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Elastic Bound State in the Continuum with Perfect Mode Conversion

The partial or complete confinement of waves in an open system is omnipresent in nature and in wave-based materials and technology. Here, we theoretically analyze and experimentally observe the formation of a trapped mode with perfect mode conversion (TMPC) between flexural waves and longitudinal waves, by achieving a quasi-bound state in the continuum (BIC) in an open elastic wave system. The latter allows a quasi-BIC in a semi-infinite background plate when Fano resonance hybridizes flexural and longitudinal waves and balances their radiative decay rates. We demonstrate that when the Fabry-Pérot resonance of the longitudinal wave is realized simultaneously, the TMPC formed by the elastic BIC approaches infinite quality factor. Furthermore, we show that quasi-BIC can be tuned continuously to BIC through the critical frequency of mode conversion, which offers the possibility of TMPC with an arbitrarily high quality factor. Our reported concept and physical mechanism open new routes to achieve perfect mode conversion with tunable high quality factor in elastic systems.

Introduction

Bound states in the continuum (BICs), defying the conventional bound states located outside the continuum, are non-decaying localized states embedded within the continuous spectrum of radiating waves [START_REF] Hsu | Bound states in the continuum[END_REF][START_REF] Kodigala | Lasing action from photonic bound states in continuum[END_REF]. The states can sometimes be regarded as embedded eigenvalues [START_REF] Hsu | Bound states in the continuum[END_REF] or embedded trapped modes (Hsu et al., 2013b) with infinite quality factors. The BIC concept was first proposed in quantum mechanics [START_REF] Von Neumann | Über merkwürdige diskrete Eigenwerte[END_REF] by mathematically constructing a 3D potential extending to infinity. Since this initial proposal, the wave phenomenon of BICs has been identified in different material and wave systems [START_REF] Hsu | Bound states in the continuum[END_REF], such as electromagnetic waves (Hsu et al., 2013b;[START_REF] Kodigala | Lasing action from photonic bound states in continuum[END_REF][START_REF] Koshelev | Meta-optics and bound states in the continuum[END_REF][START_REF] Marinica | Bound States in the continuum in photonics[END_REF][START_REF] Minkov | Zero-Index Bound States in the Continuum[END_REF][START_REF] Plotnik | Experimental Observation of Optical Bound States in the Continuum[END_REF][START_REF] Zhen | Topological Nature of Optical Bound States in the Continuum[END_REF], acoustic waves in the air [START_REF] Cumpsty | The excitation of acoustic resonances by vortex shedding[END_REF][START_REF] Huang | Extreme Sound Confinement From Quasibound States in the Continuum[END_REF][START_REF] Lyapina | Trapped modes in a non-axisymmetric cylindrical waveguide[END_REF][START_REF] Parker | Low frequency resonance effects in wake shedding from parallel plates[END_REF], water waves [START_REF] Callan | Trapped modes in two-dimensional waveguides[END_REF][START_REF] Cobelli | Experimental study on water-wave trapped modes[END_REF] and surface acoustic waves [START_REF] Kawachi | Optimal cut for leaky SAW on LiTaO/sub 3/ for high performance resonators and filters[END_REF][START_REF] Lim | Character of Pseudo Surface Waves on Anisotropic Crystals[END_REF][START_REF] Trzupek | Isolated True Surface Wave in a Radiative Band on a Surface of a Stressed Auxetic[END_REF] in semiinfinite media. Structures supporting BICs or quasi-BICs with high quality factor (high-Q) have been widely studied and opened the route to numerous applications in different fields, especially in optics and photonics, such as lasers [START_REF] Hirose | Watt-class high-power, high-beam-quality photonic-crystal lasers[END_REF][START_REF] Imada | Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure[END_REF][START_REF] Lin | Ultrafast vortex microlasers based on bounded states in the continuum[END_REF][START_REF] Matsubara | GaN Photonic-Crystal Surface-Emitting Laser at Blue-Violet Wavelengths[END_REF][START_REF] Noda | Polarization Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure Design[END_REF], sensors [START_REF] Romano | Tuning the exponential sensitivity of a bound-state-in-continuum optical sensor[END_REF][START_REF] Yanik | Seeing protein monolayers with naked eye through plasmonic Fano resonances[END_REF][START_REF] Zhen | Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals[END_REF], and filters [START_REF] Doskolovich | Integrated flat-top reflection filters operating near bound states in the continuum[END_REF][START_REF] Foley | Symmetry-protected mode coupling near normal incidence for narrow-band transmission filtering in a dielectric grating[END_REF][START_REF] Ju | Optical quantum frequency filter based on generalized eigenstates[END_REF].

Compared to the optical and acoustic BICs, the elastic counterpart is rarely concerned due to its more sophisticated polarization states (Graff, 1975;[START_REF] Rose | Ultrasonic waves in solid media[END_REF].

