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Abstract 

The partial or complete confinement of waves in an open system is omnipresent in 

nature and in wave-based materials and technology. Here, we theoretically analyze and 

experimentally observe the formation of a trapped mode with perfect mode conversion 

(TMPC) between flexural waves and longitudinal waves, by achieving a quasi-bound 

state in the continuum (BIC) in an open elastic wave system. The latter allows a quasi-

BIC in a semi-infinite background plate when Fano resonance hybridizes flexural and 

longitudinal waves and balances their radiative decay rates. We demonstrate that when 

the Fabry-Pérot resonance of the longitudinal wave is realized simultaneously, the 

TMPC formed by the elastic BIC approaches infinite quality factor. Furthermore, we 

show that quasi-BIC can be tuned continuously to BIC through the critical frequency 

of mode conversion, which offers the possibility of TMPC with an arbitrarily high 

quality factor. Our reported concept and physical mechanism open new routes to 

achieve perfect mode conversion with tunable high quality factor in elastic systems. 
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Introduction 

Bound states in the continuum (BICs), defying the conventional bound states 

located outside the continuum, are non-decaying localized states embedded within the 

continuous spectrum of radiating waves (Hsu et al., 2016; Kodigala et al., 2017). The 

states can sometimes be regarded as embedded eigenvalues (Hsu et al., 2016) or 

embedded trapped modes (Hsu et al., 2013b) with infinite quality factors. The BIC 

concept was first proposed in quantum mechanics (von Neumann and Wigner, 1993) 

by mathematically constructing a 3D potential extending to infinity. Since this initial 

proposal, the wave phenomenon of BICs has been identified in different material and 

wave systems (Hsu et al., 2016), such as electromagnetic waves(Hsu et al., 2013b; 

Kodigala et al., 2017; Koshelev et al., 2019; Marinica et al., 2008; Minkov et al., 2018; 

Plotnik et al., 2011; Zhen et al., 2014), acoustic waves in the air (Cumpsty and 

Whitehead, 1971; Huang et al., 2020; Lyapina et al., 2018; Parker and Griffiths, 1968), 

water waves (Callan et al., 1991; Cobelli et al., 2011) and surface acoustic waves 

(Kawachi et al., 2001; Lim and Farnell, 1969; Trzupek and Zieliński, 2009) in semi-

infinite media. Structures supporting BICs or quasi-BICs with high quality factor (high-

Q) have been widely studied and opened the route to numerous applications in different 

fields, especially in optics and photonics, such as lasers (Hirose et al., 2014; Imada et 

al., 1999; Lin et al., 2020; Matsubara et al., 2008; Noda et al., 2001), sensors (Romano 

et al., 2019; Yanik et al., 2011; Zhen et al., 2013), and filters (Doskolovich et al., 2019; 

Foley et al., 2014; Ju et al., 2020). 

Compared to the optical and acoustic BICs, the elastic counterpart is rarely 
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concerned due to its more sophisticated polarization states (Graff, 1975; Rose, 1999). 

Recently some works have investigated elastic BICs in elastodynamics. Elastic BIC of 

bulk waves (Haq and Shabanov, 2021) was studied using the Fabry-Perot mirroring 

mechanism in an infinite solid with mixed in-plane polarizations. Non-symmetry-

protected BICs of surface acoustic waves (Maznev and Every, 2018) and symmetry-

protected ones (Lim and Farnell, 1969; Trzupek and Zieliński, 2009) have also been 

investigated in semi-infinite solids with surface polarization. However, most of those 

BIC-supporting models have never been experimentally witnessed. So far, in structural 

dynamics, especially for flexural and longitudinal waves (Graff, 1975; Rose, 1999) in 

common plate-like structures, the researches on elastic BICs have still not been reported. 

On the other hand, perfect mode conversion (Giurgiutiu, 2007; Graff, 1975; Rose, 

1999) between different polarization modes has grown into a burgeoning research area 

in the elastic wave system, due to its potential wide applications in nondestructive 

testing, medical ultrasonography, and earthquake resistance in civil engineering. For 

example, a mode-coupled layer with the balanced mode excitations and diagonal 

polarizations (Kweun et al., 2017) can achieve maximum mode conversion between 

longitudinal and shear modes, promoting the development of sensors in industrial and 

biomedical testing (Yang and Kim, 2018; Yang et al., 2019; Zheng et al., 2020). Pillared 

seismic metamaterials (Colombi et al., 2016a; Colombi et al., 2016b; Colquitt et al., 

2017) can create effective bandgaps to achieve mode conversion from surface waves to 

bulk waves, promoting civil structures against seismic risk. Here, we propose a 

theoretical method to achieve perfect mode conversion between flexural waves (out-
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plane vibration) and longitudinal waves (in-plane vibration) (Graff, 1975; Rose, 1999) 

in two perpendicular polarization planes, which has never been reported. The new 

elastic-wave mode conversion mechanism enriches the form of elastic wave energy 

flow, which can perfectly convert an in-plane test signal or in-plane vibration energy 

into an out-plane one for the simplifications of nondestructive testing or energy 

harvesting, perfectly convert an out of plane vibration into in-plane one for reducing 

vibration. 

In this research, we present theoretical analysis and experimental evidence of 

achieving a trapped mode with perfect mode conversion (TMPC) in a quasi-BIC-

supporting elastic wave system. In the proposed scheme, Fano resonance hybridizes 

flexural and longitudinal waves in two perpendicular polarization planes and converts 

one mode into another. When the radiative decay rate of the converted mode balances 

that of the directly reflected wave from the incident wave entering the system, the 

incident wave will be completely trapped by the hybrid Fano resonance, i.e., quasi-BIC. 

The resonant system only allows the converted mode to leak, leading to perfect mode 

conversion. Furthermore, we prove that TMPC can support infinite-Q BIC by 

simultaneously achieving the hybrid Fano and Fabry-Pérot resonances. We demonstrate 

that all quasi-BICs can be continuously tuned to BICs when the critical frequency of 

the mode conversion, depending on the incident angle, approaches the Fano resonance 

one. 

2. Theory and results 

To clearly show the unique TMPC in the quasi-BIC-supporting and BIC-
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supporting elastic wave systems, we investigate a simple structure with typical 

resonance characteristics. The structure is composed of a periodic waveguide resonator 

with the length s on the edge of a background plate with infinite left boundary, as shown 

in Fig. 1(a). These waveguide resonators are connected to side-coupled pillared 

resonators with the height h. The thicknesses d of the waveguide resonator and pillared 

resonator are in deep subwavelength scale relative to the wavelength in the whole 

considered frequency range. Only the fundamental modes of flexural waves and 

longitudinal waves are involved. 

