
HAL Id: hal-03412369
https://hal.science/hal-03412369v1

Submitted on 8 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Recovering Colliding LoRa Frames from Uncertainties
Using LoRa Coding

Weixuan Xiao, Nancy El Rachkidy, Alexandre Guitton

To cite this version:
Weixuan Xiao, Nancy El Rachkidy, Alexandre Guitton. Recovering Colliding LoRa Frames from Un-
certainties Using LoRa Coding. IEEE Conference on Local Computer Networks, Oct 2021, Edmonton,
Canada. pp.327-330, �10.1109/LCN52139.2021.9524949�. �hal-03412369�

https://hal.science/hal-03412369v1
https://hal.archives-ouvertes.fr


Recovering Colliding LoRa Frames from
Uncertainties Using LoRa Coding

Weixuan Xiao, Nancy El Rachkidy, Alexandre Guitton
Université Clermont Auvergne, CNRS, LIMOS, F-63000 Clermont-Ferrand, France

weixuan.xiao@uca.fr, nancy.el rachkidy@uca.fr, alexandre.guitton@uca.fr

Abstract—LoRa is one of the leading technologies for Low-
Power Wide Area Networks and the Internet of Things. Collisions
in LoRa might cause retransmissions, which negatively impact
the network performance and scalability. Several algorithms
have been proposed to decode colliding frames under specific
conditions. However, there remain indistinguishable frames due
to uncertainties in some or all symbols. In this paper, we propose
a general algorithm that significantly improves the recovery
capabilities of existing algorithms by leveraging the LoRa coding
techniques. Simulation results show that our algorithm can
significantly reduce the number of the failed decoding of LoRa
frames and improve the performance of the network.

Index Terms—LoRa, LoRaWAN, LPWAN, LoRa coding, Col-
lision resolution.

I. INTRODUCTION

Long-range communication technologies such as LoRa [1],
Sigfox [2], and Ingenu [3], can establish Low-Power Wide
Area Networks (LPWANs). These technologies are becoming
attractive choices for Internet of Things (IoT) applications be-
cause of the low energy consumption and large area coverage.

LoRa is a recent physical layer for LPWANs, which uses
Chirp Spread Spectrum (CSS) modulation. CSS enables the
simultaneous reception on different channels with different
spreading factors (SFs). Based on LoRa, LoRaWAN is a
simple MAC protocol with open specifications. It allows end
devices to communicate to a network server via LoRa gate-
ways. LoRaWAN has a limited throughput: its bitrate varies
from 250 to 11000 bps due to energy-saving considerations.
Constraints from using unlicensed radio bands also limit it.
In Europe, for instance, end devices can only use a small
duty-cycle (typically 1%) [4]. In a LoRa network, frames sent
simultaneously by several end devices on the same channel,
with the same SF might collide at the gateway. Such collisions
further reduce the network performance as end devices might
have to retransmit the frames in confirmed traffic.

Recently, many works have focused on the collision res-
olution of LoRa signals. Authors in [5] proposed a protocol
to decode colliding frames from LoRa signals. They leverage
the slight frequency offsets among transmitters in order to
separate the symbols. The frequency offsets come from the
oscillators of transmitters, due to the natural hardware imper-
fections. [6] [7] proposed to leverage the capture effect of
LoRa to perform successive interference cancellation (SIC).
When several signals are superposed, and one of them is
captured, SIC algorithms reconstruct the strongest LoRa signal
from the captured and decoded LoRa frame, remove this

signal from the superposed signals, and process iteratively
with the remaining signals. However, SIC algorithms cannot
handle multiple signals with similar energy levels. Authors
in [8] proposed the Generalized Slotted MAC (GS-MAC)
protocol which enables LoRa gateways to decode frames
that are slightly desynchronized, by a fraction of a symbol.
Transmissions in GS-MAC start within one symbol of the
beginning of a slot, in a random sub-slot. GS-MAC can decode
most frames that are sent alone in their sub-slot, but generates
uncertainties for the frames sent in the same sub-slot. Similar
decoding algorithms were proposed in [9] [10].

This paper proposes an algorithm that can be applied to
all the existing algorithms decoding colliding LoRa signals.
Indeed, our algorithm takes as input the uncertainties produced
by these existing algorithms, and reduces them using specific
information from the LoRa coding (namely, the Hamming
code, the interleaving, and the cyclic redundancy check).
In many cases, our algorithm can completely remove the
uncertainties and thus recover additional colliding frames. In
this way, several retransmissions can be avoided in confirmed
traffic, and the overall network performance is increased.

