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Abstract. Recently, video prediction algorithms based on neural net-
works have become a promising research direction. Therefore, a new re-
current video prediction algorithm called ”Robust Spatiotemporal Con-
volutional Long Short-Term Memory” (Robust-ST-ConvLSTM) is pro-
posed in this paper. Robust-ST-ConvLSTM proposes a new internal
mechanism that is able to regulate efficiently the flow of spatiotempo-
ral information from video signals based on higher order Convolutional-
LSTM. The spatiotemporal information is carried through the entire net-
work to optimize and control the prediction potential of the ConvLSTM
cell. In addition, in traditional ConvLSTM units, cell states, that carry
relevant information throughout the processing of the input sequence,
are updated using only one previous hidden state, which holds informa-
tion on previous data unit already seen by the network. However, our
Robust-ST-ConvLSTM unit will rely on N previous hidden states, that
provide temporal context for the motion in video scenes, in the cell state
updating process. Experimental results further suggest that the proposed
architecture can improve the state-of-the-art video prediction methods
significantly on two challenging datasets, including the standard Moving
MNIST dataset, and the commonly used video prediction KTH dataset,
as human motion dataset.

Keywords: Video prediction, deep learning, neural networks, computer
vision, ConvLSTM, memory flow, hidden states

1 Introduction

Video prediction, one of the emerging fields of computer vision, is facing several
challenges [1-5]. Actually, it has gained significant interests due to its broad-
ranging realistic forecasting applications, such as traffic flow prediction and video
surveillance.

The great progress made by deep learning in a wide range of applications and
research fields, motivated authors to explore deep leaning architectures to pre-
dict future video frames. The main advantage of deep learning models is their
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potential to learn adequate features from high-dimensional data, such as videos,
in an end-to-end manner without hand-designed features [6]. However, despite
the significant progress in deep learning architectures, video prediction is still
considered as a big challenge especially in terms of output visual quality and
long-term prediction. Therefore, our Robust Spatiotemporal Convolutional Long
Short-Term Memory (Robust-ST-ConvLLSTM) algorithm is proposed as a long-
term prediction algorithm that outperforms the state-of-the-art approaches in
terms of quality performances. Our algorithm is based on a modified version of
ConvLSTM cell. Obviously, ConvLSTM is not very efficient in handling long
sequences. Indeed, ConvLSTM based algorithms focus on stochastic features of
the data rather than its spatial distortion. Also, a temporal information encod-
ing in ConvLSTM unit [7] is based on 15'-order Markovian architecture. Thus,
making long-range temporal correlations hard to extract. In addition, the van-
ishing gradient problem often occurs in training 15¢-order RNN based predictive
algorithms [8].

Bearing all these drawbacks in mind, we propose our Robust-ST-ConvLSTM
algorithm for video prediction. With the following properties, we hope our al-
gorithm will pave the way for the application of recurrent neural network on
real-wold datasets:

— Spatial and temporal data are taken into consideration jointly.

— The new spatiotemporal memory (ST'M) cell transfers low-level and seman-
tic aspects of the dynamic scene which are the key of generating future
frames.

— The Robust-ST-ConvLSTM new internal mechanism offers new cell state
and hidden state transition functions to efficiently regulate the flow of spa-
tiotemporal information from the input videos.

— The algorithm aims to rely on N previous hidden states, that provide tem-
poral context for the motion in video scenes, to update one cell state at every
timestep.

The remainder of this paper is organized as follows: The related works on video
prediction are discussed in Section 2. In Section 3, our proposed Robust-ST-
ConvLSTM algorithm is presented. Section 4 provides the experimental results.
Section 5 concludes the paper.

2 Related Works

Video prediction algorithms have used various deep learning architectures to en-
hance the quality performance of the predicted frames and to fasten the process.
Deep learning has been extensively used to analyze the frames and extract their
features exploited in spatiotemporal predictive learning.

Recent deep learning approaches can be categorized into three classes: recurrent
neural approaches, convolutional networks based algorithms and generative net-
works.

Recurrent neural networks (RNN) have demonstrated a significant success in
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recent video prediction related works [9-25]. ConvLSTM [7] is considered as a
crucial branch in predicting future frame. A two-stream architecture based on
adversarial training to model deterministic dynamics is proposed by Zhang et
al [12]. It enables to update hidden states along a z-order curve. Wang et al. [26]
proposed PredRNN as a sequence of recurrent blocks defining an additional
global memory cell in order to ameliorate the prediction ability of the network.
However, the proposed memory cell transfers long-term and short-term data at
the same time which can restrict the predictive performances of the network.
Therefore, a pair of memory cell is introduced in [27] and explicitly decoupled
to deal with different variations. Also, reverse scheduled sampling strategy was
added to learn temporal dynamics and reduce the training discrepancy between
the encoding and the prediction structures.