 

Fig. 1. (a) A Fano-resonance-supporting elastic wave model: periodic waveguide with the length s 

connected to a side-coupled pillared resonator with the height h, on the edge of a semi-infinite 

background plate with the thickness d. The Fano resonance hybridizes flexural wave (bending wave) 

“B” and longitudinal wave “L” with polarizations in the x-z plane and x-y plane (perpendicular one), 

respectively. The resonance system perfectly converts one mode into another. (b) Schematic 

illustrations for the set-up of temporal coupled-mode theory in a subunit. The localized mode has 

amplitude a, which hybridizes the incoming flexural waves with amplitudes , , incoming 

longitudinal waves with amplitudes , , outgoing flexural waves with amplitudes , , 

1b + 2b +

1l + 2l + 1b - 2b -
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and outgoing longitudinal waves with amplitudes , , respectively. 

 

2.1. Analytical model of side-coupled pillared resonators with the Fano resonance and 

the hybridization coupling 

As illustrated in the schematic of Fig. 1(b), the pillared resonator can hybridize 

the flexural and longitudinal waves in the background plate. First, without considering 

the right boundary, we get the scattering equation of the pillared resonator in the far-

field as 

 , (1) 

where  and  are scattering vectors.  

is the scattering matrix. The symbols t and r denote the transmission and reflection 

coefficients, respectively. The subscripts b and l represent the flexural wave (or bending 

wave) and longitudinal wave. The subscripts bl and lb represent the conversion from 

flexural wave to longitudinal wave and the reverse process, respectively. Analytical 

expressions of all scattering coefficients in the scattering matrix  are obtained by 

the transfer matrix method (see detailed derivation in Appendix A). 

In the following, we study the case that the pillared resonator and the waveguide 

resonator have the same flexural rigidity, i.e., the same thickness, providing a strong 

hybridization coupling (Colquitt et al., 2017). The material parameters of the model are 

obtained based on the experimental measurement of 3D printing material PLA (see 

Appendix F). Figs. 2(a) and 2(b) display the dimensionless scattering energy curves for 
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the incident flexural wave, based on the scattering coefficients in Eq. (1) (see details in 

Appendix A) and the full wavefield simulations (see details in Appendix H), 

respectively. This consistency between Figs. 2(a) and 2(b) verifies the correctness of 

the analytical model. Another important verification is the power flow balance, i.e., the 

total energy of all scattering modes  is unit (grey dot line). We note that the 

reflection energy curve  has a clear Fano profile. The Fano profile is a typical 

feature of the Fano resonance (Fano, 1961; Rupin et al., 2014), which is the result of 

the interference between the flexural resonances of the pillared resonator and the 

incident flexural waves. The Fano resonance frequency ω0 [marked by yellow dashed 

lines in Fig. 2(a)], dominated by the flexural resonance, approximately satisfies the 

transcendental equation (Colquitt et al., 2017; Graff, 1975) 

 , (2) 

where  is the propagation constant, , and D is the bending rigidity. 

 

Fig. 2. (a) and (b) The dimensionless scattering energy curves for the incident flexural wave in the 

background plate without the boundary, based on the analytical and simulated methods, respectively. 

The grey dot line represents the total energy of all scattering modes. The yellow dashed lines indicate 

te

br
e

( ) ( )0 0cos cosh 1h hb w b w× = -

b 4 d Db r=
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Fano resonance frequency. (c) and (d) Frequency–wavenumber representations correspond to the 

band structures for the pillared resonator, based on the analytical and simulated methods, 

respectively. The dispersion curves of the flexural wave (green dashed line) and longitudinal one 

(pink dashed line) in the background plate are superimposed. 

 

Based on the analytical model, we analyze its band structure to intuitively show 

the hybridization coupling between flexural waves and longitudinal waves from the 

Fano resonance. Bloch boundary condition can be expressed as 

 , (3) 

where I is the identity matrix and  is a typical period with a quarter wavelength in 

the second Fano resonance frequency.  and 

 are the transmission vectors in the left and right of the 

pillared resonator, respectively, where the subscript  represents the evanescent 

flexural wave in the near field. According to Eqs. (1) and (3), the band structure can 

be calculated by 

 , (4) 

where  is the scattering matrix, including the phase origins and evanescent 

flexural modes (see Appendix A). Based on Eq. (4), Fig. 2(c) displays the band 

structure (blue lines), which is very consistent with the simulated one in Fig. 2(d). The 
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dispersion curves of the flexural wave (green dashed line) and longitudinal wave (pink 

dashed line) in the background plate are superimposed. Around marked first and second 

Fano resonances [gray areas in Fig. 2(b)], the band structures have typical three 

hybridized branches (blue lines): the right lower and left upper ones corresponding to 

the hybridized flexural and longitudinal modes, respectively; and the one in-between 

corresponding to the third mode of mixed symmetry (Rupin et al., 2014; Rupin and 

Roux, 2017). The three hybridized branches show strong mode coupling between 

flexural waves and longitudinal waves around Fano resonances. 

 

2.2. The destructive interference relation based on the waveguide resonator 

The introduction of the right waveguide resonator with the length s, as shown in 

Fig. 1, reshapes the interference of the incident flexural waves. The length s is greater 

than half of the wavelength in the resonance frequency, eliminating the influence of 

evanescent flexural waves from the near field. The Fano resonance leaks the left 

scattering flexural waves into the background plate (channel one), and the right 

scattering flexural waves into the waveguide resonator. The right boundary of the 

waveguide resonator reflects all the right-going flexural waves, and part of that is 

transmitted through the pillared resonator into the background plate (channel two), 

interfering with channel one. Destructive interference can eliminate the radiation of 

flexural waves in these two channels to emerge a local state. 

In the above intuitive understanding of the physical origin of the destructive 

interference, the coupling between the scattering modes of the resonance is an essential 
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element. To theoretically explore the destructive interference in the elastic wave system, 

we expand the temporal coupled-mode theory (Fan et al., 2003; Hsu et al., 2013a; Hsu 

et al., 2013b) in optics, which provides a simple analytical description for resonant 

objects weakly coupled to incoming and outgoing propagation modes. As shown in Fig. 

1(b), the amplitude a of the localized mode evolves as  in the 

absence of input powers.  is the radiative decay rate of the localized mode. The 

temporal coupled-mode theory for coupling between the resonance and incoming and 

outgoing propagation modes can be described (Fan et al., 2003) as 

  (5) 

where  and  are the incoming and 

outgoing propagation vectors, as shown in Fig. 1(b).  is the 

coupling vector at the ports, where  and  represent coupling coefficients 

between the localized mode and the incoming propagation flexural wave at the right 

and left ports, respectively.  and  represent coupling coefficients between the 

localized mode and the incoming longitudinal wave at the right and left ports, 

respectively. The scatting matrix  describes the incoming and 

outgoing waves in the ports couple through a direct pathway, i.e., ignoring the 

resonance-assisted coupling. 

