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Abstract 

Acoustic metasurface has become one of the most promising platforms for manipulating 

acoustic waves with the advantage of ultra-thin geometry. The conventional design method of 

acoustic metasurface relies on numerical, trial-and-error methods to retrieve effective 

properties of the locally resonant unit cells. It is often inefficient and requires significant efforts 

to investigate the enormous number of possible structures with different physical and geometric 

parameters, which demands huge computational resources. This is especially when modeling 

narrow cavities where thermoviscous loss has to be considered. In this paper, a deep learning-

based acoustic metasurface absorber modeling approach is introduced to significantly reduce 

the characterization time while maintaining accuracy. Based on a convolution neural network 

(CNN), the proposed network can model wide absorption spectrum response in the timescale 

of milliseconds. The performance of the implemented network is compared with other classical 

machine learning methods. Using CNN, we have demonstrated an ultrathin metasurface 

absorber having perfect absorption at an extremely low frequency of 38.6Hz with an ultrathin 

thickness down to λ/684 (1.3cm). The total path length for the propagating waves inside the 

channel is about λ/5.7 which breaks the quarter-wavelength resonator theory. The network 

prediction is validated using the experiments to demonstrate the effectiveness of this physical 

mechanism. Furthermore, we propose a broadband low-frequency metasurface absorber by 

coupling unit cells exhibiting different properties based on the supercell concept. This approach 

is attractive for applications necessitating fast on-demand design and optimization of a 

metasurface acoustic absorber. 

Keywords: Acoustic metasurfaces; Sound absorption; Deep learning; Convolutional neural 

network; Low-frequency; Acoustic metamaterials 
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1. Introduction 

The emergence of acoustic metamaterials [1-3] and metasurfaces [4-7] has significantly 

broadened the research field of acoustics, providing many fascinating ways of controlling 

acoustic waves propagation, such as negative refraction [8], deep subwavelength focusing 

beyond the diffraction limit [9,10] and perfect absorption with compact structures [11]. As 

sound absorption is one of the most important applications in acoustics, perfect acoustic 

metasurface absorbers [11-18] have gained considerable attention for suppressing audible 

sound as excessive noise exposure is a major public health concern. The metasurface design 

contains locally resonant units along with highly enhanced local acoustic intensity inside each 

unit, which broadened the way to realize a high absorption efficiency. These resonant units are 

of particular interest for sound absorption in the low-frequency regime (<100Hz), where the 

perfect absorption of sound is still a challenge due to the inherently weak intrinsic dissipation 

of conventional materials at this frequency range [18]. 

An acoustic metasurface absorber is generally based on a single or hybrid resonant 

system. For example, Helmholtz resonators [19], periodic groove structures [20], panels of 

Schroeder diffusers combined with perforated plates [21], and sonic crystals slabs with 

resonant scatterers [22] show good sound absorption properties in the low-frequency range. To 

design these acoustic absorbers, various reliable and efficient modeling tools are being used 

and deeply investigated. One approach is to develop analytical models using phased array 

methods [23]. By introducing a complex frequency plane of reflection coefficients [24] where 

acoustic wave theory is the design basis, designers are required to have strong expertise in this 

field. It prevents layman users from designing metasurface according to actual demands. 

Besides, a widely adopted way in acoustic metasurface design is to utilize iterative numerical 

full-wave simulations like finite-element method (FEM), using the commercial software 

COMSOL Multiphysics. Here, the all-over design time depends on the simulation time of each 

trial design and the number of design degrees of freedom (DOFs). The thermoacoustic module 

is used to solve acoustic problems in COMSOL Multiphysics which considers the effect of 

thermoviscous loss, particularly in confined spaces/cavities, where the complex interaction of 

sound with the viscous and thermal boundary layers must be accounted for. To solve such 

acoustic models, the thermoviscous module considers the acoustic pressure, velocity field, and 

variations in temperature that add many degrees of freedom [25]. It also considers a 

comparatively finer mesh since there are so many small-scale mechanisms involved. For these 

reasons, solving acoustic problems using this approach is computationally expensive. It 
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provides accurate device response predictions but it is severely time-consuming especially for 

the low-frequency three-dimensional (3D) calculations. This is because, at low frequency 

(<50Hz), the narrow bandwidth requires sufficiently high resolution to sweep the frequencies 

for accurate calculations. It then is a challenge to use a generic method to solve conveniently 

the novel acoustic problems [26]. Another acoustic metasurface design approach being widely 

studied is based on optimization strategies [27,28]. Based on the concept of the adjoint variable 

method, these methods can quickly generate non-intuitive metasurface designs in less time 

compared to direct brute-force searching approaches. However, their local optimizers still rely 

on simulation software for verifications and can be computationally expensive, depending on 

the performance of initial distributions of the generated metasurface designs [29]. 

