -eq 0] then parameters=$parameters" "$i elif [$rep_flag -eq 1] then parameters=$parameters" "$relative_way$i fi fi done for i in $parameters # Brownsing parameters list do e=${i#*.} # Getting the file extension testeur_beg="{i#*." testeur_end="*.} " ((counter=1)) if ["$e" != "c"] && ["$e" != "cpp"] && ["$e" != "f90"] && ["$e" ! ˓→= "f95"]&& ["$e" != "F90"]&& ["$e" != "F"] && ["$e" != "f03"] && ["$e" != "F03 ˓→"] 2> /dev/null (continues on next page) 1.4. Source Compile then e=${i#*.*.} fi while ["$e" != "c"] && ["$e" != "cpp"] && ["$e" != "f90"] && ["$e ˓→" != "f95"]&& ["$e" != "F90"]&& ["$e" != "F"] && ["$e" != "f03"] && ["$e" != ˓→"F03"] 2> /dev/null # then do e=${i#*..*.} done if ["$e" = "c"] then name= basename $i '.c' # Getting the .exe filename break elif ["$e" = "cpp"] then name= basename $i '.cpp' # Getting the .exe filename break fi done if ["$e" = "c"] then if [[! $lib = ""]] then if [$exe_flag -eq 0] && [$rep_flag -eq 0] then gcc $parameters $lib -o $name $lib_option || gcc $lib -L ˓→$parameters -o $name || error elif [$exe_flag -eq 1] && [$rep_flag -eq 0] then gcc $parameters $lib -o $exe_name $lib_option || gcc ˓→$lib -L $parameters -o $exe_name || error elif [$exe_flag -eq 0] && [$rep_flag -eq 1] then gcc $parameters $lib -o $relative_way$name $lib_option␣ ˓→|| gcc $lib -L $parameters -o $name || error elif [$exe_flag -eq 1] && [$rep_flag -eq 1] then gcc $parameters $lib -o $relative_way$exe_name ˓→$lib_option || gcc $lib -L $parameters -o $relative_way$exe_name || error fi else if [$exe_flag -eq 0] && [$rep_flag -eq 0] then gcc $parameters -o $name $lib_option || error elif [$exe_flag -eq 1] && [$rep_flag -eq 0] then gcc $parameters -o $exe_name $lib_option || error elif [$exe_flag -eq 0] && [$rep_flag -
["$e" = "cpp"] then if [[! $lib = ""]] then if [$exe_flag -eq 0] && [$rep_flag -eq 0] then g++ $parameters $lib -o $name $lib_option || g++ $lib -L ˓→$parameters -o $name || error elif [$exe_flag -eq 1] && [$rep_flag -eq 0] then g++ $parameters $lib -o $exe_name $lib_option || g++ ˓→$lib -L $parameters -o $exe_name || error elif [$exe_flag -eq 0] && [$rep_flag -eq 1] then g++ $parameters $lib -o $relative_way$name $lib_option␣ ˓→|| g++ $lib -L $parameters -o $name || error elif [$exe_flag -eq 1] && [$rep_flag -eq 1] then g++ $parameters $lib -o $relative_way$exe_name ˓→$lib_option || g++ $lib -L $parameters -o $relative_way$exe_name || error fi else
if [$exe_flag -eq 0] && [$rep_flag -eq 0] then echo "commande écrite : " echo "g++ $parameters -o $name $lib_option" || error echo "resultats obtenus : " g++ $parameters -o $name $lib_option elif [$exe_flag -eq 1] && [$rep_flag -eq 0] then echo "commande écrite : " echo "g++ $parameters -o $exe_name $lib_option" || error echo "resultats obtenus : " g++ $parameters -o $exe_name $lib_option elif [$exe_flag -eq 0] && [$rep_flag -eq 1] then echo "commande écrite : " echo "g++ $parameters -o $relative_way$name $lib_option ˓→" || error echo "resultats obtenus : " g++ $parameters -o $relative_way$name $lib_option elif [$exe_flag -eq 1] && [$rep_flag -eq 1] then (continues on next page)