As shown in Fig. 1(b), according to Eq. (5), we can understand that the radiation 

of  is from the coupling between the localized mode and the incoming 

propagation flexural modes at the right port. The radiation will leak into the left port 
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and includes the leakages of the flexural wave and the longitudinal one from mode 

conversion. Based on the scattering coefficient in Eq. (1), the leakages of the flexural 

wave and the converted longitudinal one in the left port can be expressed as  

and , respectively. Therefore, we can get the relationship between the localized 

mode and the leakages in the left port: 

 . (6) 

Similarly, we can get the relationship in the right port: 

 . (7) 

The incident propagating modes  are not taken into account (Hsu et al., 2016). 

With the propagation relation of , according to Eqs. (5)-(7) and (A17), 

we can get the analytical expression of the destructive interference relation as 

 , (8) 

where  is a phase shift of one round-trip of flexural waves in the 

waveguide, and  is the wavenumber of the flexural wave. On the other hand, 

considering an incident positive-going flexural wave of , the transmitted and 

reflected longitudinal waves from the mode conversion have a reverse polarization 

direction. These longitudinal waves will interfere and cancel at the scattering source 

(the resonator), based on Eq. (A10). Therefore, at the scattering source, the total 

scattering field is the superposition of the transmitted and reflected flexural waves with 

the same polarization direction, i.e., . According to the energy conservation, the 

energy of the total scattering field equal to that of the incident wave field. We can obtain 

the amplitude relationship of the total scattering field  as 

 . (9) 
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In such case, the magnitude condition of Eq. (8) is always satisfied, and Eq. (8) can 

be reduced as its phase relation: 

 , (10) 

where n is a positive integer. 

We should point out that hybridization coupling is an essential component of these 

unique local states from destructive interference. The reason is that the wave fields in 

the system only have one mode without mode hybridization, then any state must be 

leaky. The radiative energy from mode conversion in our system is similar to dissipative 

loss in the optical resonance system (Hsu et al., 2016). But the ‘‘dissipative loss’’ in our 

study can be adjusted by the waveguide resonator, which will be discussed in detail 

later. 

 

2.3. Analytical model of the whole resonator system 

To evaluate all possible localized states in the parameter space, we establish the 

analytical model of the whole resonator system. As shown in Fig. 1(a), the background 

plate, the pillared resonator, and the waveguide resonator are divided into region (I) and 

region (II) by the dividing line . For the sake of universality to study the vertically 

and obliquely incident waves in the background plate, the governing equations for the 

flexural and longitudinal waves in the region (I) should be written in the two-dimension 

form: 

 , (11) 

 , (12) 
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, respectively, where A0 is the amplitude of the incident flexural wave, , , and 

 are the complex coefficients of the reflected propagating flexural wave, reflected 

evanescent flexural wave, and reflected longitudinal wave, respectively.  and  

are y-component wave vectors of propagating flexural waves and longitudinal waves, 

respectively. According to the conservation of parallel wave vectors, we can get 

, where  is the incident angle.  and 

 are x-component wave vectors of propagating and evanescent 

flexural waves, respectively.  is x-component wave vector of 

longitudinal waves. The coefficient vector of the reflected scattering field in the region 

(I) can be defined as . 

The hybrid resonant system consists of the pillared and waveguide resonators. 

Only the fundamental mode needs to be taken into account since the widths p and 

thicknesses d of the waveguide and pillar are in deep subwavelength scale. The 

coefficient vector of the wavefield at the left interface of the waveguide resonator (the 

right of the dividing line ) can be defined as , 

where  and  correspond to the complex coefficients of the positive-going 

propagating and evanescent flexural waves in the waveguide resonator.  and  

correspond to the complex coefficients of the negative-going propagating and 

evanescent flexural waves.  and  correspond to the complex coefficients of the 

positive-going and negative-going propagating longitudinal waves. 

In the x-direction of Fig. 1(a), the slope , bending moment M, shear force V, 

and axial force F in the two-dimension plate model of the region (I) are expressed as 
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 , (13) 

 , (14) 

 , (15) 

 , (16) 

where , and j denotes the jth subunit. 

By applying the continuous boundary condition of x-components of the flexural 

wave displacement at the left interface of waveguide x=0 and integrating along y-

direction in the region , we can get 

 , (17) 

where  and . In the same way, applying the continuous 

boundary condition of the slop at the interface of x=0, we can get 

. (18) 

In the same way, by applying the continuous boundary condition of the longitudinal 

wave displacement at the interface, we get 

 , (19) 

where  and . 

By applying the continuous boundary condition of x-components of bending moment 

at the interface x=0, and integrating along y-direction in the region , we 

can get 
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 , (20) 

where , , , and

. L and  are the subunit period and Poisson’s ratio, 

respectively. In the same way, by applying the continuous boundary condition of shear 

force at the interface, we can get 

 , (21) 

where , ,

, and . In the same way, by applying 

the continuous boundary condition of axial force at the interface, we can get 

 . (22) 

According to Eq. (A7), we obtain the coefficient vector of the wavefield in the right 

interface of the pillared resonance 

 . (23) 

Since bending moment, shear force, and axial force are zero at the right free boundary 

of the waveguide resonant, and we can get 

 , (24) 

where  is the propagation matrix and expressed as 
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 is the boundary sate matrix and expressed as 

 . (26) 

Eqs. (17)-(22) and Eq. (24), in turn, can be rewritten as 

 . (27) 

According to Eq. (27), we can get 

 , (28) 

where 

, 

. 

Finally, according to Eq. (28), we can get the scattering equation of the whole resonator 

system 

 , (29) 
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frequency , is shown in Fig. 3(a). The scattering equation of the whole resonator 

system is the basis of the following theoretical study of elastic wave BIC, so it is 

necessary to verify its correctness by full-wavefield simulation. The simulated  is 

shown in Fig. 3(b). Due to the high computational cost of simulation, we only used 

large step sizes for these variables of s/d and . However, we can still see that the 

overall trends of the results in Figs. 3(a) and 3(b) are the same. In addition, for a small 

range shown in the blue box in Fig. 3(b), these results are based on a fine variable grid 

and basically consistent with those in Fig. 3(a). For intuitively displaying the 

consistency, we chose the results at lines 1 and 2 in Fig. 3(b) to compare with that in 

Fig. 3(a), as shown in Fig. 3(c). According to Eqs. (29), (A24), and (A25), the total 

energy of all scattering modes  is calculated. It can be seen 

from Fig. 3(d) that the total energy  is unit, i.e., the power flow balance. The balance 

also verifies the correctness of the analytical model and indicates there is no other mode 

conversion, such as the SH wave, in our system. 