To overcome these obstacles, we consider a data-driven approach based on machine 

learning methods. In recent decades, machine learning (ML) has emerged as a powerful 

computational tool that has been broadly applied to efficiently solve numerous scientific 

problems [30-36]. It offers a solution to significantly reduce time-consuming calculations with 

limited computational resources. Among all ML methods, deep learning has emerged as a very 

promising one for solving non-institutional problems [29]. It allows computational models that 

are composed of multiple hidden layers to intelligently learn representations of data by using 

the backpropagation algorithm, which can be used to represent complicated functions 

according to the universal approximation theorems [38-41]. Inspired by this, several deep 

learning-based architectures that connect electromagnetic metasurface structures to their EM 

responses are developed and then trained with a large amount of pre-simulated data calculated 

by full-wave simulations [42,43]. The reported studies to date mostly emphasize solving 

electromagnetic problems, while robust deep learning models for acoustic problems are yet to 

be developed [44,45]. 

In this research, we introduce a deep learning model based on two-dimensional CNN (2D 

CNN) as a practical tool to model acoustic metasurface absorber for low-frequency 

applications. Two-dimensional CNNs [40] take advantage of the spatial information and 

translational invariance which make them more suitable to extract relevant information at a low 

computational cost compared to the fully connected neural networks [31]. Moreover, the 

implemented metasurface absorber structure solves two key challenges of the previous works 

[11, 17]. The first one is to remove the dependency of absorption on the length of the coiled 

channel [11]. In a coiled metasurface, the length of the coiled channel strictly requires quarter 

wavelength channel length to achieve perfect absorption, creating difficulties in adjusting the 
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absorption frequency and bandwidth. As a solution to this problem, a multi-coiled metasurface 

with an embedded aperture and the labyrinthine structure was designed [17]. Second, one 

doesn’t need to create a specific design of the channel for acoustic wave propagation to tune 

the desired resonance frequency.  

 
In our approach and method, we connect the metasurface structure with its acoustic 

properties through deep learning methods, where we set up and train the deep learning model 

by a set of samples; the model is capable of finding out the inner rules between metasurface 

structure and its acoustic properties. We have compared the performance of our implemented 

technique with other classical machine learning algorithms. Using the CNN, as we will 

demonstrate, full absorption at 38.6Hz with a total thickness down to λ/684 is achieved. The 

total path for the propagating waves inside the channel is calculated by the mean distance 

through the channel. It is worth mentioning that this path is about λ/5.7 which is significantly 

smaller than the one allowed by the classical quarter-wavelength resonators. 

The proposed design of the absorbing acoustic metasurface we are reporting here not 

only deals with the sound absorption, but potentially could be useful to produce other 

functionalities. Indeed, one of the idea this smart design could lead to is the heat energy 

harvesting that could be collected from the absorbed acoustic energy. The latter is usually lost 

as a heat, so one can consider an additional system formed by thermoelectric and piezoelectric 

materials to tackle on this aspect by collecting and converting the absorbed acoustic energy to 

electric current. 

 

2. Theory and design 

Based on 2D convolutional neural networks, an efficient ultrathin metasurface modeling 

method is proposed. It aims to uncover the hidden relationship between metasurface models 

and their absorption spectral responses and thus accurately predict responses for given 

metasurface designs. In this section, we first introduce the structure of the metasurface, 

followed by the overall design idea beginning from the aspect of training and generating 

spectral responses. Here, the propagation channel length is used to tune the resonance 

frequency. The longer the channel length it is, the lower the resonance frequency it gets. 

 

2.1 Structure of acoustic metasurface absorber 

The geometry of the metasurface, as shown in Fig. 1, consists of a resonant absorber system 

composed of a cavity, with some random coiled pattern inside, covered by a plate of thickness 
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t=2mm with a circular opening. In our study, we used a fixed periodicity of the unit cell 

a=100mm. The thickness of the outer walls is 2mm, therefore the lateral dimension of the 

square cavity is 96mm. The cavity is decomposed into square lattice sites of 2×2mm2 to create 

the propagation channel with a wall thickness of 2mm. The lattice sites are labeled as 

𝑟!,!, 𝑟!,#, … , 𝑟$%,$%. It can be presented as a 48×48 lattice mesh marked with '.' or blank.  Blank 

lattice site means that area is filled up by air, and ‘.’ lattice site means the area is filled up with 

PLA (density, ρ=2700kg/m3).  The total lattice mesh is then encoded into a pattern matrix	𝑎, 

                                           𝑎 = '
𝑟!,! ⋯ 𝑟!,$%
⋮ ⋱ ⋮

𝑟$%,! ⋯ 𝑟$%,$%
+																																																															(1) 

where ri,j = 0 and 1 if the lattice site is filled with air and PLA, respectively.  