Source Compile

echo "commande écrite : " echo "g++ $parameters -o $relative_way$exe_name $lib_ ˓→option" || error echo "resultats obtenus : " g++ $parameters -o $relative_way$exe_name $lib_option fi fi # Compiling the Modular file as parameters elif ["$e" = "f90" -o "$e" = "f95" -o "$e" = "F90" -o "$e" = "F" -o "$e" = "f03

16

Chapter 1. Compile elif ["$e" = "f90" -o "$e" = "f95" -o "$e" = "F90" -o "$e" = "F" -o "$e" = "f03

˓→" -o "$e" = "F03"] then for i in $parameters do e=${i#*.} if ["$e" != "f90"] && ["$e" != "f95"] && ["$e" != "F90"] && ˓→ ["$e" != "F"] && ["$e" != "f03"] && ["$e" != "F03"] then e=${i#*.*.} fi e=".""$e" name= basename $i $e if [$exe_flag -eq 0] && [$rep_flag -eq 0] then gfortran -o $name $i $lib_option -fopenmp || error elif [$exe_flag -eq 1] && [$rep_flag -eq 0] then gfortran -o $exe_name $i $lib_option -fopenmp || error elif [$exe_flag -eq 0] && [$rep_flag -eq 1] then gfortran -o $relative_way$name $i $lib_option -fopenmp␣ ˓→|| error elif [$exe_flag -eq 1] && [$rep_flag -eq 1] then gfortran -o $relative_way$exe_name $i $lib_option -˓→fopenmp || error fi done fi elif [$mode -eq 5] #Executing script with librairies Linking mode then libs="" libflag="t" cflag="t" for i in $param_list do if ["$i" != "4"] # Rebuilding the file name parameters list then parameters=$parameters" "$i fi done for i in $parameters do e=${i#*.} # Getting the file extension if [$e != "c"] && [$e != "cpp"] && ["$e" != "f90"] && ["$e" != ˓→"f95"] && ["$e" != "F90"] && ["$e" != "F"] && ["$e" != "f03"] && ["$e" != "F03 ˓→"] then (continues on next page)

Source Compile

e=${i#*.*.} fi if [$e = "c"] then name= basename $i '.c' # Getting the .exe filename cflag=$e elif ["$e" = "cpp"] then name= basename $i '.cpp' # Getting the .exe filename cflag=$e elif ["$e" = "o" -o "$e" = "a" -o "$e" = "so"] then libs="$libs"" ""$i" libflag=$e fi done if In a first step we get essentials informations since command parameters such as Resolution, size, etc. The mode is determine by the keyword 'clean', if not specified the algorithm resize all the pictures found in the folder and associated sub-tree, else it will remove all the resized pictures.

[$cflag = "c"] then cflag=".""$cflag" tocompile=$name$cflag if ["$libflag" = "o"] # Script profile in case of Object Librairie then if [$exe_flag -eq 0] && [$rep_flag -
To treat them, we get in the liste variable the list of sub-folders paths.

We brownse each folders in a loop and convert each picture file to the specified size and resolution.

Chapter 2. Converter

Please to use this script with the correct parameters :

./ResConverter.sh Resolution_DPI Folder size to convert all pictures with the specified DPI and size from given folder a root.

or ./ResConverter.sh clean to clean the workspace Where :

• Resolution is a value between 72 and 500 DPI

• Folder is the name of the folder containing pictures

• size is the picture length in pixel. Must have form "800x600".

This script act recursively and will resize all the pictures contained into sub-tree

) fi if ["$i" = "#include"] then ((lib_flag=1)) else ((lib_flag=0)) fi done for libp in $lib do ind=0 for i in $(seq 1 ${#libp}) do lettre=$(echo $libp | cut -c$i) if [! $ind -eq 0] then name_lib="$name_lib""$lettre" fi ((ind=$ind+1)) done name_lib= basename $name_lib '.h>' # name_lib="$name_lib"" " name_lib_final="$name_lib_final"" ""$name_lib" name_lib="" done for i in $name_lib_final do test="" test= vcpkg search $i | grep "[0-9]" if ["$test" = ""] then echo "### ˓→########################" (lib_flag=0)
echo "The librairy ""$i"" is not disponible on the Unix Server, please␣ ˓→to install it manually."