 

2.4. Elastic BIC and elastic quasi-BIC physics 

As shown in Fig. 3(a), the white dashed lines and green dotted lines, obtained by 

Eq. (2) and Eq.(10), correspond to the Fano resonance and destructive interference, 

respectively. Their intersections accurately predict the location of the vanishing 

linewidths, marked by the white circle. These vanishing linewidths are ideal local states 

with zero leakage in the continuous spectrum of radiating waves, i.e., the ideal BICs 

with infinite Q factor (Kodigala et al., 2017; Marinica et al., 2008). 
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Fig. 3. (a) The analytical dimensionless reflected energy  of the incident flexural wave in the 

whole resonant system, varying with frequency ω and the dimensionless waveguide length s/d. The 

green dotted lines and white dashed lines correspond to the destructive interference and Fano 

resonance, respectively. White circles and green crosses indicate the vanishing linewidths and 

trapped modes, respectively. (b) The simulated dimensionless reflected energy  by using a 

large step for these variables of s/d and . In the blue box, these results are based on a fine variable 

grid. (c) Comparison between the analytical solutions and the simulated ones at lines 1 and 2 in (b). 

(d) The total dimensionless energy of all scattering modes in the whole resonance system. 

 

These ideal BICs at the vanishing linewidths are entirely isolated and have no 

2
bR

2
bR
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access to the external radiation channel  (Hsu et al., 2016; Huang et al., 2020). To get 

the TMPC, we need to tune the waveguide resonator length s to weaken the destructive 

interference described by Eq. (10). This weakening makes the resonance system leak 

small energy of the flexural wave (with radiative decay rate ), which is radiating into 

the background plate. The leaked energy of the flexural wave will balance that of the 

longitudinal wave (with radiative decay rate ) from the hybridization coupling of 

Fano resonance. This balance condition supporting trapped modes is , equivalent 

to the so-called critical coupling (Cai et al., 2000), however here it is fulfilled by 

different mode conversion physics. The critical coupling can be demonstrated by the 

distribution of  in the complex frequency plane, based on Eq. (29) (the detail 

see Appendix B). In this way, the incident flexural waves can be entirely trapped 

without any backscattering ( =0), i.e., tuning into the trapped mode (quasi-BIC). In 

addition, the system only allows the converted longitudinal waves to leak, leading to 

perfect mode conversion. Here, we only analyze these TMPCs near the second Fano 

resonance, which are marked from point A to point I [see discrete green crosses in Fig. 

3(a)]. Among these points, the position deviation between point A and the adjacent 

vanishing linewidth is the largest. The reason is that the radiative energy of longitudinal 

wave around point A is the largest (explained in the next paragraph), which needs more 

weakening of the destructive interference to leak more flexural wave energy to balance. 

The more energy leakage leads to a wider reflection band. 

For these marked TMPCs, the total radiative decay rate of the system 

 corresponds to the Q factor of the system , where  

bg

lg

=b lg g

10log bR

2
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 is about the second Fano resonance frequency. Therefore,  decides the Q factor. 

The smaller the value of  is, the greater the Q factor is. When one round-trip of the 

converted longitudinal wave between the right waveguide edge and the left one (the 

interface ) satisfies Fabry-Pérot resonance condition,  approaches zero due to the 

resonance, which induces the TMPC with infinite Q factor. This Fabry-Pérot resonance 

condition is obtained by enforcing field relations at the waveguide resonator, and 

accordingly, 

 , (30) 

where m is a positive integer. According to Eq. (30), we can obtain Fabry-Pérot 

resonance frequency as . We calculate the first resonance 

frequency (m = 1) varying with waveguide lengths s, as shown by the red dashed line 

in Fig. 3(a). The red line approximately crosses over the vanishing linewidth near point 

F, which indicates that near the ideal local state,  approaches zero due to the Fabry-

Pérot resonance. Therefore, the flexural wave energy leakage from the trapped mode, 

balanced with the longitudinal wave energy leakage, also approaches zero. In this way, 

the position of TMPC almost overlaps with that of the ideal local state, approaching the 

BIC. At point F, the system with TMPC has a very narrow reflection band, which cannot 

be resolved in the scale of Fig. 3(a). 

Based on  in the analytical model, we obtain the Q factor and  of these 

TMPCs to quantitatively analyze the resonance characteristics (the detailed calculation 

can be found in Appendix C). It can be seen from Fig. 4(a) that the Q factor at point F 

exceeds 8000 (indeed approaches infinite-Q BIC). The closer to point F the other TMPC 

0w lg
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is, the greater its Q factor is, and the lower its  is. We chose two TMPCs with 

different radiative decay rates , corresponding to point A and point E in Fig.4(a), to 

calculate their dimensionless energy distributions of x-direction displacement in the 

unit structure by full wavefield simulations, as shown in the insets of Fig. 4(a). It can 

be clearly seen that the flexural wave energy is trapped at the top of the pillared 

resonator. In addition, for point E with a lower , the system captures more flexural 

wave energy (the multiple of the dimensionless energy enhancement arrives up to 282, 

relativing to incident energy). The reason is that the lower  is, the more trapped 

flexural wave energy in the resonance system with a higher Q is, which is similar to 

sound confinement from acoustic quasi-BIC (Huang et al., 2020). We note that by 

optimizing the parameters to satisfy Eqs. (2), (10), and (30) simultaneously, the Q of 

the system can be further increased. Therefore, our system can support the elastic BIC 

with an infinite Q. According to Eqs. (29), (A24), and (A25), we also show the curves 

of energy conversion ratio  (see Appendix A) for these TMPCs 

(from point A to point F) to verify their perfect mode conversion, as shown in Fig. 4(b). 

All peak values of the curves approach one. For point F, the linewidth of the curve at 

its half-maximum is less than 1 Hz, which is consistent with its high Q. 

g

g
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g
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Fig. 4. (a) Bar charts represent total radiative decay rates  of these TMPCs from point A to point 

H in Fig. 3(a). Red balls correspond to Q of these TMPCs. (b) Dimensionless energy conversion 

spectra  for these TMPCs. 