Recently some works have investigated elastic BICs in elastodynamics. Elastic BIC of bulk waves [START_REF] Haq | Bound States in the Continuum in Elasticity[END_REF] was studied using the Fabry-Perot mirroring mechanism in an infinite solid with mixed in-plane polarizations. Non-symmetryprotected BICs of surface acoustic waves [START_REF] Maznev | Bound acoustic modes in the radiation continuum in isotropic layered systems without periodic structures[END_REF] and symmetryprotected ones [START_REF] Lim | Character of Pseudo Surface Waves on Anisotropic Crystals[END_REF][START_REF] Trzupek | Isolated True Surface Wave in a Radiative Band on a Surface of a Stressed Auxetic[END_REF] have also been investigated in semi-infinite solids with surface polarization. However, most of those BIC-supporting models have never been experimentally witnessed. So far, in structural dynamics, especially for flexural and longitudinal waves (Graff, 1975;[START_REF] Rose | Ultrasonic waves in solid media[END_REF] in common plate-like structures, the researches on elastic BICs have still not been reported.

On the other hand, perfect mode conversion [START_REF] Giurgiutiu | Structural health monitoring with piezoelectric wafer active sensors[END_REF]Graff, 1975;[START_REF] Rose | Ultrasonic waves in solid media[END_REF] between different polarization modes has grown into a burgeoning research area in the elastic wave system, due to its potential wide applications in nondestructive testing, medical ultrasonography, and earthquake resistance in civil engineering. For example, a mode-coupled layer with the balanced mode excitations and diagonal polarizations [START_REF] Kweun | Transmodal Fabry-Perot Resonance: Theory and Realization with Elastic Metamaterials[END_REF] can achieve maximum mode conversion between longitudinal and shear modes, promoting the development of sensors in industrial and biomedical testing [START_REF] Yang | Asymptotic theory of bimodal quarter-wave impedance matching for full mode-converting transmission[END_REF][START_REF] Yang | Monolayer metamaterial for full mode-converting transmission of elastic waves[END_REF][START_REF] Zheng | Non-resonant metasurface for broadband elastic wave mode splitting[END_REF]. Pillared seismic metamaterials (Colombi et al., 2016a;Colombi et al., 2016b;[START_REF] Colquitt | Seismic metasurfaces: Subwavelength resonators and Rayleigh wave interaction[END_REF] can create effective bandgaps to achieve mode conversion from surface waves to bulk waves, promoting civil structures against seismic risk. Here, we propose a theoretical method to achieve perfect mode conversion between flexural waves (out-plane vibration) and longitudinal waves (in-plane vibration) (Graff, 1975;[START_REF] Rose | Ultrasonic waves in solid media[END_REF] in two perpendicular polarization planes, which has never been reported. The new elastic-wave mode conversion mechanism enriches the form of elastic wave energy flow, which can perfectly convert an in-plane test signal or in-plane vibration energy into an out-plane one for the simplifications of nondestructive testing or energy harvesting, perfectly convert an out of plane vibration into in-plane one for reducing vibration.

In this research, we present theoretical analysis and experimental evidence of achieving a trapped mode with perfect mode conversion (TMPC) in a quasi-BICsupporting elastic wave system. In the proposed scheme, Fano resonance hybridizes flexural and longitudinal waves in two perpendicular polarization planes and converts one mode into another. When the radiative decay rate of the converted mode balances that of the directly reflected wave from the incident wave entering the system, the incident wave will be completely trapped by the hybrid Fano resonance, i.e., quasi-BIC.

The resonant system only allows the converted mode to leak, leading to perfect mode conversion. Furthermore, we prove that TMPC can support infinite-Q BIC by simultaneously achieving the hybrid Fano and Fabry-Pérot resonances. We demonstrate that all quasi-BICs can be continuously tuned to BICs when the critical frequency of the mode conversion, depending on the incident angle, approaches the Fano resonance one.

Theory and results

To clearly show the unique TMPC in the quasi-BIC-supporting and BIC-supporting elastic wave systems, we investigate a simple structure with typical resonance characteristics. The structure is composed of a periodic waveguide resonator with the length s on the edge of a background plate with infinite left boundary, as shown in Fig. 1 

where and are scattering vectors.

is the scattering matrix. The symbols t and r denote the transmission and reflection coefficients, respectively. The subscripts b and l represent the flexural wave (or bending wave) and longitudinal wave. The subscripts bl and lb represent the conversion from flexural wave to longitudinal wave and the reverse process, respectively. Analytical expressions of all scattering coefficients in the scattering matrix are obtained by the transfer matrix method (see detailed derivation in Appendix A).

In the following, we study the case that the pillared resonator and the waveguide resonator have the same flexural rigidity, i.e., the same thickness, providing a strong hybridization coupling [START_REF] Colquitt | Seismic metasurfaces: Subwavelength resonators and Rayleigh wave interaction[END_REF]. The material parameters of the model are obtained based on the experimental measurement of 3D printing material PLA (see Appendix F). Figs. 2(a) and 2(b) display the dimensionless scattering energy curves for
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, , , Based on the analytical model, we analyze its band structure to intuitively show the hybridization coupling between flexural waves and longitudinal waves from the Fano resonance. Bloch boundary condition can be expressed as