(continues on next page) 30 Chapter 3. Get_lib_list echo "### ˓→########################"
else install_name="$install_name"" ""$i" fi done for i in $install_name do vcpkg install $i done 3.3. Source Get_lib_list Chapter 3. Get_lib_list CHAPTER FOUR TRANSFERT_SSH.SH

Algorithm Transfert

This script has been thinked to manage ssh Files transfert from the existing ip & User id. In fact, the command scp will be used from differents switches branchs :

• File upload : Permit to upload a file to the specified ssh platform

• File download : Permit to download a file to the specified ssh platform

• Folder upload : Permit to upload a folder to the specified ssh platform

• Folder download : Permit to download a folder to the specified ssh platform These branchs are ruled by the parameter mode.

In the first step, we get variables informations since parameters values. Once done, we update from infos, the differents flags and the defaults paths. These updated fields will be used in the last part of the algorithm :

• Updating the path • Using the scp command with the correct arguments to automate tranfert.

34

Chapter 4. Transfert_ssh.sh

Options Transfert

-help : Get the linux-like help from the command prompt.

38

Chapter 4. Transfert_ssh.sh elif [$mode -eq 3] then if [echo $dest_way | grep "home/" != ""] 2> /dev/null then dest_way= echo $dest_way | sed -e "s|/home/$USER|/users/$user|g" fi scp -r $source_way$files $user@$IP:$dest_way elif [$mode -eq 4] then if [echo $source_way | grep "home/" != ""] 2> /dev/null then source_way= echo $source_way | sed -e "s|/home/$USER/|/users/$user/|g" fi scp -r $user@$IP:$source_way$files $dest_way fi