 

2.5. Transforming elastic quasi-BIC to elastic BIC 

As shown above, for vertically incident wave, adjusting the Fabry-Pérot resonance 

of the waveguide resonator by changing the waveguide length s/d, we can change  

to obtain some discrete TMPCs with different Q, such as from point A to point I in Fig. 

3(a). Further, for all these TMPCs (quasi-BIC), we can continuously tune them into the 

infinite-Q BIC by making their radiative decay rate close to zero, depending on tuning 

the critical frequency of mode conversion. 

The critical frequency is decided by that the radiation angle  of the converted 

longitudinal wave equal to 90o. The radiation angle can be obtained as 

 based on Snell’s law. From the above equation, we get the 

critical frequency , which is decided by the non-zero incident 

angle . When the frequency is lower than fc, the calculated  is imaginary, that is, 

g
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the mode conversion disappears. For the TMPC marked by point B in Fig. 3(a), the 

dimensionless incident angle is changed as , as an example. The interface 

impedance  varying with frequency is shown in Fig. 5(a). At the 

critical frequency of  = 8384 Hz marked by the light blue dashed lines,  is 

infinite, which will suppress longitudinal wave radiation. In addition, the corresponding 

 for the obliquely incident flexural wave, calculated by Eq. (29), is shown in Fig. 

5(b). The critical frequency closes to the Fano resonance frequency (marked by white 

dashed lines), the large  reduces  of the TMPC (marked by green crosses). The 

decreased  leads to a narrower reflection band of the TMPC, compared with 

that of the TMPC marked by point B in Fig. 3(a). 

 

Fig. 5. (a) The interface impedance of the interface  for the converted longitudinal wave varying 

with frequencies. (b)-(d) The reflected flexural energy coefficients of the whole system, in the 
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frequency range from 7 kHz to 10.5 kHz and  range from 13 to 20, when the incident angles 

are , , and , respectively. The light blue dashed lines indicate the 

critical frequency of 8384 Hz, 8169 Hz, and 8603 Hz. (e) Q of the trapped mode can be continuously 

changed with the incident angle. Q is over 8700 at point . (f) The dimensionless energy 

conversion spectra of the model at different incident angles. The linewidths of these curves at their 

half-maximum decrease from point  to point . 

 

Figs. 5(c) and 5(d) show  for two other incident angles. Comparing Figs. 

5(b)-5(d), the closer to the Fano resonance frequency the critical frequency is, the 

narrower the reflection band of the system with TMPC is. The Fano resonance 

frequencies have a slight increase, because the vertical wave vector changes with 

different incident angles. In addition, the position of TMPC [marked by green crosses 

in Figs. 5(b)-5(d)] is closer to the local states (marked by white circles), due to the low 

radiative decay rate. In this way, we can continuously change the critical frequency 

position to change the Q of the TMPC, as shown in Fig. 5(e), where the maximum Q is 

over 8700 at point . Fig. 5(f) shows peak values of dimensionless energy conversion 

spectra  approach one for all TMPCs from point  to point . The spectra 

linewidths at their half-maximum gradually decrease with approaching point . 

Theoretically, when the critical frequency intersects the Fano resonance frequency, 

TMPC coincides with the zero-linewidth ideal local state and supports an infinite-Q 

BIC. 
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3. Experimental evidence 

In the experiment, we need to make great efforts to excite the ideal plane wave 

through the optimized array composed of several piezoelectric patches. To simplify the 

excitation, we simplify the model in Fig. 1(a) by a strip-like model (beam), as shown 

in the inset of Fig.6(a). Then, we can use a single piezoelectric patch attached on the 

strip-like model to excite the ideal incident wave, which significantly increases the 

accuracy of the experiment. We have proved that for vertically incident waves, the 

results of the simplified model are consistent with those of the original model by 

theoretical and simulation methods (see details in Appendix D). To confirm our theory, 

based on the simplified models, we print specimen one and specimen two with different 

waveguide lengths (10 and 29 mm) to verify different-Q-factor TMPCs based on quasi-

BIC. These TMPCs correspond to point A and point C in Fig. 3(a). 

 

FIG. 6. (a) Experimental set-up. The specimen and the clamped test specimen are illustrated at the 

top and bottom. (b) and (c) The capture coefficients based on the measured velocity fields in two 
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specimens with waveguide lengths of 10 mm and 29 mm, respectively. Their heights h/d are 15. 

Theoretical and numerical results are also displayed for comparative verification. (d) The snapshots 

of Supplementary Video one in the central frequency of 7580 Hz. (e) The snapshots of 

Supplementary Video two in the central frequency of 6100 Hz. (f) Theoretical capture coefficients, 

varying the pillared resonator height h/d and frequency f. The waveguide resonator length is fixed 

as 10 mm. For three specimens with pillar heights h/d of 14.2, 15, and 16, the locations of measured 

trapped modes are around 8516.7 Hz, 7629 Hz, and 6848 Hz, respectively. 

We use a Polytec scanning vibrometer (PSV-500) to measure the out-of-plane 

velocity field in these specimens. Then we obtain the capture coefficient  of flexural 

waves. The detailed experimental measurements can be found in Appendix E. To ensure 

the reliability of the data, we tested each experimental data three times. The experiment 

results with error bars for specimen one and specimen two are shown by red balls in 

Figs. 6(b) and 6(c), respectively. It can be seen that the peak values at 7580 Hz and 

7850 Hz are approximately one, that is, the flexural waves are almost completely 

captured. A series of simulations using COMSOL Multiphysics has also been 

performed. These capture coefficient curves from the experiments and simulations have 

excellent agreements with that from the theory [solid lines in Figs. 6(b) and 6(c)]. 

Therefore, we confirm the existence of the trapped modes with different Q factors. 

Furthermore, based on the experimental data, we calculate that the converted energy 

ratios of longitudinal waves are more than 0.93 and 0.9 for peak points in Figs. 6(b) and 

6(c), respectively, which confirm the perfect mode conversion of the trapped modes, 

neglecting small structural losses. The detailed calculation process can be seen in 

V



27 
 

Appendix G. 

To intuitively show the TMPC, we obtain the dynamic full wavefield in specimen 

one at the central frequency of 7580 Hz by the ‘‘time’’ measurement mode of PSV 500. 

Fig. 6(d) shows a snapshot of Supplementary Video one at 40.232 ms. In the right test 

area, the wavefield is almost a traveling wave, as observed in the Supplementary Video 

1. The existence of the traveling wave means flexural waves are completely captured 

by the right resonance system, that is, there is almost no reflection. The absorption area 

in the middle can completely absorb the flexural wave (relevant confirmation can be 

found in Appendix G), but we still clearly see the flexural wave field in the left test area. 