 

FIG. 1. Schematic illustration of (a) matrix encoding and (b) metasurface absorber (cross-

area=a×a). The normal incident wave propagates along the z-direction and penetrates into the 

channel from the through-hole the perforated plate.  

Here, each pattern matrix corresponds to a set of absorption coefficients. For our case, the total 

number of lattice sites is 2304. The possible numbers of pattern matrices are 22304. Using such 

matrices, large numbers of free form channels can be created. Ideally, it takes millions of years 

for the calculation of all data, which is an impossible task under current calculation conditions. 
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Therefore, the use of deep learning networks is advantageous here to find optimum value while 

reducing computational time. 

2.2 Training process 

To get the training data sets, metasurface pattern matrices are regarded as input data while the 

absorption coefficients are taken as the output data. To obtain the absorption coefficients of the 

metasurface absorber, simulations are conducted with the preset thermoviscous module of 

COMSOL Multiphysics v5.5. Sound hard boundaries are imposed on the interfaces between 

air and solid due to the huge impedance mismatch between air and solid materials. A normal 

incident plane wave with unit amplitude propagates along the z-direction. Here, the unit cell 

itself acts as a metasurface. The absorption coefficient,	𝛼, can be expressed as 𝛼 = 1‒ |𝑟|2	, 

with r=(Z-1)/(Z+1) representing the complex reflection coefficient and Z is the normal acoustic 

impedance. 

We generate 10,000 pairs of absorption coefficients and metasurface pattern matrices 

to form our dataset. We take 80% of the dataset as a training set and the rest 20% as the testing 

set. Each pattern matrix is subjected to a sound wave of a given frequency range and we obtain 

the value of the absorption coefficient at each frequency. Thus, each pattern matrix is 

corresponding to a set of absorptions that form a continuous absorption spectrum for the given 

frequency band. Normally, in terms of the volume of training data in deep learning, we care 

more about the ratio between the number of samples and the number of features for each sample 

rather than the number of samples only. 

2.3 Network Architecture and Results 

The overall 2D CNN design we use is illustrated in Fig.2. The objective of the training is to 

achieve total absorption at low frequencies while keeping the lateral dimension and the depth 

of the metasurface unchanged. We train the network using Adam-optimizer with a mean 

squared error loss function. Here, the neural architecture consists of two 2D convolution layers 

along with two max-pooling layers. In our case, the shape of the input layer is (48,48,1). The 

network starts with a convolution layer named as ℎ(!). The convolution layers are used to 

extract the latent features from the input as illustrated in Fig.2. Each convolution layer consists 

of a set of filters, which are applied over the input to the layer. The operation of the 1D 

convolution layer with the filter size (4,1)	can be explained by the schematic as illustrated in 

Fig.3 which can be easily extended to 2D. Here, the neurons 𝑟!, 𝑟#, 𝑟#, … , 𝑟*	in the input layer 
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indicate the features of the input. For our 2D CNN, the stride of (2,2) and the filters of the size 

(2,2) are applied on the input layer which slides over the input features. Here, we use a total of 

128 filters. The output of the ℎ(!) layer is fed to the max pool layer ℎ(#). This layer down-

samples the input representation, reducing its dimensionality. Here, we use a pool size of (2,2) 

and the stride of (2,2). As such, there is a significant reduction in the number of parameters or 

weights. This phenomenon lowers the computational cost and mitigates over-fitting. Similarly, 

another convolution layer	ℎ(+) is used which followed by a pooling layer, ℎ($) with same filter 

size. The bias “b” is added over every output of the convolution operation. A non-linear 

activation function using the Rectified Linear Units (ReLU) is applied to each layer. 

 

 
FIG. 2. An illustration of the deep learning network architecture for the metasurface absorber 

design. A set of geometric inputs is fed to CNN which makes data smoothed and upsampled in 

a learnable manner. The output of CNN is fed to the fully connected layers which produce a 

predicted spectrum (red dashed curve) compared to the ground truth (blue curves). 
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The output of the pooling layer is then flattened using a flattening layer, ℎ(,) and is 

passed through two fully connected layers, ℎ(-)and ℎ(.)of sizes DS= {500,100}. The output of 

the fully connected layer ℎ(.)	is calculated by,  

                                              ℎ/
(.) = ∑ 𝑤/01

(")ℎ0
(-) + 𝑏/

(.),22
03!                                                      (2) 

where, 𝑤/01
(") is the trainable matrix corresponds to the layer 	ℎ(.). i and j represent the neurons 

in layers 	ℎ(-) and ℎ(.)	respectively. The bias term, 𝑏/. represents the bias associated with a 

neuron j present in the layer ℎ(.). 