, ( 3 
)
where I is the identity matrix and is a typical period with a quarter wavelength in In the above intuitive understanding of the physical origin of the destructive interference, the coupling between the scattering modes of the resonance is an essential element. To theoretically explore the destructive interference in the elastic wave system, we expand the temporal coupled-mode theory [START_REF] Fan | Temporal coupled-mode theory for the Fano resonance in optical resonators[END_REF]Hsu et al., 2013a;Hsu et al., 2013b) in optics, which provides a simple analytical description for resonant objects weakly coupled to incoming and outgoing propagation modes. As shown in Fig.
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1 (b), the amplitude a of the localized mode evolves as in the absence of input powers. is the radiative decay rate of the localized mode. The temporal coupled-mode theory for coupling between the resonance and incoming and outgoing propagation modes can be described [START_REF] Fan | Temporal coupled-mode theory for the Fano resonance in optical resonators[END_REF] as As shown in Fig. 1(b), according to Eq. ( 5), we can understand that the radiation of is from the coupling between the localized mode and the incoming propagation flexural modes at the right port. The radiation will leak into the left port ( )
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and includes the leakages of the flexural wave and the longitudinal one from mode conversion. Based on the scattering coefficient in Eq. ( 1), the leakages of the flexural wave and the converted longitudinal one in the left port can be expressed as and , respectively. Therefore, we can get the relationship between the localized mode and the leakages in the left port:

. ( 6)

Similarly, we can get the relationship in the right port:

. ( 7)

The incident propagating modes are not taken into account [START_REF] Hsu | Bound states in the continuum[END_REF].

With the propagation relation of , according to Eqs. ( 5)-( 7) and (A17),

we can get the analytical expression of the destructive interference relation as ,

where is a phase shift of one round-trip of flexural waves in the waveguide, and is the wavenumber of the flexural wave. On the other hand, considering an incident positive-going flexural wave of , the transmitted and reflected longitudinal waves from the mode conversion have a reverse polarization direction. These longitudinal waves will interfere and cancel at the scattering source (the resonator), based on Eq. (A10). Therefore, at the scattering source, the total scattering field is the superposition of the transmitted and reflected flexural waves with the same polarization direction, i.e., . According to the energy conservation, the energy of the total scattering field equal to that of the incident wave field. We can obtain the amplitude relationship of the total scattering field as . ( 9)
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In such case, the magnitude condition of Eq. ( 8) is always satisfied, and Eq. ( 8) can be reduced as its phase relation:
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where n is a positive integer.

We should point out that hybridization coupling is an essential component of these unique local states from destructive interference. The reason is that the wave fields in the system only have one mode without mode hybridization, then any state must be leaky. The radiative energy from mode conversion in our system is similar to dissipative loss in the optical resonance system [START_REF] Hsu | Bound states in the continuum[END_REF]. But the ''dissipative loss'' in our study can be adjusted by the waveguide resonator, which will be discussed in detail later.

Analytical model of the whole resonator system

To evaluate all possible localized states in the parameter space, we establish the analytical model of the whole resonator system. As shown in Fig. 1(a), the background plate, the pillared resonator, and the waveguide resonator are divided into region (I) and region (II) by the dividing line . For the sake of universality to study the vertically and obliquely incident waves in the background plate, the governing equations for the flexural and longitudinal waves in the region (I) should be written in the two-dimension form:

,

, ( 12) 
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where , and j denotes the j th subunit. 

In the same way, by applying the continuous boundary condition of the longitudinal wave displacement at the interface, we get

, ( 19 
)
where and .

By applying the continuous boundary condition of x-components of bending moment at the interface x=0, and integrating along y-direction in the region , we can get
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] ( ) Eqs. ( 17)-( 22) and Eq. ( 24), in turn, can be rewritten as

I I I 0 r î i 0 i i 0 0 x x x b b b b b b b k gA k g k g k k k k µ µ µ é ù - + = - - ë û Τ Τ [ ] ( ) [ ] ( ) I I I r ˆ0 0 0 0 0 0 1 1 g µ × = Τ Τ ˆsinc( / 2)
I I I 5 0 1 2 r 1 1 1 1 0 00 E A E E V V V V + =- - Τ Τ ( ) ( ) 2 2 1 x y b b E L k k u é ù = × - - ê ú ë û ( ) ( ) 2 2 2 ˆx y b b E L k k u é ù = - ê ú ë û 2 1 = / b pk g V µ ( ) ( ) 2 2 5 x y b b E L k k u é ù = × - - ê ú ë û u [ ] ( ) [ ] ( ) I I I 6 0 3 4 r 2 2 2 2 0 i i 0 0 E A E E V V V V + = × -× - Τ Τ ( ) ( ) 3 2 3 i (2 )i x x y b b b E L k k k u é ù = - -- ê ú ë û ( ) ( ) 3 2 6 i (2 )i x x y b b b E L k k k u é ù = - -- ê ú ë û 3 2 = b pk g V µ ( ) ( ) ( ) 3 2 4 ˆ2 x x y b b b E L k k k u é ù = -- ê ú ë û ( ) [ ] ( ) I I I r ˆˆˆ0 0 0 0 0 0 x l l l Lk pk g pk g µ µ é ù = - ë û Τ Τ ( ) ( ) ( ) P P I I 1 1 = R L N N = T T T ( ) ( ) ( ) P I I I I 4 3 4 3 1 5 0 R N N N N N N = = =
. ( 27 
)
According to Eq. ( 27), we can get ,

.