 ˓→" -o "$e" = "F03"] then rename_flag=0 for i in $parameters do e=${i#*.} if [$e != "c"] && [$e != "cpp"] && ["$e" != "f90"]&& ["$e" != ˓→"f95"]&& ["$e" != "F90"] && ["$e" != "F"] && ["$e" != "f03"] && ["$e" != "F03"␣ ˓→] then e=${i#*.*.} fi e=".""$e" name= basename $i $e files=$files" "$i done if [$exe_flag -eq 0] && [$rep_flag -eq 0] then gfortran -o $name $files $lib_option || error elif [$exe_flag -eq 0] && [$rep_flag -eq 1] then gfortran -o $relative_way$name $files $lib_option || error elif [$exe_flag -eq 1] && [$rep_flag -eq 0] then gfortran -o $exe_name $files $lib_option || error elif [$exe_flag -eq 1] && [$rep_flag -eq 1] then gfortran -o $relative_way$exe_name $files $lib_option || error fi if [$rename_flag -eq 1] then rm -r tmp fi fi elif [$mode -eq 3] # Executing script profile in MPI parallel Compilation mode then for i in $param_list do if ["$i" != "2"] then parameters=$parameters" "$i fi (continues on next page)12Chapter 1. Compile done for i in $parameters do e=${i#*.} if ["$e" != "c"] && ["$e" != "cpp"] && ["$e" != "f90"] &&␣ ˓→["$e" != "f95"]&& ["$e" != "F90"]&& ["$e" != "F"] && ["$e" != "f03"] && ["$e"␣ ˓→!= "F03"] 2> /dev/null then e=${i#*.*.} fi ␣ ˓→ # Getting the file extension while ["$e" != "c"] && ["$e" != "cpp"] && ["$e" != "f90"]␣ ˓→&& ["$e" != "f95"]&& ["$e" != "F90"]&& ["$e" != "F"] && ["$e" != "f03"] && [" ˓→$e" != "F03"] 2> /dev/null # thendo e=${i#*..*.} done if [$e = "c"] then name= basename $i '.c' if [$exe_flag -eq 0] && [$rep_flag -eq 0] then # Getting the .exe filename mpicc -o $name $i $lib_option || error elif [$exe_flag -eq 1] && [$rep_flag -eq 0] then mpicc -o $exe_name $i $lib_option || error elif [$exe_flag -eq 0] && [$rep_flag -eq 1] then mpicc -o $relative_way$name $relative_way$i $lib_option␣ ˓→|| error elif [$exe_flag -eq 1] && [$rep_flag -eq 1] then mpicc -o $relative_way$exe_name $relative_way$i $lib_ ˓→option || error fi # Compiling the code file as parameter elif ["$e" = "cpp"] then name= basename $i '.cpp' if [$exe_flag -eq 0] && [$rep_flag -eq 0] then # Getting the .exe filename mpicxx -o $name $i $lib_option || error elif [$exe_flag -eq 1] && [$rep_flag -eq 0] then mpicxx -o $exe_name $i $lib_option || error elif [$exe_flag -eq 0] && [$rep_flag -eq 1] then mpicxx -o $relative_way$name $relative_way$i $lib_option␣ ˓→|| error (continues on next page) 1.4. Source Compile elif [$exe_flag -eq 1] && [$rep_flag -eq 1] thenmpicxx -o $relative_way$exe_name $relative_way$i $lib_ ˓→option || error fi # Compiling the code file as parameter elif ["$e" = "f90" -o "$e" = "f95" -o "$e" = "F90" -o "$e" = "F ˓→" -o "$e" = "f03" -o "$e" = "F03"] then e=".""$e" name= basename $i $e # Getting the .exe filenameif [$exe_flag -eq 0] && [$rep_flag -eq 0] then mpifort -o $name $i $lib_option || error elif [$exe_flag -eq 1] && [$rep_flag -eq 0] then mpifort -o $exe_name $i $lib_option || error elif [$exe_flag -eq 0] && [$rep_flag -eq 1] then mpifort -o $relative_way$name $relative_way$i ˓→$lib_option || error elif [$exe_flag -eq 1] && [$rep_flag -eq 1] then mpifort -o $relative_way$exe_name $relative_way ˓→$i $lib_option || error fi # fi fi done elif [$mode -eq 4] # Executing script profile in OpenMP parallel Compilation mode then for i in $param_list do if ["$i" != "3"] # Rebuilding the file name parameters list then if [$rep_flag -eq 0] then parameters=$parameters" "$i elif [$rep_flag -eq 1] then parameters=$parameters" "$relative_way$i fi fi done for i in $parameters do e=${i#*.