Convolutional networks, considered as feed-forward neural networks, are also
commonly used in future prediction problems. A multi-model is defined in [28]
to model dynamic patterns and learn image representation by combining tem-
poral and spatial sub-networks. In [29], Deep Voxel Flow (DVF) is trained to
synthesize future frames by flowing pixel values directly from input frames. It
can predict the in-between frames (interpolation) and the future frames (ex-
trapolation) of the input video. Another interesting convolutional networks for
video prediction are 3D convolutions based models to capture temporal consis-
tency [30-33].

Generative networks are used to synthesize new frames by learning a probability
distribution from the input data. Generative Adversarial Networks (GAN) [34]
are commonly used in video prediction architectures. Y.-H. Kwon et al. [35] pro-
posed a retrospective cycle GAN based algorithm to predict video frames. In [36],
it is confirmed that conditional Generative Adversarial Networks (cGAN) can
ensure the spatiotemporal coherence between the input videos and the gener-
ated frames. Designing a network by dividing the video data into content part
and motion part is discussed in [37]. The content part detects the objects in the
sequence and the motion part captures their movements. This video prediction
framework introduces a new adversarial learning scheme.

3 The proposed Robust Spatiotemporal ConvLSTM
architecture

Our algorithm is based on Robust Spatio-Temporal Convolutional Long Short
Term Memory (Robust-ST-ConvLSTM) cell that is an extended version of Con-
vLSTM cell.

3.1 Convolutional Long Short Term Memory (ConvLSTM)

ConvLSTM is considered as a Long Short Term Memory (LSTM) [38] network
applied on high dimensional data. In fact, LSTM is a powerful network commonly
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used to solve time series problems thanks to its ability to avoid long-term de-
pendency problems and remember information for long periods of time. It main
structure enables to connect previous information to the future function. How-
ever, LSTM is inadequate to process high dimensional data since it requires 1D
vectors as input. Therefore, ConvLSTM was proposed to extract spatial features
for the prediction mode. Different from LSTM unit, ConvLSTM cell structure is
based on 3D tensors, including the inputs X, the cell states C; and the hidden
states H;.

3.2 The proposed Robust Spatiotemporal ConvLSTM algorithm

Robust Spatiotemporal ConvLSTM (Robust-ST-ConvLSTM) algorithm shows a
new internal mechanism that is able to regulate efficiently the flow of spatiotem-
poral information from video signals based on higher order Convolutional-LSTM.
The proposed algorithm decides the cell state C; from N previous hidden states
(Hi—2,...,H;_n). N will be fixed by the user depending on the application, the
reconstruction quality required and the computational resources available. The
proposed Robust-ST-ConvLSTM requires also to implement a memory flow to
hold the spatiotemporal information in order to optimize and control the pre-
diction abilities of ConvLSTM. Indeed, the memory flow will be a second cell
state to handle spatiotemporal data since the cell state C; handles temporal data
and will not be eliminated. Robust-ST-ConvLSTM uses a stack of ConvLSTM
units to learn spatial correlations and temporal dynamics from the input scene.
These features will be used to predict the future frames. Thus, a novel transition
function is defined based on spatiotemporal memory flow to support previous
hidden states.

The process of updating temporal cell states Cy, in ConvLLSTM, is activated from
one timestep to another. However, successive frames have temporal correlations
and very close spatial data distribution. Hence, these properties can be exploited
to make better predictions. Therefore, Robust-ST-ConvLSTM, considered as a
higher-order ConvLSTM based on memory flow, will exploit the global motion
changes of the consecutive frames and the spatiotemporal memory information
to forecast future frames. An horizontal diagram flow can represent the memory
state updating process for the original stacked ConvLSTM. We suggest here to
upgrade the previous model by updating the memory state horizontally (cell
state C) and also vertically (spatiotemporal memory state STM;) as shown in
Figure 1. This process will enhance the way spatiotemporal information is han-
dled from the input to the output and allow to connect all the recurrent units
of the entire network.

From a mathematical perspective, the new robust spatiotemporal unit, illus-
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trated in Figure 2, can be defined as:

I =oc(Wix X, + f(H._,,.... H_¥))
Fy=o(Ws* Xy + f(H{_y, ... Hi_y))

Cy = tanh(We x Xy + f(H'_, ..., H_\))
Cl=FioC' | +1,0C

I} = o(W] % X, + M} x STM}™1)

Fl =o(Wj* Xy + Mj«STM™) (1)
Cl = tanh(W, = Xy + M.« STM} ™)

STM} = F/ o STM}™" + I, o C!
Or = 0(Woy + Xy + f(H_1, ... H_y)
+ Woe % Cf + Woatm * STM})

H} = Oy x tanh(Wyx, * [CL, STM]))

Where o is the sigmoid activation function, * and o represent the convolution
operator and the Hadamard product respectively. Same as ConvLSTM structure,
I, and I] denote the input gates, F; and F] symbolize the forget gates, C, and
ég represent the potential cell states, Oy denotes the output gate. X; represents
the input at the time step t. H! symbolizes the hidden state of the lth layer
at the time step t. C! is the memory state of the Ith layer at the time step t.
ST M} represents the spatiotemporal memory of the lth layer at the time step t.
f denotes the function combining N previous hidden states.