The abnormal phenomenon is caused by the mode conversion in the resonance system. 

For comparison, we test the dynamic full wavefield in specimen one at 6100 Hz (away 

from the central frequency). Figs. 6(e) shows a snapshot of Supplementary Video two. 

In the right test area, the incident wave is a standing wave. In the left test area, the 

amplitude of the flexural wave is close to zero, as observed in the Supplementary Video 

2. The wave phenomenon in Supplementary Video two means that flexural waves are 

not captured by the right resonance system, and mode conversion does not happen 

either. 

We note a subtle but essential difference between the TMPC in our system and the 

conventional trapped mode. The latter disappears when the parameters of the system 

slightly deviate from the designed structure, making it very difficult to observe 

experimentally (Hsu et al., 2013a; Hsu et al., 2016). In our theory, based on Eqs. (2) 

and (10), when the parameters of the system change, the vanishing linewidth jumps 
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from one frequency to another. Therefore, the TMPC near the vanishing linewidth shift 

their positions and do not disappear. For example, theoretical capture coefficients, 

varying the pillared resonator height h/d and frequency f, are shown in Fig. 6(f), when 

the waveguide length is fixed as 10 mm. The green lines are the contour lines of 0.9. 

High capture coefficients over a wide range indicate that the TMPCs are stable for 

various geometric parameters. Further, we have printed specimen three and specimen 

four with the same waveguide length of 10 mm. Their pillar heights h/d are 14.2 and 

16. We can find the measured trapped modes ( ) for specimens three and four at 

around 8516.7 Hz and 6848 Hz, respectively. These measured points are added to Fig. 

6(f). It can be seen that these points are inside the contour line of 0.9, which are 

consistent with the theory results. The consistency confirms that the TMPCs are robust 

to changes in system parameters. Similar robustness of the trapped modes to system 

parameters can also be found in other BIC systems (Hsu et al., 2013a; Marinica et al., 

2008). 

 

4. Conclusions 

We have theoretically predicted and experimentally demonstrated a TMPC in an 

elastic wave system. The system supports elastic BIC by achieving simultaneous hybrid 

Fano and Fabry-Pérot resonances. We prove that the TMPC supporting quasi-BIC can 

be tuned to the TMPC supporting infinite-Q BIC by bringing the critical frequency of 

mode conversion closer to the Fano resonance frequency. This work paves the way for 

the investigation of the intriguing physics related to the interaction between elastic 

1V »
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wave energies with different polarization planes, based on elastic BICs. The elastic BIC 

can obtain an unprecedented high quality factor in the elastic system, which may 

facilitate various applications, e.g., high-sensitivity elastic wave sensor and high-

resolution elastic wave filters. 
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Appendix A. Analytical expression of the scattering coefficient for the pillared 

resonator 

First, we consider an incident wave perpendicular to the model without the right 

boundary, as shown in Fig. 1(a). When the filling ratio of the slot  in the 

subunit is a small value (  in our study), the considered model is equivalent to 

the one without the slot. It is a one-dimensional model. The governing equations for the 

flexural wave and the longitudinal wave in the background plate can be expressed as 

the following forms, respectively: 

 , (A1) 

where  is the density of the background plate.  is the flexural rigidity, 

, in which , , and  are Young’s modulus, plate thickness, and 

Poisson’s ratio, respectively.  is the propagation constant, . 

The general solution of displacement for the fourth-order partial derivative 

governing equation of the flexural wave in the background plate is:  

, (A2) 

where , , , and  are complex coefficients.  and  correspond 

to the positive-going and negative-going propagating flexural waves, whereas  

and  correspond to the positive-going and negative-going evanescent flexural 

waves. The flexural wavenumber is ,  where  is the circular 
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frequency. The general solution of displacement for the second-order partial derivative 

governing equation of longitudinal waves in the background plate is: 

 , (A3) 

where  and  are complex coefficients. The longitudinal wavenumber  is 

.  

Similarly, the general solutions of the displacements for the flexural wave and 

longitudinal wave equations in the pillared resonator are 

  (A4) 

, respectively. The superscript  indicates the pillared resonator. 

We make an incident positive-going flexural wave of  at the left interface 

of the pillared resonator bottom, so the wave fields at the left interface  and 

the right interface  of the pillared resonator bottom can be expressed as 

follows:  

 , (A5) 

where the symbols t and r in  and  denote the transmission and reflection 

complex coefficients of the resonator, respectively. The subscript  represents an 

evanescent flexural wave. The subscripts b and l represent the flexural mode (or 

bending wave) and longitudinal mode. The subscripts bl and lb represent the conversion 

from flexural wave to longitudinal wave and the reverse process, respectively. The 
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subscripts bb* and b*b represent the conversion from propagating flexural wave to 

evanescent one and the reverse process, respectively. Therefore, the vectors  and 

 for both sides of the bottom of the pillared resonator can be written as: 

 . (A6) 

The relationships between slope  and the displacement w, between shear force 

V and the displacement w, between bending moment M and the displacement w, 

between axial force F and the displacement u are , , , and 

, respectively. Among both side interfaces of the pillared resonator 

bottom, the boundary conditions of displacement, slope, bending moment, shear force, 

and axial force must be satisfied (Cao et al., 2021). According to these boundary 

conditions, we obtain the propagation equation: 

 . (A7) 

where N1 is the transfer matrix. 

From Eq. (A7), we can obtain 
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, (12) 

where , , , 

, ,  

, , 

, , 

, and . 

In the same way, we make an incident positive-going longitudinal wave of  

at the left interface of the pillared resonator bottom, so the wave fields at the left 

interface and the right interface of the pillared resonator bottom can be expressed as 

follows:  

 , (A13) 

The vectors  and  for both sides of the pillared resonator bottom can be 

rewritten as: 

 . (A14) 

According to Eq. (A7), we can obtain 
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, (A16) 

, (A17) 

, (A18) 

. (A19) 

In the same way, we make an incident evanescent flexural wave of  at the left 

interface of the pillared resonator bottom, and we can obtain the coefficients of , 

, , , , and . 

As shown in Fig. 1(b), the single pillared resonance hybridizes the input flexural 

waves ( , ), input longitudinal waves ( , ), output flexural waves ( , ), 

and output longitudinal waves ( , ). Therefore, we can obtain the scattering 

equation of the pillared resonator in the far-field: 

 , (A20) 

where  and .  is the scattering matrix. 

We note that the scattering matrix can also be derived directly from the transfer matrix. 

The negative sign in Eq. (A20) is to make the scattering matrix and transfer matrix 

keep consistent in mathematical form. 