} if ["$e" != "c"] && ["$e" != "cpp"] && ["$e" != "f90"] && ["$e" ! ˓→= "f95"]&& ["$e" != "F90"]&& ["$e" != "F"] && ["$e" != "f03"] && ["$e" != "F03 ˓→"] 2> /dev/null (continues on next page) 14 Chapter 1. Compile then e=${i#*.*.} fi # Getting the file extension while ["$e" != "c"] && ["$e" != "cpp"] && ["$e" != "f90"] && ["$e ˓→" != "f95"]&& ["$e" != "F90"]&& ["$e" != "F"] && ["$e" != "f03"] && ["$e" != ˓→"F03"] 2> /dev/null # then do e=${i#*..*.} done if [$e = "c"] then name= basename $i '.c' # Getting the .exe filename break elif ["$e" = "cpp"] then name= basename $i '.cpp' # Getting the .exe filename break fi done if [$e = "c"] then if [[! $lib = ""]] then if [$exe_flag -eq 0] && [$rep_flag -eq 0] then gcc $parameters $lib -o $name -fopenmp $lib_option ||␣ ˓→gcc $lib -L $parameters -o $name -fopenmp || error elif [$exe_flag -eq 1] && [$rep_flag -eq 0] then gcc $parameters $lib -o $exe_name -fopenmp $lib_option␣ ˓→|| gcc $lib -L $parameters -o $exe_name -fopenmp || error elif [$exe_flag -eq 0] && [$rep_flag -eq 1] then gcc $parameters $lib -o $relative_way$name -fopenmp $lib_ ˓→option || gcc $lib -L $parameters -o $relative_way$name -fopenmp || error elif [$exe_flag -eq 1] && [$rep_flag -eq 1] then gcc $parameters $lib -o $relative_way$exe_name -fopenmp ˓→$lib_option || gcc $lib -L $parameters -o $relative_way$exe_name -fopenmp || error fi else if [$exe_flag -eq 0] && [$rep_flag -eq 0] then gcc $parameters -o $name -fopenmp $lib_option || error elif [$exe_flag -eq 1] && [$rep_flag -eq 0] then gcc $parameters -o $exe_name -fopenmp $lib_option ||␣ ˓→error (continues on next page) 1.4. Source Compile elif [$exe_flag -eq 0] && [$rep_flag -eq 1] then gcc $parameters -o $relative_way$name -fopenmp $lib_ ˓→option || error elif [$exe_flag -eq 1] && [$rep_flag -eq 1] then gcc $parameters -o $relative_way$exe_name -fopenmp $lib_ ˓→option || error fi fi # Compiling the Modular file as parameters elif [$e = "cpp"] then if [[! $lib = ""]] then if [$exe_flag -eq 0] && [$rep_flag -eq 0] then g++ $parameters $lib -o $name -fopenmp $lib_option ||␣ ˓→g++ $lib -L $parameters -o $name -fopenmp || error elif [$exe_flag -eq 1] && [$rep_flag -eq 0] then g++ $parameters $lib -o $exe_name -fopenmp $lib_option␣ ˓→|| g++ $lib -L $parameters -o $exe_name -fopenmp || error elif [$exe_flag -eq 0] && [$rep_flag -eq 1] then g++ $parameters $lib -o $relative_way$name -fopenmp $lib_ ˓→option || g++ $lib -L $parameters -o $relative_way$name -fopenmp || error elif [$exe_flag -eq 1] && [$rep_flag -eq 1] then g++ $parameters $lib -o $relative_way$exe_name -fopenmp ˓→$lib_option || g++ $lib -L $parameters -o $relative_way$exe_name -fopenmp || error fi else if [$exe_flag -eq 0] && [$rep_flag -eq 0] then g++ $parameters -o $name -fopenmp $lib_option ␣ ˓→|| error elif [$exe_flag -eq 1] && [$rep_flag -eq 0] then g++ $parameters -o $exe_name -fopenmp $lib_ ˓→option || error elif [$exe_flag -eq 0] && [$rep_flag -eq 1] then g++ $parameters -o $relative_way$name -fopenmp ˓→$lib_option || error elif [$exe_flag -eq 1] && [$rep_flag -eq 1] then g++ $parameters -o $relative_way$exe_name -˓→fopenmp $lib_option || error fi fi # Compiling the Modular file as parameters (continues on next page)