The design of the function f must satisfy the following conditions:

— Hidden states have a spatial structure that should be preserved

— To capture the context of the previous frames (timesteps), the size of the
filters controlling the previous hidden states structure should increase over
timesteps.

— Computational complexity does not have to explode

In order to implement f, our approach is inspired from recursive least squares
filters used in signal processing [39]. Indeed, the idea is to focus on returning
the mean value of all elements in the input tensor that handle the previous
hidden states. In Robust-ST-ConvLSTM, combining multiple preceding hidden
states generates a feedback signal. Then, the state of the N-order Robust-St-
ConvLSTM is recursively updated with the following function f :

N
1 n
f(Htl—b --'7Htl—N) = N Z anWhﬂHtl—n (2)

n=1

where a denotes the forgetting factor. The parameter « (0 < o < 1) gives more
weight to recent hidden states.
Unlike ConvLSTM based architectures, Robust Spatiotemporal unit depends on
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the previous hidden states from the previous timesteps at the same layer and
the spatiotemporal memory state. Precisely, the first layer in a stacked Con-
vLSTM model at time step t receives the spatiotemporal memory of the last
layer in the stacked model of the previous time step as illustrated in Figure 1
(STM}! = STM[F | with L is the number of stacked layers).

Consequently, the main structure of ConvLSTM has been modified by adding a
second gated structure for the spatiotemporal memory ST M. Yet, the final hid-
den state H! depends on the fusion of the spatiotemporal memory state ST M/
and the temporal memory state C.

The spatiotemporal memory is implemented to reduce the loss of spatiotemporal
information in multidimensional data from the top layer to the bottom layer of
the network. Moreover, previous hidden states, used as input, are implemented
to enlarge the visibility of the neural units about the context of the ongoing
events at different timesteps.

In comparison with standard ConvLSTM model, our proposed approach in-
creases the number of parameters, especially with the addition of a second gated
structure. However, it prevent an unnecessarily expenditure of ConvLLSTM model
(by adding some hyperparameters) to obtain the same performances.

HA”_> ConvisTM (M s L et conurerma (ST id' ConvtsT™ | ST e HA';’
layer4 —C‘> layer4 = layer4 = - =
STVP,, " STV, ' STMP,,, -
H,, H3,, I-‘I’k H,,,
i CONVLSTM . e i CONVLSTM s . CONVLSTM. e
layer3 T layer3 ) layer3 o
STMZ,., STVZ, ‘ STMZ,,,
H?,, H?, ‘ H?, H,,,
e CONVLSTM e i CONVLSTM s e CONVLSTM e
layer2 T layer2 = layer2 =
stV I ! STM!, T ' STMA,,, ’
HL - s I-l", Hey
> ConvISTM | s> ConvLSTM > ConvLsT™ i
] layerl —_—  layerl layer1l
STM?,, f a, * o, * o,
Xes Xe Xeex

Fig. 1. The main structure of Robust Spatiotemporal LSTM

4 Experiments

4.1 Datasets and performance metrics

Robust-ST-ConvLSTM architecture is tested on two motion video datasets:
KTH [40] for human motion and Moving MNIST [41]. To compare its per-
formances with the state-of-art approaches, frames quality evaluation metrics
are used. Those metrics are Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index (SSIM) [42].
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4.2 Implementation details of Robust-ST-ConvLSTM

Python 3.6 is used to implement the proposed architecture. For its ability to
store and process multidimensional data, Pytorch 1.4.0 is used to develop the
deep learning framework.

Adam optimizer [43] is used as an optimization algorithm to minimize the loss
function with a learning rate of 0.0001. We choose a mini-batch of 2 sequences
at each training iteration. We put an end to the training process after 100.000
iterations. As illustrated in Figure 1, our proposed architecture is composed of
4 stacked ConvLSTM layers for each timestep. Three hidden states are used to
enhance the prediction process and our model becomes a 3rd-order Robust-ST-
ConvLSTM. The dimensions of the hidden state depend on the input frames.
We train our implementation on the RTX 2060 GPU. It takes about a week to
train the entire network on KTH dataset and about 4 days on Moving MNIST.