The structure of this paper is as follows. Section II describes
LoRa, LoRa coding, and the LoRaWAN MAC protocol. Sec-
tion III presents several collision resolution algorithms and
the uncertainties from them. Section IV describes the system
model and our proposed algorithm. Section V presents our
simulation results. Section VI discusses the limitations of
our algorithm. Finally, Section VII concludes the paper and
provides prospects for future work.

II. LORA AND LORAWAN

In this section, we first describe the LoRa physical layer.
Second, we present the coding techniques in LoRa. Finally,
we give an introduction to LoRaWAN, a widely used MAC
protocol in LoRa networks.

A. LoRa

LoRa [11] is a physical layer technology for LPWAN based
on a CSS modulation. LoRa frame is composed of a sequence
of chirps. Each chirp consists of a linear frequency sweep over
the given bandwidth (BW), encoding a symbol with the initial
frequency. The symbol duration (SD), depending on the SF,
can be obtained by SD = 2SF

BW .
A typical LoRa PHY frame consists of a preamble, a header

and a payload. In the preamble, there are i) a series of symbols



with value 0, ii) a synchronization word, which is a network
identification, and iii) two and a quarter down-chirps as an
identifier of the end of the preamble. Except for the identifier
of the end of the preamble, all the other parts use up-chirps.
Figure 1 shows an example of a partial LoRa frame, which
has a short series of one symbol with value 0, two symbols
as the synchronization word, the identifier of the end of the
preamble, and several symbols of data.

frequency

IdentifierSync wordPreamble

time

Header, payload, CRC, etc.

Fig. 1: Example of a partial LoRa frame.

To decode the symbols in a LoRa frame, the receiver
synchronizes with the LoRa signal through the preambles. In
each symbol duration, the received signals are multiplied by
a normalized down-chirp to remove the time-variant. Then,
the Fast Fourier Transformation (FFT) is performed on the
production. The receiver finds the FFT peak in each symbol
duration to get the symbol value. Finally, the decoded symbols
compose an entire frame of the synchronized LoRa signal.

B. LoRa coding

The patented LoRa PHY [11] describes several coding
techniques to enforce the robustness of the system. Authors
in [12] have reverse-engineered LoRa and provided more
details. An encoder transforms the data of a MAC frame into
a LoRa frame, which consists of LoRa symbols. The coding
techniques are combined into a pipeline, which consists of
Hamming coding, whitening, interleaving, and Gray coding.

1) Hamming coding: Encoder adds redundancies to the
frame for Error Correction Coding (ECC). The coding takes
effect on each nybble of 4 bits from the MAC frame to
generate codewords. In LoRa coding, a parameter named
coding rate (CR), varying from 1 to 4, controls the number
of redundant bits to add to each nybble. The redundant bits
are derived from each nybble using Hamming coding. Several
Hamming codings can be chosen in LoRa: 4/5, 4/6, 4/7, and
4/8, where 4 is the length of the nybble, and 5 to 8 is the
length of the generated codewords, which equals CR+ 4.

2) Whitening: An XOR operation with a specific sequence
given by device manufacture is applied to the codewords after
Hamming coding.

3) Interleaving: LoRa uses a diagonal interleaver to dis-
tribute the data bits over several symbols to distribute short-
time noise or interference over several symbols. The inter-
leaver acts on codeword blocks and scatters the bits of a
codeword, from a line in the input matrix, to a diagonal in the
output matrix [12]. The actual interleaver used in LoRa coding
is reverse-engineered in [13]. It is applied to each block of SF
codewords, where each codeword has CR+4 bits, to generate
blocks of CR+ 4 symbols, where each symbol has SF bits.
A MAC frame may not be able to provide enough codewords

5

111

50

95

79

1

1 11

1 1 1

1 1 1 1

1 1 1 10

0 0

0 000

0

0 0

MSB LSB

0x1A

0x03

0x0E

0x1A

0x1F

0x19

0x1A

1

0

0

1

1

0

1

1

0

1

0

0

0 0

interleaving

01

0

1

1

1 0

1

0 1

1 1

0 0

1

1

1

1

11

1

1

0 1

0

1

1

1

1

1

1

diagonal

ECC bit Data bit

codewords symbols

Fig. 2: Example of the diagonal interleaver applied to a codeword
block (left) with SF = 7 and CR = 1, to get a symbol block (right).

to every block. In this case, the LoRa encoder needs to add
paddings for encoding.