Based on the analytical model, we can analyze its band structure to intuitively 

show the hybridization coupling between flexural waves and longitudinal waves from 

the Fano resonance. The unit structure is shown in the illustration of Fig. 2(c).  is a 
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typical period with a quarter wavelength in the second Fano resonance frequency. Due 

to the subwavelength period, the evanescent flexural modes need to be considered in 

the scattering matrix,  will be rewritten as 

 . (A21) 

Therefore, the scattering matrix including the phase origins (Botten et al., 2001) and 

evanescent flexural modes can be obtained as 

 , (A22) 

where 

 . (A23) 

For the flexural wave with the amplitude of , its energy can be expressed as  

 . (A24) 

For the longitudinal wave with the amplitude of , its energy can be expressed as 

 . (A25) 

For the incident flexural wave of , the dimensionless energy of the reflected and 

transmitted flexural waves can be expressed as  and , respectively. 

According to Eqs. (A24) and (A25), the dimensionless energy of the reflected and 
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transmitted longitudinal waves from the mode conversion can be expressed as 

 and , respectively. The total scattering energy can 

be expressed as . 

Appendix B. The critical coupling of TMPC 

We employ the complex frequency plane to analyze the capture features and 

manifest their distinct coupling characteristics qualitatively. By replacing the frequency 

as , the reflection/capture properties of an elastic system are 

described by the real frequency  and the imaginary frequency  in 

a complex frequency plane. After substituting  into the scattering equation Eq. (29) 

of the elastic system, the reflection coefficient  becomes a function of both real 

frequency and imaginary frequency . Then in a complex frequency 

plane, a colormap illustrating the distribution of  can be plotted, as shown in 

Fig. 7(a). “Zero” and “Pole” are two extreme points referring to the lowest and the 

highest values of the reflection coefficient. 
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Fig. 7. (a) The complex frequency graphs illustrating the distribution of  in the complex 

frequency plane, corresponding to the system with TMPC marked by point C in Fig. 3(a). (b) The 

corresponding complex frequency graph for the symmetrical model in (c). (c) Symmetrical double 

pillared resonators in a semi-infinite plate. The waveguide length s is 29 mm. (d) The dimensionless 

energy curves of reflected flexural wave  and transmitted flexural wave . The total energy 

 is also shown by the blue dotted line. 

 

For comparison, we analyze symmetrical double pillared resonators in a semi-

infinite plate, as shown in Fig. 7(c). The boundary condition of the symmetrical double 

pillared resonators is modified according to the structural symmetry. First, for infinite 

plate without right boundary, we obtain the analytical expression of the scattering 
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coefficient, based on the similar method of Appendix A. Fig. 7(d) displays the 

dimensionless energy curves of reflected and transmitted flexural waves. The total 

energy is unit [marked by the blue dotted line in Fig. 7(d)], which indicates that there 

is only the flexural wave in the system, and there is no longitudinal wave produced by 

hybrid coupling. The reason is that the shear force generated by the upper and lower 

symmetrical pillared resonator is balanced, which leads to the decoupling of the 

longitudinal axial force in the background plate and the shear force in the pillared 

resonator. Then, considering the introduction of the right waveguide resonator with the 

length s, we get the scattering equation of the resonator system. Fig. 7(b) shows the 

corresponding complex frequency graph. “Zero” and “Pole” points are always 

symmetrical about the real frequency axis. The reflection coefficient of the flexural 

wave is equal to 1 in the whole frequency range. 

When the resonant structure of the system is a side-coupled pillared resonator in 

Fig. 1(a), the hybrid coupling will induce the mode conversion to leak longitudinal 

wave. The leakage energy of the flexural wave is similar to dissipative loss in the optical 

resonance system. But the ‘‘dissipative loss’’ is from the hybridization coupling in our 

study. Fig. 7(a) shows the complex frequency graphs, corresponding to the system with 

TMPC marked by point C in Fig. 3(a). “Zero” point and “Pole” point have shifted to 

the left, and “Zero” point intersects the real frequency axis. The intersection is the so-

called critical coupling, however here it is fulfilled by different mode conversion 

physics. The flexural wave is completely trapped by the system. For the critical 

coupling (Cai et al., 2000), the energy leakage of the flexural wave  will balance bg
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that of the longitudinal wave  from hybridization coupling of Fano resonance. 

 

Appendix C. Q factor and  of these TMPCs 

Since the energy leaks out from the resonator, each TMPC can be characterized by 

“Pole” point in the complex frequency graphs, as shown in Figs. 7(a) and 7(b). The 

frequency of the Pole is , with the position at the real 

axis . The TMPC has the decay rate  (Krasnok et al., 

2019), which determines the linewidth of TMPC at its half-maximum. The Pole is close 

to the real frequency axis, the Q of the TMPC can be defined as 

 , (C1) 

In our system, the decay rate  includes both flexural wave radiative and 

converted longitudinal wave radiative (similar to dissipation)  (Bliokh et al., 2008). 

In Fig. 5(f), for the TMPCs with a steep rise from 0 to 1, their Q factor can be 

calculated by , where  is the central frequency of the resonance peak, 

and Δf is the full width at half maximum for the peak. 

 

Appendix D. Simplified specimens and their manufacture 

For the theoretical model in Fig. 1(a), the filling ratio of a slot  in a 

subunit is a small value of 1/17, and the periodic L is 85 mm. When considering an 

incident wave perpendicular to the model, we can simplify the two-dimensional (2D) 

periodic structure to a one-dimensional (1D) strip-like model shown in Fig. 8(a). The 
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theory and simulated results show that the capture coefficients of the flexural waves for 

the 1D simplified models and the 2D ones are consistent, as shown in Figs. 8(b) and 

8(c). We can print specimens to verify supporting the trapped modes corresponding to 

point A and point C in Fig. 3(a). The 3D-printer Ultimaker 3, with a manufacturing 

precision of 0.06 mm, is adopted. The corresponding geometric parameters of the two 

specimens are shown in TABLE 1. The left pillared resonator and the right one are 

symmetrical about the specimen center. The purpose of designing the left resonator is 

to reconvert the longitudinal wave into the flexural wave, which will be described in 

detail later. 