Finally, according to Eq. ( 28), we can get the scattering equation of the whole resonator system , (29) equals the first element of the column vector .

Based on Eq. ( 29), the dimensionless reflected energy coefficient of the vertically incident flexural wave, varying with the waveguide resonator length s/d and 
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, is shown in Fig. 3 

Elastic BIC and elastic quasi-BIC physics

As shown in Fig. 3(a), the white dashed lines and green dotted lines, obtained by Eq. ( 2) and Eq.( 10), correspond to the Fano resonance and destructive interference, respectively. Their intersections accurately predict the location of the vanishing linewidths, marked by the white circle. These vanishing linewidths are ideal local states with zero leakage in the continuous spectrum of radiating waves, i.e., the ideal BICs with infinite Q factor [START_REF] Kodigala | Lasing action from photonic bound states in continuum[END_REF][START_REF] Marinica | Bound States in the continuum in photonics[END_REF]. (d) The total dimensionless energy of all scattering modes in the whole resonance system.

These ideal BICs at the vanishing linewidths are entirely isolated and have no
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access to the external radiation channel [START_REF] Hsu | Bound states in the continuum[END_REF][START_REF] Huang | Extreme Sound Confinement From Quasibound States in the Continuum[END_REF]. To get the TMPC, we need to tune the waveguide resonator length s to weaken the destructive interference described by Eq. ( 10). This weakening makes the resonance system leak small energy of the flexural wave (with radiative decay rate ), which is radiating into the background plate. The leaked energy of the flexural wave will balance that of the longitudinal wave (with radiative decay rate ) from the hybridization coupling of Fano resonance. This balance condition supporting trapped modes is , equivalent to the so-called critical coupling [START_REF] Cai | Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System[END_REF], however here it is fulfilled by different mode conversion physics. The critical coupling can be demonstrated by the distribution of in the complex frequency plane, based on Eq. ( 29) (the detail see Appendix B). In this way, the incident flexural waves can be entirely trapped without any backscattering ( =0), i.e., tuning into the trapped mode (quasi-BIC). In addition, the system only allows the converted longitudinal waves to leak, leading to perfect mode conversion. Here, we only analyze these TMPCs near the second Fano resonance, which are marked from point A to point I [see discrete green crosses in Fig.

3(a)

]. Among these points, the position deviation between point A and the adjacent vanishing linewidth is the largest. The reason is that the radiative energy of longitudinal wave around point A is the largest (explained in the next paragraph), which needs more weakening of the destructive interference to leak more flexural wave energy to balance.

The more energy leakage leads to a wider reflection band.

For these marked TMPCs, the total radiative decay rate of the system corresponds to the Q factor of the system , where 

where m is a positive integer. According to Eq. ( 30 is, the greater its Q factor is, and the lower its is. We chose two TMPCs with different radiative decay rates , corresponding to point A and point E in Fig. 4(a), to calculate their dimensionless energy distributions of x-direction displacement in the unit structure by full wavefield simulations, as shown in the insets of Fig. 4(a). It can be clearly seen that the flexural wave energy is trapped at the top of the pillared resonator. In addition, for point E with a lower , the system captures more flexural wave energy (the multiple of the dimensionless energy enhancement arrives up to 282, relativing to incident energy). The reason is that the lower is, the more trapped flexural wave energy in the resonance system with a higher Q is, which is similar to sound confinement from acoustic quasi-BIC [START_REF] Huang | Extreme Sound Confinement From Quasibound States in the Continuum[END_REF]. We note that by optimizing the parameters to satisfy Eqs. ( 2), (10), and (30) simultaneously, the Q of the system can be further increased. Therefore, our system can support the elastic BIC with an infinite Q. According to Eqs. ( 29), (A24), and (A25), we also show the curves of energy conversion ratio (see Appendix A) for these TMPCs (from point A to point F) to verify their perfect mode conversion, as shown in Fig. 4(b).

All peak values of the curves approach one. For point F, the linewidth of the curve at its half-maximum is less than 1 Hz, which is consistent with its high Q. 

3(a)

. Further, for all these TMPCs (quasi-BIC), we can continuously tune them into the infinite-Q BIC by making their radiative decay rate close to zero, depending on tuning the critical frequency of mode conversion.

The critical frequency is decided by that the radiation angle of the converted longitudinal wave equal to 90 o . The radiation angle can be obtained as based on Snell's law. From the above equation, we get the critical frequency , which is decided by the non-zero incident angle . When the frequency is lower than fc, the calculated is imaginary, that is, Theoretically, when the critical frequency intersects the Fano resonance frequency, TMPC coincides with the zero-linewidth ideal local state and supports an infinite-Q BIC.

g 2 3 bl b R k d d = l g r bl q ( ) r arcsin sin i bl b l k k q q = ( ) 2 
s d

77 h d q = 76 h d q = 78 h d q = F A F 2 b R F d A F F

Experimental evidence

In the experiment, we need to make great efforts to excite the ideal plane wave through the optimized array composed of several piezoelectric patches. To simplify the excitation, we simplify the model in Fig. Therefore, we confirm the existence of the trapped modes with different Q factors.

