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Abstract 

Conventional vibration absorber is challenging to use in the extreme environment of 

high (low) temperature, due to the low tolerance of its additional damping material to 

temperature. To adapt to the extreme environment, here we propose an elastic meta-

absorber (EMA) based on the quasi-bound states of the continuum (BICs) physical 

approach. The proposed absorber does not have any additional damping material, 

depends only on the extreme-low structural loss, and is capable of achieving perfect 

absorption of the flexural waves propagating in an elastic beam. The proof-of-concept 

we provide consists of three parallel subwavelength sub-beams sharing a single-port 

radiating channel in a host beam, and supports elastic Friedrich-Wintgen quasi-BICs. 

Based on the latter, the subwavelength EMA can achieve a high quality factor in the 

elastic wave system to enhance, in an unprecedented way, the wave energy dissipation. 

Using this physical mechanism, we experimentally and numerically validate and 

demonstrate the perfect absorption of flexural waves at subwavelength regime. Our 

work opens a new route to deal with vibration absorption with subwavelength structures 

in specific and extreme environments. 

 

Keyword: Bound state in the continuum (BIC); Flexural wave; Perfect absorption  
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1. Introduction 

Mechanical vibration absorption of beam-like or plate-like structures is of 

considerable significance in many engineering applications, such as preventing 

vibration hazards and reducing noise. Conventional vibration absorption methods [1-

3], which are represented by attaching a large number of damping on the beam-like or 

plate-like structures, do not fulfill the requirements of lightweight and low-frequency 

features. As a newly generated method of vibration absorption, the acoustic black hole 

(ABH) [4-8] can absorb propagating waves (dominated by flexural waves) by little 

attached damping material, which promotes the development of vibration absorption 

technique with a lightweight structure. However, the ABH is not useful for 

technological applications at low frequencies due to the weak damping effect. Recently, 

vibration absorption techniques based on the new method of designing open lossy 

resonators in one-dimensional elastic beams have been proposed [9]. Afterwards, we 

have proposed the idea of lossy gradient elastic metasurface [10] in two-dimensional 

elastic plates and experimentally demonstrated broadband vibration absorption in low 

frequency. However, almost all of the vibration absorption methods mentioned above 

require additional damping to enhance the loss of the designed structures. These 

damping materials have a low tolerance to temperature, making these absorption 

methods challenging to apply to extreme environments with high or low temperature. 

On the other hand, bound states in the continuum (BICs), a general wave 

phenomenon identified in different materials and wave systems, are non-decaying 

localized modes embedded within the continuous spectrum of radiating waves [11, 12]. 
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These states, defying the conventional bound states located outside the continuum, are 

also considered as trapped modes with infinite quality factors (infinite-Q) residing 

inside the continuum [11, 12]. Structures with BICs supporting natural high-Q have 

opened the route to many practical applications in optics and photonics, such as lasers 

[13-16], sensors [17-19], and filters [20-22]. For the subsequent acoustic wave systems, 

parallel plates in a wind tunnel supporting symmetry-protected BICs [23-25] and 

waveguides with side-branched cavities supporting the Fabry-Pérot BICs [26, 27] have 

been investigated. Recently, sound confinement with an arbitrarily high quality factor 

was realized by designing two adjacent resonators supporting a Friedrich-Wintgen 

quasi-BIC [28]. So far, BICs in elastic wave systems [29] are rarely recognized and 

concerned due to the high sophisticated polarization states [30, 31] varying with the 

complex media structures. 

In the present research, by realizing elastic Friedrich-Wintgen quasi-BIC, we 

introduce the concept of elastic meta-absorber (EMA) capable of perfectly absorbing 

the flexural waves in an extreme-low-loss elastic beam. First, we establish the 

theoretical model by using the temporal coupled-mode method in the elastic wave 

system to obtain the elastic quasi-BIC. Second, based on the quasi-BIC, we 

theoretically design the EMA. In addition, the physical mechanism of the perfect 

absorption of the EMA is uncovered and discussed. Finally, the experimental and 

simulation results are presented to validate the perfect absorption functionality. 

 

2. Theoretical model and design of EMA 

Figure 1(a) shows the proposed EMA which consists of three parallel sub-beams 
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on the right edge of the host beam. They are classified into two types, i.e., sub-beam A 

and sub-beam B, which are the outer ones with the length dA and the middle one with 

the length dB, respectively, as shown in Fig. 1(a). The whole structure is symmetrical to 

the central axis [the purple dotted line in Fig. 1(a)]. Note that if the two outer sub-beams 

are different, i.e., asymmetric to the central axis, the torsion mode in the host beam will 

be induced by the moment from the different shear forces between the two outer sub-

beams. In our system with symmetrical structure, there is no fundamental difference 

between three or more sub-beams sharing a single-port radiating channel in the host 

beam with non-reflection boundary on the left edge. The material parameters of all 

models are consistent with that of the experimental 3D-printed material PLA. The 

density and Poisson’s ratio are [29] and , respectively. 