Let us consider the input matrix on the left of Fig. 2 as
an example. Each codeword of the input matrix has one ECC
bit (coming first) and four data bits (coming last). The bits
forming each symbol in the output matrix start from the bit
above the diagonal of the input matrix, and end at the bit
below the diagonal, following the direction of the arrow in
the input matrix. From the bottom to the top, the bits in the
last column compose the first symbol 50 in the output matrix.
For the penultimate column, the bits of the output symbol 111
are 1101111, as they start from the bit above the diagonal (row
1) and end at the bit below the diagonal (row 2).

4) Gray coding: Transmitters then encode symbols with
Gray code, and receivers decode symbols vice versa.

C. LoRaWAN

LoRaWAN [14] is a simple MAC protocol on top of the
LoRa physical layer. It defines a star topology, where end
devices connect to a network server through gateways. End
devices use LoRa to communicate with gateways. Gateways
communicate with the network servers through IP connections.

LoRaWAN defines three classes of end devices. Class
A is for low-power up-link communications and is manda-
tory. Class B provides a beacon-based mechanism for delay-
guaranteed down-link communications. Class C does not have
any limit on energy consumption. This paper concentrates on
Class A, where the end devices can transmit at any time
using the ALOHA mechanism: an end device chooses a
random channel, sends a frame, and waits for potential frames
from the gateway by opening two receive windows after
transmission. The gateway can send the acknowledgment or
the data from the network server during either of these receive
windows. In confirmed traffic, retransmissions of frames can
be triggered several times by end devices until receiving a
valid acknowledgment or reaching the maximum number of
transmissions allowed.

LoRaWAN provides different LoRa settings adapted to each
region. European regional settings of LoRaWAN [4] define



seven data rates (DRs) for LoRa communication, from DR0
to DR6. The bandwidth of channels is 125 kHz for DR0 to
DR5 and 250 kHz for DR6. SF varies from 7 to 12 for
DR5 to DR0 and is equal to 7 for DR6. End devices can
automatically adapt the data rate according to the quality of
links. When an end device experiences a low signal quality,
it decreases its DR to increase the transmission range and
robustness of the signal. However, lower DR brings a lower
bitrate. The indicative physical bit rate is 11000 bps for DR6
and down to 250 bps for DR0.

III. EXISTING COLLISION RESOLUTION ALGORITHMS AND
UNCERTAINTIES FROM THE ALGORITHMS

This section first describes the existing collision resolution
algorithms, CHOIR, SIC, GS-MAC, and the uncertainties
produced by each one of these algorithms. Finally, we give
an example of uncertainties in general.

A. CHOIR algorithm

CHOIR uses the standard LoRa decoding mechanism de-
scribed in II-A to decode symbols. However, collided LoRa
frames can become indistinguishable. In other words, the
receiver cannot match the decoded symbols to the frames.
To cope with this, authors in [5] proposes to leverage the
small frequency offsets among transmitters to separate the
symbols. The frequency offsets come from the oscillators of
transmitters, due to the natural hardware imperfections.

In the core algorithm, the samples of the received signals
are firstly multiplied by a normalized down-chirp. Then, the
production is padded with 0 into a wider window (10× larger).
Finally, they perform the FFT on the zero-padded production
to extract the symbol values and the small frequency offsets
from the signals. With a ten times larger FFT window, we can
tell the resolution of the frequency offset is 0.1 over a symbol
unit. For example, a demodulated symbol with value 51.1
(symbol 51 with an offset 0.1) and another symbol with value
61.2 (symbol 62 with an offset 0.2) are from different frames.
When the offset between two frames is smaller than the
resolution, these frames are still indistinguishable, and thus,
uncertainties appear in some symbols upon decoding. The
number of transmitters increases by scaling a LoRa network
up, limiting the overall performance of the network.

B. SIC algorithm

Authors in [6] and [7] propose their algorithms based on SIC
to decode two collided LoRa frames. The core mechanism is
to leverage the capture effect in LoRa to decode the strongest
signal, which needs to have significant differences from the
other collided frames in collisions. The decoder synchronizes
with the strongest LoRa signal to decode the entire LoRa
frame through the standard LoRa decoding mechanism de-
scribed in II-A. Then, the corresponding signal component is
reconstructed and subtracted from the received signals. The
decoder can then repeat the decoding process to decode the
frame with the strongest signal from the residue of signals.