Furthermore, based on the experimental data, we calculate that the converted energy ratios of longitudinal waves are more than 0.93 and 0.9 for peak points in Figs. 6(b) and 6(c), respectively, which confirm the perfect mode conversion of the trapped modes, neglecting small structural losses. The detailed calculation process can be seen in V from one frequency to another. Therefore, the TMPC near the vanishing linewidth shift their positions and do not disappear. For example, theoretical capture coefficients, varying the pillared resonator height h/d and frequency f, are shown in Fig. 6(f), when the waveguide length is fixed as 10 mm. The green lines are the contour lines of 0.9.

High capture coefficients over a wide range indicate that the TMPCs are stable for various geometric parameters. Further, we have printed specimen three and specimen four with the same waveguide length of 10 mm. Their pillar heights h/d are 14.2 and 16. We can find the measured trapped modes ( ) for specimens three and four at around 8516.7 Hz and 6848 Hz, respectively. These measured points are added to Fig.

6(f).

It can be seen that these points are inside the contour line of 0.9, which are consistent with the theory results. The consistency confirms that the TMPCs are robust to changes in system parameters. Similar robustness of the trapped modes to system parameters can also be found in other BIC systems (Hsu et al., 2013a;[START_REF] Marinica | Bound States in the continuum in photonics[END_REF].

Conclusions

We have theoretically predicted and experimentally demonstrated a TMPC in an elastic wave system. The system supports elastic BIC by achieving simultaneous hybrid Fano and Fabry-Pérot resonances. We prove that the TMPC supporting quasi-BIC can be tuned to the TMPC supporting infinite-Q BIC by bringing the critical frequency of mode conversion closer to the Fano resonance frequency. This work paves the way for the investigation of the intriguing physics related to the interaction between elastic
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The general solution of displacement for the second-order partial derivative governing equation of longitudinal waves in the background plate is:

, (A3)
where and are complex coefficients. The longitudinal wavenumber is .

Similarly, the general solutions of the displacements for the flexural wave and longitudinal wave equations in the pillared resonator are (A4)

, respectively. The superscript indicates the pillared resonator.

We make an incident positive-going flexural wave of at the left interface of the pillared resonator bottom, so the wave fields at the left interface and the right interface of the pillared resonator bottom can be expressed as follows:

,

where the symbols t and r in and denote the transmission and reflection complex coefficients of the resonator, respectively. The subscript represents an evanescent flexural wave. The subscripts b and l represent the flexural mode (or bending wave) and longitudinal mode. The subscripts bl and lb represent the conversion from flexural wave to longitudinal wave and the reverse process, respectively. The ( ) ( ) 
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subscripts bb * and b * b represent the conversion from propagating flexural wave to evanescent one and the reverse process, respectively. Therefore, the vectors and for both sides of the bottom of the pillared resonator can be written as:

. (A6)

The relationships between slope and the displacement w, between shear force

V and the displacement w, between bending moment M and the displacement w, between axial force F and the displacement u are , , , and , respectively. Among both side interfaces of the pillared resonator bottom, the boundary conditions of displacement, slope, bending moment, shear force, and axial force must be satisfied [START_REF] Cao | Pillared elastic metasurface with constructive interference for flexural wave manipulation[END_REF]. According to these boundary conditions, we obtain the propagation equation:

. ( A7 
)
where N1 is the transfer matrix.

From Eq. (A7), we can obtain , (A8) , ( A9)
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, , , Therefore, the scattering matrix including the phase origins [START_REF] Botten | Photonic band structure calculations using scattering matrices[END_REF] and evanescent flexural modes can be obtained as ,

(A23)

For the flexural wave with the amplitude of , its energy can be expressed as .

(A24)

For the longitudinal wave with the amplitude of , its energy can be expressed as .

(A25)

For the incident flexural wave of , the dimensionless energy of the reflected and transmitted flexural waves can be expressed as and , respectively.

According to Eqs. (A24) and (A25), the dimensionless energy of the reflected and When the resonant structure of the system is a side-coupled pillared resonator in Fig. 1(a), the hybrid coupling will induce the mode conversion to leak longitudinal wave. The leakage energy of the flexural wave is similar to dissipative loss in the optical resonance system. But the ''dissipative loss'' is from the hybridization coupling in our study. Fig. 7(a) shows the complex frequency graphs, corresponding to the system with TMPC marked by point C in Fig. 3(a). "Zero" point and "Pole" point have shifted to the left, and "Zero" point intersects the real frequency axis. The intersection is the socalled critical coupling, however here it is fulfilled by different mode conversion physics. The flexural wave is completely trapped by the system. For the critical coupling [START_REF] Cai | Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System[END_REF], the energy leakage of the flexural wave will balance approximate the sum of incident and reflection propagating waves. An ensemble average with 20 samples is used at every measurement point to ensure the signal quality. Using the measurement mode "FFT" of PSV-500, the complex velocities of flexural waves in points 1 and 2 can be measured and marked as and , respectively. They are expressed as and , respectively. and are the distance marked in Fig. 9.
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is the flexural wave number. The transfer function H12 of the total wavefield in the two points can be obtained from the measured complex velocities of v 

  (a). These waveguide resonators are connected to side-coupled pillared resonators with the height h. The thicknesses d of the waveguide resonator and pillared resonator are in deep subwavelength scale relative to the wavelength in the whole considered frequency range. Only the fundamental modes of flexural waves and longitudinal waves are involved.