4.3 Comparisons with the State-of-the-Art Methods

Quantitative results of the proposed algorithm and state-of-the-art networks on
KTH dataset are illustrated in Table 1. Table 1 summarizes the comparisons
with previous methods on PSNR and SSIM. The corresponding frame-wise com-
parisons are presented in Figure 3 and Figure 4. It can be observed that our
proposed Robust-ST-ConvLSTM for video prediction outperforms the others. it
increases the average PSNR and SSIM over the same number of predicted frames
by 26% and 21.31%, respectively, in comparison with standard ConvLSTM based
method. Also, Robust-ST-ConvLSTM performs favorably against PredRNN-
v2017 [26] and PredRNN-v2021 [27]. It performs better than PredRNN-v2021
by 1.72% and 2.77% in terms of PSNR and SSIM, respectively. The efficiency
of our proposed approach in forecasting future frames in a video is proved by
the qualitative results. Figure 5 plots the generated frames of different methods
compared with the ground truth. Robust-ST-ConvLSTM provides clearer and
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sharper prediction than other approaches. Details are predicted accurately be-
cause of the memory flow which enhances the long term prediction ability of the
ConvLSTM cell.
Furthermore, the qualitative evaluation of our Robust-St-ConvLSTM and the
state-of-the-art algorithms on Moving MNIST dataset by predicting 10 frames
based on the features of the previous 10 input frames is illustrated in Table 2.
As presented in Table 2, our proposed model outperforms the state-of-the-art
approaches in both metrics, thus confirming the previous observations on KTH
dataset. Our model increases the average PNSR over the 10 predicted frames by
3.15% by comparing it with PredRNN-v2021. In terms of SSIM, our Robust-ST-
ConvLSTM outperforms PredRNN-v2021 by 0.22%. Also, compared with the
standard ConvLSTM based model, our proposed algorithm has better PSNR
(>14.59%) and SSIM (>26.95%) performances.

In this research work, various values of a have been tested randomly (0 <
a < 1) and the optimum value was selected for the comparison (o = 0.9). This
means that determining the optimal value of a could be an interesting research
direction. Previous observations about the value of o and the number of hidden
states confirm that a trade-off should be done between quality performances and
computational cost, in future research work, to enhance the quality performances
of the predicted images without training a computationally expensive algorithm.

. @ R-ST-ConvlSTM
el B #  PredRNN2O17
: e PredRMNZ0Z1
e, i ConvlSTM
£ i
R Y
o TR . S
= n S R R et
= e, IR
in 26 1 R
o [ 9 et e
24 1 L D,
‘W
"I-..__..
22 1 W o
Lo RRE N
it |

2 4 & B 10 12 14 16 18 20
time-steps

Fig. 3. Frame-wise PSNR comparisons of different models on KTH dataset after 100
000 iterations

5 Conclusion

In this paper, we present a new recurrent neural network model for predicting
future video frames named ”Robust Spatiotemporal ConvLSTM” (Robust-ST-
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Fig. 4. Frame-wise SSIM comparisons of different models on KTH dataset after 100
000 iterations
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Fig. 5. Prediction examples on the KTH data set, where we predict 20 frames into the
future based on the past 10 frames
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Table 1. Quantitative evaluation of different algorithms on the KTH dataset. The
metrics are averaged over the 20 predicted frames.

Model PSNR(dB)[SSIM
ConvL.STM (Shi et al., 2015) | 23.009 |0.704
PredRNN (Wang et al., 2017)| 27.624 |0.839
PredRNN (Wang et al., 2021)| 28.502 |0.831

Robust-ST-ConvLSTM 28.992 |0.854

Table 2. Quantitative evaluation of different algorithms on the MNIST dataset. The
metrics are averaged over the 10 predicted frames.

Model PSNR(dB)| SSIM
ConvLSTM (Shi et al., 2015) | 28.380 0.705
PredRNN (Wang et al., 2017)| 30.569 | 0.869
PredRNN (Wang et al., 2021)| 31.525 | 0.893

Robust-ST-ConvLSTM 32.520 | 0.895

ConvLSTM). It is based on a new robust spatiotemporal unit, an extension
architecture of ConvLSTM. Our approach learns extra information from the
memory flow that handle the spatiotemporal information to significantly im-
prove the long-term frame prediction. We further improve the temporal context
for the motion in videos by opting for a higher order ConvLSTM approach to
enable cell states update from previous hidden states. Qualitative and quanti-
tative results demonstrate the superiority of our algorithm dealing with video
prediction, showing state-of-the-art performance in KTH and Moving MNIST
datasets. This architecture inspires us to further explore recurrent structures to
optimize the computational cost of the algorithm and generate accurate predic-
tions in future research work.
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