 

Fig. 8. (a) 1D simplified specimen marked by geometric parameter symbol. (b) The analytical and 

simulated capture coefficients of flexural waves in the 1D simplified model with s = 10 mm and the 

corresponding 2D one, respectively. (c) The analytical and simulated capture coefficients of flexural 

waves in the 1D simplified model with s = 29 mm and the corresponding 2D one, respectively. 
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TABLE 1. The geometric parameters of the specimen. All parameters are in units of mm. 

d h sw st s (Specimen 1) s (Specimen 2) 

1 15 8 160 10 29 

 

Appendix E. Experimental set-up and measurements 

As shown in Fig. 9, a 6-mm-diameter circular PZT patch, with a distance of  

from the right pillared resonator, is bonded on the plate surface. The PZT patch is driven 

by a signal generator (Tektronix AFG3022C). The blue-tack layer is bonded in the 

middle of the strip-like specimen to absorb the left propagating flexural wave excited 

by the PZT patch and the reflected flexural wave from the right resonance structures. 

The left pillared and waveguide resonators can reconvert all the longitudinal waves, 

which are from the mode conversion in the right resonators, into flexural waves due to 

wave reciprocity. Then the reconverted flexural waves propagating to the right are 

absorbed by the middle blue-tack. In this way, the blue-tack can be equivalent to a non-

reflection boundary of flexural waves. 

The specimen surface is held perpendicular to the laser beam from PSV-500 

scanning laser Doppler vibrometer, through a C-clamp and supporting rod applied to 

the lower edge, as shown in Fig. 9. The PSV-500 scanning head records the out-of-

plane complex velocity in point 1 and point 2, marked in Fig. 9. The distance between 

the two points is less than an eighth wavelength. Simultaneously, their locations and the 

boundary of the resonance structure meet the far-field assumption (Cao et al., 2020). 

The assumption ensures that the measurement wavefield of the two points can 

53d
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approximate the sum of incident and reflection propagating waves. An ensemble 

average with 20 samples is used at every measurement point to ensure the signal quality. 

 
Fig. 9. Test set-up. 

 

Using the measurement mode “FFT” of PSV-500, the complex velocities of 

flexural waves in points 1 and 2 can be measured and marked as and , 

respectively. They are expressed as  and 

, respectively.  and  are the distance marked in Fig. 9.  

is the flexural wave number. The transfer function H12 of the total wavefield in the two 

points can be obtained from the measured complex velocities of v1 and v2. It can be 

expressed as , where the 

reflection coefficient . Then, we can calculate the reflection coefficient of 

flexural waves as 

 . (E1) 

The reflection spectra of flexural wave energy can be obtained by . The amplitude 

of the longitudinal wave cannot be measured directly by the single scanning head of 

our PSV-500. But we can measure the capture coefficient of  to characterize 

the energy capture of the flexural wave for the trapped modes. 
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Appendix F. Material parameter test of 3D-printed specimens 

We note that the wavenumber  in Eq. (E1) needs to be calculated by material 

parameters of 3D-printed specimens. All theories are also based on these material 

parameters. In the following, we will test the parameters. Although related material 

parameters of PLA, adopt in our 3D printer, have been reported in some literature. 

However, the material properties of practical printed specimens could be different due 

to various printing processes. To make the experiment and theory result more matching, 

we set the fixed printing mode, for example, infill density and infill pattern, to print all 

specimens. Then we print a beam specimen ( ) without pillared 

resonators. We first measure the mass and volume of the beam specimen to obtain its 

density of . The blue-tacks are attached to the left and right ends of 

the beam specimen to eliminate the boundary reflection. We measure the flexural 

wavelength for ten test cases with different frequencies by the full wavefield test of 

PSV-500 in the frequency domain. From , we can get 

 , (F1) 

where  and .  is the measured flexural wave 

wavelength. According to Eq. (F1), we calculate all Young’s modulus for ten test cases. 

Then we get the average of the calculated Young’s modulus is 3.44 × 109 Pa. 

 

Appendix G. Verification of the perfect mode conversion 

It can be seen from the experimental curve in Fig. 6(b) that the capture coefficient 
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of flexural wave in specimen 1 approaches the max value in the 7580 Hz. Below, as an 

example, we experimentally verify the perfect mode conversion in the trapped mode. 

First, we put blue-tacks on the left and right ends of specimen 1 to eliminate any 

reflection and mode conversion, as shown in Fig. 10(a). We measure the dimensionless 

amplitude of the flexural wave in point 3 as almost zero, which confirms the blue-tack 

in the middle can completely absorb the left propagating flexural wave excited by the 

PZT patch. 

If we remove the blue-tacks on the left and right ends, there will be the longitudinal 

wave from the mode conversion in the right resonant system (defined as the first mode 

conversion), as shown in Fig. 10(b). Due to a large longitudinal wavelength, the blue-

tack in the middle can absorb only part of the longitudinal wave. The unabsorbed 

longitudinal wave passes through the blue-tack onto the left side. Then the longitudinal 

wave is completely reconverted to a flexural wave in the left resonant system (defined 

as the second mode conversion) due to wave reciprocity. We measure the dimensionless 

amplitude of the flexural wave in point 5 is 0.48. Due to energy conservation, the 

unabsorbed longitudinal wave’s energy is =0.482. We can compensate the absorbed 

longitudinal wave’s energy to  to obtain the total longitudinal wave’s energy from 

the first mode conversion. 

In Fig. 10(b), we consider the middle area attached blue-tack as an effective one, 

i.e., isotropic plate. Due to the loss in blue-tack, the wavenumbers of flexural wave and 

longitudinal wave in the effective area are induced into the imaginary part, i.e., 

 and . According to 

1
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and , we obtain 

 . (G1) 

 

Fig. 10. (a) Specimen 1 with blue-tacks on the middle, the left end, and the right end. (b) Specimen 

1 without blue-tacks on the left and right ends. 

Then, we measure the dimensionless amplitude of the flexural wave in point 4 as 

0.36. We only consider the loss in the blue-tack. 

 . (G2) 

According to Eqs. (G1) and (G2), we obtain the energy dissipation rate of the 

longitudinal wave from the PZT patch to point 3 

 . (G3) 

where ,  and . Therefore, we can get the total 

energy of the longitudinal wave from the first mode conversion is 

 . (G4) 

According to Eqs. (G3) and (G4), after compensating the energy absorbed by the 

blue-tack, the total energy of the converted longitudinal wave is . The high 

longitudinal wave’s energy verifies the perfect mode conversion. The reason that the 
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value of  is less than 1 is existing small loss. 

 

Appendix H: Simulation method 

All simulations are performed in “Solid Mechanics Module” of COMSOL Multiphysics 

5.5 software. The simulated results in Fig. 2(a), Fig. 3, and Fig. 6 are obtained by the 

“Frequency Domain” study. PMLs are used on all outer boundaries to avoid any 

reflections from the boundaries. The reflection coefficients are calculated by Eq. (E1) 

in the post-processing of the software. The simulated band structure in Fig. 2(b) is 

solved by the “Eigenfrequency” study. 

  

l
tE
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