Young’s modulus is Pa, and the small imaginary part, 

which is obtained by fitting the simulated resonance peaks with the experimental ones, 

corresponds to the low structural loss. Only flexural waves in these elastic beams are 

considered in the whole study, because there is no mode conversion. 

 

 

Fig. 1(a) The elastic meta-absorber (EMA) consists of three parallel sub-beams on the right edge of 

the host beam with the thickness of h = 1 mm. These sub-beams have the same width of p = 3 mm, 

31086.3 kg/mr = 0.35u =

( )93.44 10 1 0.015 iE = ´ ´ + ´
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which is less than a quarter wavelength in the target frequency range. The separation between 

adjacent sub-beams of l is 0.5 mm. (b) Schematic illustration for the set-up of temporal coupled-

mode theory. The sub-beam resonators A and B have the amplitude  and , respectively. 

 

First, the EMA model in Fig. 1(a) degenerates to the simplified ones with the same 

sub-beam length, i.e., including only sub-beam A or B. They are marked as the 

degenerated model A (DMA) and the degenerated model B (DMB), respectively. We 

obtain the absorption curves of these degenerated models by experiments [orange balls 

and blue-green balls in Fig.3(b)] and frequency-domain simulations [orange line and 

blue-green line in Fig.3(b)] based on solid mechanics module of COMSOL 

Multiphysics 5.4 software [10]. The corresponding resonance frequencies  and 

 are extracted from the peaks of the absorption curves. These resonances are from 

the coupling between the scattering fields of the sub-beams and the host beam 

boundaries. In classical mechanics, elastic beams are often simplified as one-

dimensional models, but our system is not suitable for this simplification due to the 

coupling. Note that, when the host beam equivalent to a plate model by applying 

periodic boundary conditions, the scattering fields from the host beam boundaries 

disappear, thus these resonances will disappear. For the EMA model in Fig. 1(a), each 

sub-beam resonator (A and B) can be described by the temporal coupled-mode equation 

[schematic illustration in Fig. 1(b)] for the lowest mode with amplitude  

as [11] 

  (1) 
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Aw

Bw

( ) ( )
i

A B A B= ta e w×a

( ) ( )A A A A B A A A B B
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  (2) 

where  represents the incident wave,  is the corresponding radiative decay rate, 

and  represents the dissipative decay rate associated with the low structural loss. The 

terms  and  describe the near-field coupling between two types of 

resonators emanating from their evanescent flexural wave modes. The terms  

and  in Eq. (1) represent the reradiation field of resonator A caused by the other 

two resonators. The term  in Eq. (2) represents the reradiation field of 

resonator B caused by the other two resonators. 

In the absence of incident wave and intrinsic loss, Eqs. (1) and (2) can be derived 

as , where  includes two types of mode amplitudes. The 

Hamiltonian H can be expressed as 

  (3) 

The two eigenvalues of H can be obtained as 

 (4) 

When the lengths of two resonators satisfy , they have the same 

resonance frequency of , the same radiative decay rate of , 

and the vanished near-field interaction . Therefore, according to Eq. (4), one 

eigenvalue  becomes  with more loss, while the other becomes a purely real 

 without any loss. The latter indicates that the system turns into the BIC [11] with an 

infinite Q. To intuitively display the BIC, the reflection coefficient of the system, r, can 

be expressed as 
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  (5) 

The first term on the right-hand side of Eq. (5) describes the reflection of the incident 

wave reflected by the right boundary in the background field. The second and third 

terms describe the reflections of flexural waves from resonator A and resonator B, 

respectively. Factors 4 and 2 occur in Eq. (5) because one resonator A(B) has the same 

left-radiation and right-radiation, i.e., . Due to the reflection of right-

radiation in the right boundary, as shown in Fig. 1(a), the resonator A(B) will have the 

left-radiation of . Based on Eqs. (1), (2), and (5), the 

dimensionless reflected energy coefficient  of the system varying with the length 

of resonator B  ( is fixed to 7 mm) is shown in Fig. 2(a). Near 

 and 4.14 kHz, it shows a vanishing linewidth (VL), which is a typical 

characterization of the ideal BIC with infinite-Q [11, 12]. The VL position 

corresponding to  has a small discrepancy with its theory position 

corresponding to  (i.e, ). This discrepancy is expected, because the 

intrinsic structural loss is considered in calculating  to show VL. 