 

 
FIG. 3. Schematic of the 1D convolution operation. 

 

Finally, the sigmoid function is used to obtain the predicted output from the model. Here, ℎ456  

represents the absorption coefficients for the given frequency range. Without loss of generality, 

the spectra of interest were set to be from 30 to 70Hz. The proposed model is built under the 

windows 10 operating system. The configuration of the computer is Intel(R) Core (TM) i5-

3470 CPU @ 3.19GHz. It is realized on the Anaconda platform with python version 3.6. Keras 

framework with a TensorFlow backend is also used to set up the model (See the appendix for 

the hyperparameters). Here, the mean squared error (MSE) is used as a loss function. We 

predict the absorption spectrum for testing data using the trained network and compare the 

results with those obtained by the COMSOL Multiphysics. Fig.4 depicts the spectral response 

of four representative cases from the testing data that clearly indicate the predicted frequency-

dependent absorption spectra (red dashed curve) match the simulated spectra (blue curves) well 
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for different curves. The predicted absorption spectra (𝛼7) and simulated absorption (𝛼8) 

overlap almost perfectly such that we plot, on the right axis (shaded dark yellow area), the 

absolute value of the difference in absorption, defined as |𝛼8 −𝛼7|. More importantly, once 

trained with enough data, the proposed 2D CNN can generate the predictions in milliseconds, 

which is four orders of magnitude faster than conventional FEM based software. This makes it 

an attractive substitute for conventional simulation tools for applications such as high-

throughput device design and optimization. 

 

FIG. 4. Examples of network predictions of the frequency dependent absorption (red dashed 

curve) and simulated spectra (blue curves) demonstrating excellent prediction accuracy for a 

variety of input geometries. The shaded dark yellow area shows the absolute value of the 

difference in predicted and simulated absorption, i.e. |𝛼8 −𝛼7|, shown on the right vertical axis. 

For the further analysis of the metasurface absorber, we simulate the pressure profile at 

the resonance frequency 38.6Hz as shown in Fig.5 (corresponding absorption curve is shown 
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in Fig.2).  It can be observed that the acoustic pressure is higher in deeper regions of the 

structure at the resonance case, whose distribution is similar to previous metasurface absorber 

designs with a gradient channel [16,17]. When the wave passes through the channel at the 

coupling resonant frequency, it is being attenuated and gets absorbed due to thermoviscous 

loss. 

 

FIG. 5. Sound pressure profile at 38.6Hz 

2.4. Comparison with classical machine learning techniques 

To illustrate the advantages of CNN more intuitively, as shown in Fig.6, we compare the 

performance of our implemented CNN with three classical machine learning techniques: k-

nearest neighbors (KNN), Support Vector Machine (SVM), and Random forest (See the 

appendix for hyperparameters). We are using mean square error which helps to determine the 

relative accuracy of the absorption coefficients against expected values. Here, after predicting 

the estimated values of absorption coefficients, we further choose a threshold (10-4) to judge if 

the prediction is accurate up to certain limits or not. Hence the accuracy metric is used to 

estimate the effectiveness of the model to predict absorption coefficient with a certain 

precision. Other ML methods can have similar (or lower) MSE than the CNN, but after testing 

over 12 examples CNN seems to be the most reliable method with an average accuracy of 86%. 
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As shown in Fig.6, it can be clearly observed that CNN outperforms these classical techniques 

with an average accuracy of 86%.  

 

FIG. 6. The comparison between CNN and other classical machine learning techniques in terms 

of accuracy. 

3. Bandwidth improvement 

As the bandwidth is a highly desired feature when it comes to the absorption in general, and 

specifically in the low-frequency regime, we, in follow, introduce an approach by which we 

can provide broadband absorbing metasurface. Here, our objective is to design the metasurface 

around 38.6Hz which is the lowest resonance frequency where the full absorption is achieved. 