 eq 0] then gcc -o $tocompile $libs $lib_option || error elif [$exe_flag -eq 1] && [$rep_flag -eq 0] then gcc $tocompile $libs -o $exe_name $lib_option || error elif [$exe_flag -eq 0] && [$rep_flag -eq 1] then gcc $relative_way$tocompile $libs $lib_option ␣ ˓→|| error elif [$exe_flag -eq 1] && [$rep_flag -eq 1] then gcc $relative_way$tocompile $libs -o $relative_way$exe_ ˓→name $lib_option || error fi # Compiling the Modular Libs as parameters elif ["$libflag" = "a"] # Script profile in case of Static Librairie then if [$exe_flag -eq 0] && [$rep_flag -eq 0] then gcc $tocompile $libs $lib_option || error elif [$exe_flag -eq 1] && [$rep_flag -eq 0] then gcc $tocompile $libs -o $exe_name $lib_option || error elif [$exe_flag -eq 0] && [$rep_flag -eq 1] then (continues on next page) 18 Chapter 1. Compile gcc $relative_way$tocompile $libs $lib_ ˓→option || error elif [$exe_flag -eq 1] && [$rep_flag -eq 1] then gcc $relative_way$tocompile $libs -o $relative_ ˓→way$exe_name $lib_option || error fi elif ["$libflag" = "so"] # Script profile in case of Dynamic Librairie then if [$exe_flag -eq 0] && [$rep_flag -eq 0] then gcc -$libs -L $tocompile $lib_option || error elif [$exe_flag -eq 1] && [$rep_flag -eq 0] then gcc -$libs -L $tocompile -o $exe_name $lib_option ||␣ ˓→error elif [$exe_flag -eq 0] && [$rep_flag -eq 1] then gcc -$libs -L $relative_way$tocompile ˓→$lib_option || error elif [$exe_flag -eq 1] && [$rep_flag -eq 1] then gcc -$libs -L $relative_way$tocompile -o ˓→$relative_way$exe_name $lib_option || error fi fi elif [$cflag = "cpp"] then cflag=".""$cflag" tocompile=$name$cflag if ["$libflag" = "o"] # Script profile in case of Object Librairie then if [$exe_flag -eq 0] && [$rep_flag -eq 0] then g++ $tocompile $libs $lib_option || error elif [$exe_flag -eq 1] && [$rep_flag -eq 0] then g++ $tocompile $libs -o $exe_name $lib_option || error elif [$exe_flag -eq 0] && [$rep_flag -eq 1] then g++ $relative_way$tocompile $libs $lib_ ˓→option || error elif [$exe_flag -eq 1] && [$rep_flag -eq 1] then g++ $relative_way$tocompile $libs -o $relative_ ˓→way$exe_name $lib_option || error fi # Compiling the Modular Libs as parameters elif ["$libflag" = "a"] # Script profile in case of Static Librairie (continues on next page) then if [$exe_flag -eq 0] && [$rep_flag -eq 0] then g++ $tocompile $libs $lib_option || error elif [$exe_flag -eq 1] && [$rep_flag -eq 0] then g++ $tocompile $libs -o $exe_name $lib_option || error elif [$exe_flag -eq 0] && [$rep_flag -eq 1] then g++ $relative_way$tocompile $libs $lib_ ˓→option || error elif [$exe_flag -eq 1] && [$rep_flag -eq 1] then g++ $relative_way$tocompile $libs -o $relative_ ˓→way$exe_name $lib_option || error fi elif ["$libflag" = "so"] #Script profile in case of Dynamic Librairie then if [$exe_flag -eq 0] && [$rep_flag -eq 0] then libs="-""$libs" g++ $tocompile $libs $lib_option || error elif [$exe_flag -eq 1] && [$rep_flag -eq 0] then g++ $tocompile $libs -o $exe_name $lib_option || error elif [$exe_flag -eq 0] && [$rep_flag -eq 1] then g++ $relative_way$tocompile $libs $lib_ ˓→option || error elif [$exe_flag -eq 1] && [$rep_flag -eq 1] then g++ $relative_way$tocompile $libs -o $relative_ ˓→way$exe_name $lib_option || error fi been wrote to treat large amount of picture data. It must be use as a resizer. It is ruled by parameters : • Resolution : Define the DPI resolution of the picture • Folder : Determine the root folder to treat • size : Determine the Picture size, must have form axb where a & b are integers (ex : 800x600)