[6] also gives the sensitivity thresholds for signals with
125 kHz of bandwidth. For SF 7 and SF 12, the differences
between the power of the strongest signal and the power of
the collided signals should be, respectively, -6 dB and -20 dB.
Otherwise, the algorithm can still decode symbols, but does
not know the corresponding frames, which fails the algorithm
and degrades the performance of the network.

C. GS-MAC algorithm

In GS-MAC, the gateway sends periodic beacons on each
SF . Each beacon contains the number of slots before the next
beacon. A slot starts with M sub-slots, equally distributed
during the first symbol of the slot. The transmissions of
end devices always start during the first symbol of a slot,
in a random sub-slot. The gateway sends acknowledgments
right after a correctly decoded transmission, in the same
slot as the transmission. When there are any uncertainties
during the decoding, the frame can not be fully decoded. The
uncertainties occur because of the following three aspects.

1) Several collided frames in one sub-slot: When several
end devices send their frames in the same sub-slot, GS-MAC
can compute the possible symbols. However, a gateway does
not know to which frame each symbol belongs.

2) Repeated symbols: GS-MAC is unable to detect a sym-
bol change at the symbol frontier if two consecutive symbols
are identical in one frame, which might cause uncertainties in
the other collided frames.

3) Interference on first symbol: Based on the assumption
in [8], the first symbol of frames can have uncertainties due
to the interference between the up-chirps of the payload and
the down-chirps of the end of preamble delimiters from other
frames. [8] proposed to introduce an arbitrary symbol, which
is different from the first data symbol to help decoding it.

D. Examples of Uncertainties

Suppose the two frames experience a collision with each
other. In that case, we can have a synchronized case, in which
the two frames are fully overlapped with each other from the
beginning; or a desynchronized case, in which a frame arrives
later than another one, overlapping a part of symbols.

F.1 50 111 5 95 79 26 33 94 124 18 52 27 58 116 94 1 0 32 16 0
F.2 80 95 88 29 104 67 31 81 45 91 98 9 19 10 99 1 64 32 16 8

TABLE I: EXAMPLE OF THE PAYLOAD OF TWO FRAMES
(F.1 AND F.2) WITH SYMBOLS ENCODED BY SF 7

Let us consider two frames from two transmitters in Tab. I.
If the two frames are synchronized, the receiver will be able
to decode {50, 80} for the first symbol, {111, 95} for the
second symbol, and so on1. However, the uncertainties appear
here because sometimes it is impossible to match the symbols
to each frame. For the cases where the two frames are partially
overlapped, we show an example that the second frame arrives
later than the first frame. The first symbol 80 in Frame 2
overlaps with the last symbol 0 in Frame 1, which produces

1This is the worst case which produces the uncertainties in the entire frame.



a single uncertainty with two possibilities {0, 80} for the last
symbol in Frame 1, and the first symbol in Frame 2. SIC
and CHOIR can conditionally resolve it. In GS-MAC, such a
case is impossible because it has a slot-based synchronization
mechanism. However, repeated symbols and the interference
on the first symbol can incur such uncertainties in some
symbols in a frame. Indeed, such uncertainties are much easier
to remove because they produce fewer possibilities.

The receiver can conditionally resolve these cases by lever-
aging the minor frequency offsets in CHOIR, the significant
power difference between the signals in SIC, or the different
sub-slots in GS-MAC. However, the algorithms fail when
certain conditions are not met, as described in each algorithm.

IV. PROPOSED ALGORITHM

In this section, we first describe the system model of our
proposition. Second, we present our algorithm to reduce the
uncertainties upon decoding LoRa frames. Finally, we give an
analysis of our proposed algorithm.

A. System model

In LoRa, the total number of symbols N in a frame after
LoRa coding is defined in [15] as follows:

N = 8 +max

(
d2PL− SF + 6 + 5H

SF − 2LD
(CR+ 4)e, 0

)
(1)

where PL is the number of bytes of the original data; SF
is the spreading factor; H indicates if the LoRa PHY header
is present (H=1) or not (H=0); LD indicates the low data rate
mode (1 for enabled, 0 for disabling) in LoRa; and CR varies
from 1 to 4, as the coding rate used by Hamming coding.
Equation 1 can be simplified as follows:

N = 8 + (CR+ 4)K,K ≥ 0, (2)

where K is the number of symbol blocks containing (CR+4)
symbols in each. The number K a function of modulation
settings such as CR and SF .