A B
A B1+4i +2i

i i

a ar
S S

g g=

Ai A ag ( )B Bi ag

A2i A ag ( )B B2i ag

2r
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Fig. 2 (a) Dimensionless reflected energy coefficient  of the system varying with the length 

difference of the sub-beams Δd =  and the frequency ω/2π. , , 

, and  are extracted from eigen-frequency simulations [28] to fit the simulated 

results. (b) The absorption coefficient  varying with the structural loss  and the 

frequency ω/2π. Purple arrows refer to the resonant frequencies of individual sub-beam A 

(  kHz) and sub-beam B (  kHz). (c) The distributions of  in 

the complex frequency planes are shown for the systems with lossless, the structural loss , and 

the structural loss , respectively. (d) The phase distributions of flexural waves in the neutral 

planes of the structures for three frequencies, i.e., , , and . The direction and size of the 

pink arrows indicate the displacement direction and amplitude of the particle displacements, 

respectively. 

2r

B Ad d- A A=0.342g w B B=0.302g w

0 0.005wG = 24k =

2=1 ra - 0wG
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The ideal BIC ( ) with infinite-Q is completely bound and cannot be 

directly coupled with the external radiation channel [11, 12]. To achieve perfect 

absorption of incident flexural waves from the external channel, we introduce a slight 

deviation to the length of resonator B (  is tun to 0.7). The deviation will make 

the resonance system radiates a small amount of energy and couples it to the external 

channel. This process turns the ideal BIC into the quasi-BIC [28, 32, 33] with a high Q. 

In this case, the real eigenvalue of the ideal BIC turns to complex with a tiny imaginary 

part indicated as the radiative decay rate of the system, . The perfect absorption 

mode, manifested by the absorption coefficient of , appears at the 

frequency (  = 3.67 kHz) between  and  with a critical low structure 

loss ( /ω0 = 5 × 10-3), as shown in Fig. 2(b). 

In addition, in a complex frequency plane, the distribution of  can be 

plotted for the system with lossless, the structural loss , and the structural loss , 

respectively, as shown in Fig. 2(c). For the system with the low structure loss , “Zero” 

point intersects the real frequency axis. It indicates that the dissipative decay rate of the 

system ( ) is tuned to the same value as , which is equivalent to the so-called 

critical coupling [34, 35], however here it is fulfilled by the small  and . The 

incident flexural waves can be completely absorbed without any backscattering. Note 

that, theoretically, we can obtain a perfect absorption for the specific frequency in the 

extreme environment with any high (low) temperature by adjusting the structural 

parameters to make  equal to a different . Furthermore, we extract the phase 

distribution of the neutral plane of the structure for the three resonance frequencies, i.e., 

0.15d hD =

d hD

Sg

2=1 1ra - »

0 2w p Aw Bw

1G

10log r

1G 2G

1G

1G Sg

1G Sg
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, , and , respectively, as shown in Fig. 2(d). For the resonance frequency of 

, we can see from the dotted box in Fig. 2(d) that the phase difference between the 

adjacent sub-beams is π, which manifests the strong coupling behavior between these 

sub-beams [36]. The directions and sizes of the pink arrows in Fig. 2(d) indicate the 

directions and amplitudes of the particle displacements, respectively. It can be observed 

for the resonance frequency of  that the displacement amplitudes inside the whole 

sub-beams are greatly enhanced, which is caused by the strong coupling. The large 

enhanced displacements in the sub-beams lead to the perfect absorption of the EMA, 

although the structural loss is low. 

3. Experimental demonstration of perfect absorption of flexural waves 

To confirm our theory, we have printed the specimens by 3D-printer, as shown in 

Fig. 3(a). A 15-mm-diameter circular PZT patch is bonded on the beam surface. The 

PZT patch is driven by a signal generator (Tektronix AFG3022C). The blue-tack layer 

is bonded in the left boundary of the specimen, which is equivalent to a non-reflection 

boundary. Point 1 and point 2 marked in Fig. 3(a) are two measuring points. The 

distance between the two points is less than an eighth wavelength. Simultaneously, their 

locations and the boundary of the resonance structure meet the far-field assumption [10]. 

The assumption ensures that the measurement wavefield of the two points can 

approximate the sum of incident and reflection propagating waves. 

Using the measurement mode “FFT” of Polytec Scanning Vibrometer 500 (PSV-

500), the complex velocities of flexural waves in points 1 and 2 can be measured. These 

measured velocities are expressed as  and 

Aw Bw 0w

0w

0w

( ) ( )1 2 1 2
ˆ ˆi i1

I R
b bs s k s s kv V e V e+ × - + ×= × + ×
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, respectively.  and  are the distance, as shown in Fig. 3(a). 

 is the measured wavenumber of the flexural wave. The transfer function H12 of the 

total wavefield in the two points can be obtained from the measured complex velocities 

of v1 and v2. The transfer function can be expressed as 

, where the reflection coefficient 

is . Then, we can calculate the reflection coefficient of flexural waves as 

  (6) 

The absorption coefficient of flexural waves can be calculated by . 