For this aim, we design a supercell consisting of 25 unit-cells (5×5) resonating at different 

frequencies and having a different hole diameter of the perforated plate as shown in the inset 

in Fig.7b. It can be achieved by overlapping the resonances for each metasurface in the 

supercell. Fig.7a shows the relation between the diameter of the hole and corresponding 

resonance frequency for the considered designs. The diameters of the different metasurfaces 

are tuned between 1.5mm to 4.5mm to get overlapped resonances. The total thickness of the 

supercell is still 13mm, and the side length of the square supercell is 50cm. Here, the average 

absorption is higher than 95% for the given frequency range but does not reach the perfect 

absorption as shown in Fig.7b. This is because the hybrid structure still has a small impedance 

mismatching, making the effective acoustic impedance at the surface slightly deviate from the 

impedance of the air, q0c0. 
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FIG. 7. (a) Relation between diameter of the holes of given metasurface and the resonant 

frequency (b) Bandwidth improvement using the supercell. 

4. Experiments 

To test our procedure for the application phase, we compare the experimental absorption 

coefficients to the ones predicted by our CNN algorithm. We use the two-microphone method 

as shown in Fig.8(a) to measure the acoustic absorption coefficient. The metasurface shown in 

Fig. 8(b), is fabricated by 3D printing based on polylactic acid (PLA) material. A lab-made 

impedance tube (inner size is of 10 × 10𝑐𝑚#), two Bruel & Kjær 1/4-in.-diameter microphones 

(M1 and M2), and Bruel & Kjær measuring module “Acoustic Material Testing” are used to 

measure the absorption of the metasurface [46]. The thickness of the waveguide wall is 6mm, 

and the distance between two microphones is 5cm. Since the operating frequency bandwidth 

of our measurement setup starts around 50Hz, we have opted to model an absorber with the 

CNN algorithm operating at 66Hz to allow reliable comparison with the experimental results. 

We have fixed a building block at the end of the tube; the absorption spectra can be measured 

for the corresponding metasurface. Since, the rear of the wall is a hard wall condition, we can 

assume that there is no transmission. A digital signal (white noise) powered by the amplifier is 

sent to the loudspeaker. The absorption coefficient was obtained by analyzing the signal by 

two microphones. The experimental and predicted absorption curves are plotted in Fig.8(c). 

The obtained results show a good agreement, validating the procedure using the CNN program 

to predict acoustic absorption properties. 
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FIG. 8. (a) Schematic of the experimental setup for absorption measurement using the two-

microphone method. (b) Photographs of experimental sample with geometrical parameters: 

a=100mm, d=7mm, w=h+t=13mm. (c) The absorption coefficients of the presented 

metasurface. The solid black line and blue dots represent the result obtained from CNN and, 

experimental results, respectively. 

Conclusion 

We have proposed a deep learning-based modeling approach for acoustic metasurface 

absorbers to solve the limitation of existing design methods. Accurate absorption spectrum 

responses of metasurface absorbers were derived using a 2D CNN-based network structure in 

the timescale of milliseconds, which is over four orders of magnitude faster than conventional 

FEM simulation software. The network predictions validated by experiments demonstrate the 

effectiveness of this physical mechanism and its real added value compared to the previous 

works. Using CNN, an ultrathin metasurface absorber is modeled having perfect absorption at 
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extremely low 38.6Hz with the ultrathin thickness down to λ/684 (1.3cm) which is the thinnest 

achieved metasurface ever. The total path for the propagating waves inside the channel is about 

λ/5.7 which breaks the quarter-wavelength resonator theory. We envision that our method can 

be generically utilized for fast and accurate modeling of acoustic metasurface devices with 

minimum human intervention. 
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Appendix 

Hyperparameters of techniques: 

CNN: We performed optimization search over the hyperparameters: number of epochs from 

[10, 20, 50, 100], learning rate from [0.001, 0.1, 0.2, 0.3], dropout for the dense layers from 

[0.0, 0.1, 0.2, 0.3], optimizer from [‘SGD’, 'RMSprop', 'Adagrad', 'Adadelta', 'Adam', 

'Adamax'], weight initialization from ['uniform', 'normal', 'glorot_normal', 'glorot_uniform', 

'he_normal', 'he_uniform']. The optimized values of hyperparameters are number of epochs 

100, learning rate is 0.2, dropout rate is 0.0, and weight initialization with random uniform. 

 

Classical Machine learning techniques: For the k-nearest neighbors (KNN), we choose the 

number of neighbors, n_neighbors=2. Here, the weight initialization parameter is set to the 

uniform. For the Support vector machine (SVM), we choose the radial basis function (RBF) 

kernel with the value of gamma=0.1 and C=100 to initialize the model. For the random forest 

algorithm, we used the number of estimators, n_estimators=10 with the default value for the 

maximum depth of the tree. 
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