With this representation, we can thus consider a LoRa frame
as a concatenation of one symbol block as header, and K
symbol blocks as payload. The symbol block of the header
consists of eight symbols, encoding the payload length, CR for
decoding the payload and the presence of CRC with CR = 4.
Each symbol block in the payload consists of CR+4 symbols,
as the output matrix in Figure. 2.

If we take the worst case between the two collided frames
in Tab. I, the uncertainties can be represented by four symbol
blocks with CR = 1 and SF = 7, as shown in Tab. II.

B. Decoding algorithm to reduce uncertainties

Our algorithm manipulates the uncertainties based on the
symbols blocks from LoRa coding. Specially, during encod-
ing, the interleaving process distributes the data bits and
the redundant bits of codewords in a block among several
symbols in a symbol block. By leveraging this property, we

can significantly reduce the number of uncertainties in each
block when decoding.

If there are any uncertainties in a symbol block, which
are interpreted as several possible symbol values, the decoder
generates the possibilities and deinterleaves them. It then
calculates the expected redundant bits calECC from the data
bits. The encoded redundant bits refECC should match
calECC for all codewords in a possible block. If this is not
the case for one possible block, it can safely be removed. This
process validates all the codewords, which are deinterleaved
from blocks of symbols. Its detail is given in Algorithm 1.

Algorithm 1: Validation of codewords
S ← all possible symbol blocks from uncertainties
validatedBlocks ← {}
foreach block in S do

codewordBlock ← deinterleave block
flag ← true
foreach codeword in codewordBlock do

d ← extract data bits
refECC ← extract ECC from data
calECC ← calculate Hamming coding with d
if refCRC 6= calCRC then

flag ← false
if flag = true then

add codewordBlock into validatedBlocks

Algorithm 2: Validation of CRC

foreach possible frame in decoded MAC frames do
truncate frame according to the frame length
refCRC ← retrieve CRC from MAC frame
calCRC ← calculate CRC from MAC frame data
if refCRC 6= calCRC then

drop the MAC frame
else

send the MAC frame to Network Server

Note that each block takes a position in the LoRa frame
to which it belongs. The position does not change during
interleaving and deinterleaving. Thus, after the validation of
codewords, the data encoded in the codewords of each position
can be extracted and assembled to get the possible MAC
frames. The CRC of the payload is encoded into the last
two bytes in a MAC frame. The CRC of the possible MAC
frames can be calculated from the data in the MAC frames.
By leveraging CRC, we can further reduce the possible MAC
frames by comparing the CRC computed from the data with
the CRC retrieved from the MAC frames. Algorithm 2 shows
how the second step of our algorithm works.

We then show how the use of Algorithms 1 and 2 can reduce
these uncertainties in an example as follows.

Let us consider the two frames in Tab. I, encoded with
SF = 7 and CR = 1. There are uncertainties (generally,
two) for each symbol in the frames. The gateway knows that



Block 1 Block 2
Symbol 0 Symbol 1 Symbol 2 Symbol 3 Symbol 4 Symbol 5 Symbol 6 Symbol 7 Symbol 8 Symbol 9
{50, 80} {95, 111} {5, 88} {29, 95} {79, 104} {26, 67} {31, 33} {81, 94} {45, 124} {18, 91}

Block 3 Block 4
Symbol 10 Symbol 11 Symbol 12 Symbol 13 Symbol 14 Symbol 15 Symbol 16 Symbol 17 Symbol 18 Symbol 19
{52, 98} {9, 27} {19, 58} {10, 116} {94, 99} {1} {0, 64} {32} {16} {0, 8}

TABLE II: EXAMPLE FOR UNCERTAINTIES FROM THE PAYLOAD OF TWO SUPERPOSED FRAMES, GROUPED BY BLOCKS

Validated codewords from Block 1 Validated codewords from Block 2 Validated codewords from Block 3 Validated codewords from Block 4
1. {1A 06 1A 1A 0B 0E 0D} 1. {19 1F 0E 12 12 1A 0D} 1. {14 12 03 14 0B 17 1C} 1. {0D 00 00 00 00 00 00}
2. {1A 06 02 1A 03 0E 0D} 2. {11 1F 06 1A 12 1A 0D} 2. {1C 1A 0B 14 03 1F 14} 2. {1F 00 00 00 00 00 00}
3. {1A 03 0E 1A 1F 19 1A} 3. {08 1F 08 05 05 1C 0E} 3. {00 03 14 14 1A 11 0D}
4. {1A 03 06 1A 17 19 1A} 4. {00 1F 00 0D 05 1C 0E} 4. {08 0B 1C 14 12 19 05}