Fig. 1 . 1 .

 11 Fig. 1. (a) A Fano-resonance-supporting elastic wave model: periodic waveguide with the length s

  wave, based on the scattering coefficients in Eq. (1) (see details in Appendix A) and the full wavefield simulations (see details in Appendix H), respectively. This consistency between Figs. 2(a) and 2(b) verifies the correctness of the analytical model. Another important verification is the power flow balance, i.e., the total energy of all scattering modes is unit (grey dot line). We note that the reflection energy curve has a clear Fano profile. The Fano profile is a typical feature of the Fano resonance (Fano, 1961; Rupin et al., 2014), which is the result of the interference between the flexural resonances of the pillared resonator and the incident flexural waves. The Fano resonance frequency ω0 [marked by yellow dashed lines in Fig. 2(a)], dominated by the flexural resonance, approximately satisfies the transcendental equation (Colquitt et al., 2017; Graff, constant, , and D is the bending rigidity.

Fig. 2 .=

 2 Fig. 2. (a) and (b) The dimensionless scattering energy curves for the incident flexural wave in the

  the second Fano resonance frequency. and are the transmission vectors in the left and right of the pillared resonator, respectively, where the subscript represents the evanescent flexural wave in the near field. According to Eqs. (1) and (3), the band structure can matrix, including the phase origins and evanescent flexural modes (see Appendix A). Based on Eq. (4), Fig. 2(c) displays the band structure (blue lines), which is very consistent with the simulated one in Fig. 2(d). The

Fig. 1 ,

 1 Fig. 1, reshapes the interference of the incident flexural waves. The length s is greater

  mode and the incoming propagation flexural wave at the right and left ports, respectively. and represent coupling coefficients between the localized mode and the incoming longitudinal wave at the right and left ports, respectively. The scatting matrix describes the incoming and outgoing waves in the ports couple through a direct pathway, i.e., ignoring the resonance-assisted coupling.

  where A0 is the amplitude of the incident flexural wave, , , and are the complex coefficients of the reflected propagating flexural wave, reflected evanescent flexural wave, and reflected longitudinal wave, respectively. and are y-component wave vectors of propagating flexural waves and longitudinal waves, respectively. According to the conservation of parallel wave vectors, we can get , where is the incident angle. and are x-component wave vectors of propagating and evanescent flexural waves, respectively. is x-component wave vector of longitudinal waves. The coefficient vector of the reflected scattering field in the region (I) can be defined as . The hybrid resonant system consists of the pillared and waveguide resonators. Only the fundamental mode needs to be taken into account since the widths p and thicknesses d of the waveguide and pillar are in deep subwavelength scale. The coefficient vector of the wavefield at the left interface of the waveguide resonator (the right of the dividing line ) can be defined as , where and correspond to the complex coefficients of the positive-going propagating and evanescent flexural waves in the waveguide resonator. and correspond to the complex coefficients of the negative-going propagating and evanescent flexural waves. and correspond to the complex coefficients of the positive-going and negative-going propagating longitudinal waves. In the x-direction of Fig. 1(a), the slope , bending moment M, shear force V, and axial force F in the two-dimension plate model of the region (I) are expressed as

  By applying the continuous boundary condition of x-components of the flexural wave displacement at the left interface of waveguide x=0 and integrating along ysame way, applying the continuous boundary condition of the slop at the interface of x=0, we can get .

  are the subunit period and Poisson's ratio, respectively. In the same way, by applying the continuous boundary condition of shear force at the interface, we can get , the same way, by applying the continuous boundary condition of axial force at the interface, we can get . (22) According to Eq. (A7), we obtain the coefficient vector of the wavefield in the right interface of the pillared resonance . (23) Since bending moment, shear force, and axial force are zero at the right free boundary of the waveguide resonant, and we can get ,

  Fig. 3(a), as shown in Fig. 3(c). According to Eqs. (29), (A24), and (A25), the total

  Fig. 3. (a) The analytical dimensionless reflected energy of the incident flexural wave in the

  second Fano resonance frequency. Therefore, decides the Q factor.The smaller the value of is, the greater the Q factor is. When one round-trip of the converted longitudinal wave between the right waveguide edge and the left one (the interface ) satisfies Fabry-Pérot resonance condition, approaches zero due to the resonance, which induces the TMPC with infinite Q factor. This Fabry-Pérot resonance condition is obtained by enforcing field relations at the waveguide resonator, and accordingly, ,