 In case of additional libs, you may define the path of access lib files using the syntax -L./path_to_lib :

	1.4 Source Compile	
	#!/bin/bash	
	# Author : CABOS Matthieu	
	# Date : 28/09/2020	
	function help(){	
	printf "Please to refer Documentation."	
	}	
	function error(){	
	./compile.sh mode src_file -L/path_to_lib/	
	4	Chapter 1. Compile

• -o : If specified you should give the executable the name you want as following argument : ./compile.sh mode src_file -o executable name

• -d : If the source file(s) are not in the current directory, the -d option should specified the directory to treat (-d /my_project_to_compile_directory/ as example) ./compile.sh mode src_file -d src_file_repertory_relative_path

• -I : In case of additional libs, you may define the path of access header files using the syntax -I./path_to_include/ : ./compile.sh mode src_file -I /path_to_include/

• -L :

2.2. Script usage Converter 2.4 Source Converter

	#!/bin/bash # Author : CABOS Matthieu # Date : 23/09/2021 function usage(){ echo " Please to refer Documentation. " } if [$# -eq 0] then usage exit fi ind=1 param=$* mode=0 size=0 for i in $param do if [$ind -eq 1] then if ["$(echo $i | grep "^[[:digit:]]*$")"] then Resolution=$i elif [$i == "clean"] then mode=1 break fi elif [$ind -eq 3] then size=$i fi ind=$((ind+1)) done path="./" Folders= find $2 -type d for f in $Folders do liste= ls $f if [$mode -eq 0] then for item in $liste echo $f"/"$item if [-f $f"/"$item] then convert $f"/"$item -resize $size -density $Resolution $f (continues on next page) ˓→"/resized"$item 26 Chapter 2. Converter CHAPTER THREE GET_LIB_LIST #!/bin/bash # Author : CABOS Matthieu # Date : 31/08/2020 lib_flag=0 lib="" for i in $@ # Coursing arguments list do if [$lib_flag -eq 1] # Getting lib name if founded then lib="$lib"" ""$i" 2.4. Source Converter do (

 dest_way | sed -e "s|/home/$USER|/users/$user|g" fi scp $source_way$files $user@$IP:$dest_way elif [$mode -eq 2] then if [echo $source_way | grep "home/" != ""] 2> /dev/null then source_way= echo $source_way | sed -e "s|/home/$USER/|/users/$user/|g" fi scp $user@$IP:$source_way$files $dest_way

	4.4 Source Transfert
	Chapter 4. Transfert_ssh.sh (continues on next page) != ""] 2> /dev/null if [$# -eq 0] || [$# -ne 6] || [$1 -gt 4] || [$1 -le 0] #!/bin/bash # Author : CABOS Matthieu # Date : 23/07/2020 function usage(){ echo"Please to refer Documentation." } param=$* ind=1 files="" index=0 home_flag_src=0 home_flag_dst=0 IP=0 then usage exit fi if ["$1" = "--help"] then usage exit fi for i in $param do if [$ind -eq 1] then mode=$i elif [$ind -eq 2] then user=$i elif [$ind -eq 3] then if [$i = ~] then home_flag_src=1 fi source=$i elif [$ind -eq 4] then if [$i = ~] then home_flag_dst=1 fi dest=$i elif [$ind -eq 5] files="$i" else IP="$i" fi ind=$((ind+1)) done source_way=$source dest_way=$dest # Xchange source and dest when Mode if [$mode -eq 1 -o $mode -eq 3] then if [$home_flag_src -eq 1] then source_way="/home/$USER" fi if [$home_flag_dst -eq 1] then dest_way="/users/$user" fi else if [$home_flag_src -eq 1] then source_way="/users/$user" fi if [$home_flag_dst -eq 1] then dest_way="/home/$USER" fi fi source_way=$source_way"/" dest_way=$dest_way"/" if [$mode -eq 1] then if [echo $dest_way | grep "home/" then 4.4. Source Transfert then dest_way= echo $

(continues on next page)

1.2. Script usage Compile

1.4. Source Compile

Chapter 3. Get_lib_list

4.4. Source Transfert

Chapter 5. Sudo-upgrade-all

Algorithm get_lib_list

This algorithm has been wrote to manage Librairies missing notifications when compiling with gcc.

In a first step, I'm coursing arguments list (wich is the results of a failes compilation). In case of Librairie name founded, I update the lib variable and the Lib Flag to True. In a second step, for each founded librairies, I get the exact name of the librairy via the basename command. On the final loop, I try, for each librairy (from the exact name) to install it via the vcpkg command, if founded on server, It will install it, else it will give you the missing Librairies name. Chapter 4. Transfert_ssh.sh CHAPTER FIVE SUDO-UPGRADE-ALL

is the source(s) file(s) to compile * lib : is the specified Librairie to link

Script Get_lib_list

Script Usage.

Please to use this script with the correct arguments. This script analyse the results of a failed compilation and determine the name(s) of the missing librairie(s).

Please to launch using the following syntax :

./get_lib_list.sh gcc my_source_file.c

Script Get_lib_list

Please to use the script with the correct number of arguments :

./transfert.sh mode user source_folder destination_folder filename/foldername IP Where :

• mode is the way to transfert between :

-1 mean upload file to the ssh specified destination folder -2 mean download file since the ssh specified source folder

Script Usage Sudo-upgrade-all

Called without arguments like that : ./sudo-upgrade-all.sh This script is used to upgrade all the present binaries librairies on a Unix system. Please to use if and only if the Unnix system use the apt command (see also sudo apt command in Linux Manual).

Script Usage