 

Fig. 3 (a) The specimen and test set-up. (b) For the absorption coefficient , the experiment results 

with error bars are shown by red balls. For comparison, theoretical and numerical results are 

displayed by the black line and blue circle, respectively. The absorption curves of DMA and DMB 

are also shown by the experiments (orange balls and blue-green balls) and the frequency-domain 

2 2
ˆ ˆi i2

I R
b bs k s kv V e V e× - ×= + 1s 2s
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simulations (orange line and blue-green line), respectively. (c) The snapshots of Supplementary 

Video 1 from PSV 500 for the central frequency of 3.66 kHz. 

 

To ensure the reliability of the data, we tested each experimental data three times. 

The experiment results with error bars are shown by red balls in Fig. 3(b). It can be seen 

that the peak values at 3.66 kHz are approximately one, that is, the flexural waves are 

almost completely absorbed. The absorption coefficient curves from the theory [solid 

black lines in Fig. 3(b)] and simulations [blue circles in Fig. 3(b)] present an excellent 

agreement with that from the experiments. To intuitively show the absorption, we 

obtain the dynamic full wavefield in the specimen at the resonance frequency of 3.66 

kHz by the ‘‘time’’ measurement mode. Figs. 3(c) shows a snapshot of Supplementary 

Video 1 at 44.424 ms. It can be clearly seen that the displacement deformations inside 

the whole sub-beams are greatly enhanced, which is consistent with the enhanced 

displacement amplitude in Fig. 2(d). In addition, in the test area, the incident wave is a 

perfect traveling wave, whose intuitive evidence can be found in Supplementary Video 

1. The existence of the perfect traveling wave means that the EMA, indeed, perfectly 

absorbs flexural waves. For comparison, we also test the dynamic full wavefield at 3.2 

kHz (away from the central frequency), as shown in Supplementary Video 2. The 

intuitive evidence from Supplementary Video 2 is the incident wave is a standing wave 

and the displacement deformations inside the sub-beams are not enhanced. 
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4. The influence of the structural parameters on the absorption 

We have also investigated the influence of the structural parameters (p and l), 

which are not discussed above, on the absorption spectra. Figure 4(a) shows the 

absorption spectrum as a function of the sub-beam width, p, with other parameters fixed. 

It is found that with the increase in p, the absorption effect has strong robustness, and 

the absorption peak shifts to low frequency. The reason is that the resonant frequency 

of the sub-beams becomes lower when increasing p, leading to a lower frequency of 

quasi-BIC from the coupling between sub-beams. 

Figure 4(b) illustrates the absorption spectrum as a function of the separation 

between adjacent sub-beams, l, with other parameters fixed. It is found that with the 

increase in l, the absorption peak shifts to low frequency. We know that Friedrich-

Wintgen quasi-BIC is caused by the coupling interferences of different resonance 

radiations at the same location [11]. In other words, for the quasi-BIC, the separation 

between adjacent resonators needs to be very small compared to the incident 

wavelength to approximate the same position. When the separation becomes large to a 

certain extent [less than 3.5h shown in Fig. 4(b)], a larger wavelength can make adjacent 

sub-beams close to the same position to support the quasi-BIC, so the absorption peak 

based on the quasi-BIC shifts to low frequency. However, when the separation is large 

enough [more than 3.5h shown in Fig. 4(b)], the coupling interferences between 

adjacent sub-beams becomes weak, and the quasi-BIC disappears, thus the absorption 

coefficient becomes small. 
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Fig. 4 (a) The absorption spectrum as a function of the sub-beam width, p, with other parameters 

fixed (l = 0.5mm,  = 7mm,  = 7.7mm, and h = 1mm). (b) The absorption spectrum as a 

function of the separation between adjacent sub-beams, with other parameters fixed (p = 3mm,  

= 7mm,  = 7.7mm, and h = 1mm). The bar color indicates the value of the absorption coefficient. 

5. Conclusion 

We have theoretically designed, numerically, and experimentally demonstrated the 

sub-wavelength EMA composed of parallel sub-beam resonators. By realizing 

Friedrich-Wintgen quasi-BIC in the elastic wave system, the EMA can obtain a high-Q 

to enhance, in an unprecedented way, the energy dissipation. The EMA perfectly 

absorbs the incident flexural waves in the elastic beam when the low structure loss 

compensates an identically low radiation decay rate. The length of the EMA is only a 

quarter of the target wavelength and can be further reduced by increasing the width of 

the sub-beams or the separation between adjacent sub-beams. Significantly, the EMA 

does not require any additional damping material, which could open up possibilities in 

the families of elastic subwavelength meta-absorber to realize low-frequency perfect 

absorption in the extreme environment of high (low) temperature. 

Ad Bd

Ad
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