  ), we can obtain Fabry-Pérot resonance frequency as . We calculate the first resonance frequency (m = 1) varying with waveguide lengths s, as shown by the red dashed line in Fig. 3(a). The red line approximately crosses over the vanishing linewidth near point F, which indicates that near the ideal local state, approaches zero due to the Fabry-Pérot resonance. Therefore, the flexural wave energy leakage from the trapped mode, balanced with the longitudinal wave energy leakage, also approaches zero. In this way, the position of TMPC almost overlaps with that of the ideal local state, approaching the BIC. At point F, the system with TMPC has a very narrow reflection band, which cannot be resolved in the scale of Fig. 3(a). Based on in the analytical model, we obtain the Q factor and of these TMPCs to quantitatively analyze the resonance characteristics (the detailed calculation can be found in Appendix C). It can be seen from Fig. 4(a) that the Q factor at point F exceeds 8000 (indeed approaches infinite-Q BIC). The closer to point F the other TMPC

  Fig. 4. (a) Bar charts represent total radiative decay rates of these TMPCs from point A to point

  disappears. For the TMPC marked by point B in Fig. 3(a), the dimensionless incident angle is changed as , as an example. The interface impedance varying with frequency is shown in Fig. 5(a). At the critical frequency of = 8384 Hz marked by the light blue dashed lines, is infinite, which will suppress longitudinal wave radiation. In addition, the corresponding for the obliquely incident flexural wave, calculated by Eq. (29), is shown in Fig. 5(b). The critical frequency closes to the Fano resonance frequency (marked by white dashed lines), the large reduces of the TMPC (marked by green crosses). The decreased leads to a narrower reflection band of the TMPC, compared with that of the TMPC marked by point B in Fig. 3(a).

Fig. 5 .

 5 Fig. 5. (a) The interface impedance of the interface for the converted longitudinal wave varying

  1(a) by a strip-like model (beam), as shown in the inset of Fig.6(a). Then, we can use a single piezoelectric patch attached on the strip-like model to excite the ideal incident wave, which significantly increases the accuracy of the experiment. We have proved that for vertically incident waves, the results of the simplified model are consistent with those of the original model by theoretical and simulation methods (see details in Appendix D). To confirm our theory, based on the simplified models, we print specimen one and specimen two with different waveguide lengths (10 and 29 mm) to verify different-Q-factor TMPCs based on quasi-BIC. These TMPCs correspond to point A and point C in Fig. 3(a).

FIG. 6

 6 FIG. 6. (a) Experimental set-up. The specimen and the clamped test specimen are illustrated at the

  a quarter wavelength in the second Fano resonance frequency. Due to the subwavelength period, the evanescent flexural modes need to be considered in the

  Fig. 7(a). "Zero" and "Pole" are two extreme points referring to the lowest and the

Fig. 7 .

 7 Fig. 7. (a) The complex frequency graphs illustrating the distribution of in the complex

  longitudinal wave from hybridization coupling of Fano resonance. theory and simulated results show that the capture coefficients of the flexural waves for the 1D simplified models and the 2D ones are consistent, as shown in Figs. 8(b) and 8(c). We can print specimens to verify supporting the trapped modes corresponding to point A and point C in Fig.3(a). The 3D-printer Ultimaker 3, with a manufacturing precision of 0.06 mm, is adopted. The corresponding geometric parameters of the two specimens are shown in TABLE1. The left pillared resonator and the right one are symmetrical about the specimen center. The purpose of designing the left resonator is to reconvert the longitudinal wave into the flexural wave, which will be described in detail later.

Fig. 8 .

 8 Fig. 8. (a) 1D simplified specimen marked by geometric parameter symbol. (b) The analytical and

Fig. 9 .

 9 Fig. 9. Test set-up.

  of flexural wave energy can be obtained by . The amplitude of the longitudinal wave cannot be measured directly by the single scanning head of our PSV-500. But we can measure the capture coefficient of to characterize the energy capture of the flexural wave for the trapped modes.

Fig

  Fig. 10. (a) Specimen 1 with blue-tacks on the middle, the left end, and the right end. (b) Specimen

  

TABLE 1 .

 1 The geometric parameters of the specimen. All parameters are in units of mm.

	d	h	sw	st	s (Specimen 1)	s (Specimen 2)
	1	15	8	160	10	29
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Appendix G.

To intuitively show the TMPC, we obtain the dynamic full wavefield in specimen one at the central frequency of 7580 Hz by the ''time'' measurement mode of PSV 500. Fig. 6(d) shows a snapshot of Supplementary Video one at 40.232 ms. In the right test area, the wavefield is almost a traveling wave, as observed in the Supplementary Video 1. The existence of the traveling wave means flexural waves are completely captured by the right resonance system, that is, there is almost no reflection. The absorption area in the middle can completely absorb the flexural wave (relevant confirmation can be found in Appendix G), but we still clearly see the flexural wave field in the left test area.

The abnormal phenomenon is caused by the mode conversion in the resonance system.

For comparison, we test the dynamic full wavefield in specimen one at 6100 Hz (away from the central frequency). Figs. 6(e) shows a snapshot of Supplementary Video two.

In the right test area, the incident wave is a standing wave. In the left test area, the amplitude of the flexural wave is close to zero, as observed in the Supplementary Video 2. The wave phenomenon in Supplementary Video two means that flexural waves are not captured by the right resonance system, and mode conversion does not happen either.

We note a subtle but essential difference between the TMPC in our system and the conventional trapped mode. The latter disappears when the parameters of the system slightly deviate from the designed structure, making it very difficult to observe experimentally (Hsu et al., 2013a;[START_REF] Hsu | Bound states in the continuum[END_REF]. In our theory, based on Eqs. ( 2) and ( 10), when the parameters of the system change, the vanishing linewidth jumps wave energies with different polarization planes, based on elastic BICs. The elastic BIC can obtain an unprecedented high quality factor in the elastic system, which may facilitate various applications, e.g., high-sensitivity elastic wave sensor and highresolution elastic wave filters.

Appendix A. Analytical expression of the scattering coefficient for the pillared resonator

First, we consider an incident wave perpendicular to the model without the right boundary, as shown in Fig. 1 Poisson's ratio, respectively. is the propagation constant, .

The general solution of displacement for the fourth-order partial derivative governing equation of the flexural wave in the background plate is:

where , , , and are complex coefficients. and correspond to the positive-going and negative-going propagating flexural waves, whereas and correspond to the positive-going and negative-going evanescent flexural waves. The flexural wavenumber is , where is the circular

In the same way, we make an incident positive-going longitudinal wave of at the left interface of the pillared resonator bottom, so the wave fields at the left interface and the right interface of the pillared resonator bottom can be expressed as follows:

, (A13)

The vectors and for both sides of the pillared resonator bottom can be rewritten as:

. (A14)

According to Eq. (A7), we can obtain

.

(A19)

In the same way, we make an incident evanescent flexural wave of at the left interface of the pillared resonator bottom, and we can obtain the coefficients of , , ,

As shown in Fig. 1 is the scattering matrix.

We note that the scattering matrix can also be derived directly from the transfer matrix.

The negative sign in Eq. ( A20) is to make the scattering matrix and transfer matrix keep consistent in mathematical form.

Based on the analytical model, we can analyze its band structure to intuitively show the hybridization coupling between flexural waves and longitudinal waves from the Fano resonance. The unit structure is shown in the illustration of Fig. 2(c). is a

factor and of these TMPCs

Since the energy leaks out from the resonator, each TMPC can be characterized by "Pole" point in the complex frequency graphs, as shown in Figs. 7(a) and 7(b). The frequency of the Pole is , with the position at the real axis . The TMPC has the decay rate [START_REF] Krasnok | Anomalies in light scattering[END_REF], which determines the linewidth of TMPC at its half-maximum. The Pole is close to the real frequency axis, the Q of the TMPC can be defined as , (C1)

In our system, the decay rate includes both flexural wave radiative and converted longitudinal wave radiative (similar to dissipation) [START_REF] Bliokh | Colloquium: Unusual resonators: Plasmonics, metamaterials, and random media[END_REF].

In Fig. 5(f), for the TMPCs with a steep rise from 0 to 1, their Q factor can be calculated by , where is the central frequency of the resonance peak, and Δf is the full width at half maximum for the peak.

Appendix D. Simplified specimens and their manufacture

For the theoretical model in Fig. 1(a), the filling ratio of a slot in a subunit is a small value of 1/17, and the periodic L is 85 mm. When considering an incident wave perpendicular to the model, we can simplify the two-dimensional (2D)

periodic structure to a one-dimensional (1D) strip-like model shown in Fig. 8(a). The

Experimental set-up and measurements

As shown in Fig. 9, a 6-mm-diameter circular PZT patch, with a distance of from the right pillared resonator, is bonded on the plate surface. The PZT patch is driven by a signal generator (Tektronix AFG3022C). The blue-tack layer is bonded in the middle of the strip-like specimen to absorb the left propagating flexural wave excited by the PZT patch and the reflected flexural wave from the right resonance structures.

The left pillared and waveguide resonators can reconvert all the longitudinal waves, which are from the mode conversion in the right resonators, into flexural waves due to wave reciprocity. Then the reconverted flexural waves propagating to the right are absorbed by the middle blue-tack. In this way, the blue-tack can be equivalent to a nonreflection boundary of flexural waves.

The specimen surface is held perpendicular to the laser beam from PSV-500 scanning laser Doppler vibrometer, through a C-clamp and supporting rod applied to the lower edge, as shown in Fig. 9. The PSV-500 scanning head records the out-ofplane complex velocity in point 1 and point 2, marked in Fig. 9. The distance between the two points is less than an eighth wavelength. Simultaneously, their locations and the boundary of the resonance structure meet the far-field assumption [START_REF] Cao | Flexural wave absorption by lossy gradient elastic metasurface[END_REF].

The assumption ensures that the measurement wavefield of the two points can 53d

Appendix F. Material parameter test of 3D-printed specimens

We note that the wavenumber in Eq. (E1) needs to be calculated by material parameters of 3D-printed specimens. All theories are also based on these material parameters. In the following, we will test the parameters. Although related material parameters of PLA, adopt in our 3D printer, have been reported in some literature.

However, the material properties of practical printed specimens could be different due to various printing processes. To make the experiment and theory result more matching, we set the fixed printing mode, for example, infill density and infill pattern, to print all specimens. Then we print a beam specimen ( ) without pillared resonators. We first measure the mass and volume of the beam specimen to obtain its