TABLE III: EXAMPLE FOR REDUCED UNCERTAINTIES FROM TWO FRAMES LEVERAGING ECC IN CODEWORDS (IN HEX)

Frame Symbol values of the validated LoRa frame, with SF 7 and CR1 Decoded MAC frame CRC
1 50 111 5 95 79 26 33 94 124 18 52 27 58 116 94 1 0 32 16 0 0xA3 0xEA 0xF9 0xA8 0xF8 0x55 0xCE 0xCA 0xB4 0x3F 0x4D
2 80 95 88 29 104 67 31 81 45 91 98 9 19 10 99 1 64 32 16 8 0xA3 0x6A 0x79 0xA8 0xF8 0x55 0xCE 0x8B 0xC4 0x29 0x5F
3 50 111 5 29 79 26 33 94 124 18 98 9 19 116 99 1 64 32 16 8 0xA6 0x2A 0x3E 0xD1 0xF6 0xA2 0xAD 0x03 0x44 0xA1 0xDF

TABLE IV: EXAMPLE FOR THREE FRAMES, DECODED FROM THE TWO FRAMES USING PROPOSED ALGORITHM

every CR + 4 symbols compose a symbol block. We take
the first five sets: {50, 80}, {111, 95}, {5, 88}, {95, 29},
and {79, 104} from Block 1 of frame 1 and frame 2, shown
in Tab. II. By combining them, we get 32 possible blocks.
Figure 3 shows two possible blocks: one with symbols {50,
111, 5, 95, 79}, and the other with symbols {50, 111, 88,
95, 79}. The only difference between these two blocks is the
third symbol with a value of 5 or 88. After deinterleaving,
we can see that the third column of codewords is 0010100
for symbol 5, and 0100011 (red) for symbol 88. Symbol 88
changes some codewords and the expected ECC, as shown in
the ECC column. The expected ECC bits do not match the
ECC bits in the codewords. Thus, the symbol block {50, 111,
88, 95, 79} can be removed from the possible block set, and
the other symbol block {50, 111, 5, 95, 79} is considered as
a possible block in a LoRa frame. Through Algorithm 1, the
number of possible blocks for Block 1 is reduced from 32 to
4, as shown in Tab. III.

111

50

95

79

1

1 1 1 11

1

1 1 1

1 1 1 1 1

1 1 1 1 10

0 0 0 0

0

0 0

de−interleaving

1

1

1

1

1

1 1

1 1 1

1 1

11

1 1

1 1

1 1 0

00

0

0

0

0

0

Data
ECC ECC

5 0

0 1 0 1 0 01

0 0 0 1 0 1

codewordssymbols

0x1A

0x1A

0x1A

0x03

0x0E

0x1F

0x19

88

0x07

0x0A

0x1B

0x1D

0x1E

1 1 1

0

0

0

0

1

1

1

0

0

1

0

1

0

0

0 0 0 0

ECC

1

0

0

1

1

1

1

1

1

1

1

0

0

0

Matched Unmatched

Fig. 3: Example of diagonal interleaver applied on a valid codeword
block (left) and an invalid codeword block with SF = 7 and CR = 1.

Each possibility at each position in a frame contains SF
codewords, which are deinterleaved from the corresponding
symbol blocks. We can thus obtain 128 possible MAC frames

(from 4 possibilities for Blocks 1, 2, 3, and 2 possibilities for
Block 4) by extracting and concatenating the data in order. For
example, if we take the first possibility for each position in
Tab. III, which are {0x1A 0x06 0x1A 0x1A 0x0B 0x0E 0x0D}
for Block 1, {0x19 0x1F 0x0E 0x12 0x12 0x1A 0x0D} for
Block 2, {0x14 0x12 0x03 0x14 0x0B 0x17 0x1C} for Block
3, and {0x0D 0x00 0x00 0x00 0x00 0x00 0x00} for Block 4.
By taking the lower 4 bits as data and remove the padding, we
can get a frame {0xA6 0xAA 0xBE 0xD9 0xFE 0x22 0xAD
0x42 0x34} and the CRC {0xB7 0xCD} decoded from the
frame. Algorithm 2 calculates the CRC from the MAC frame
data and compares it with the CRC in the possible MAC frame,
to further reduce the possibilities.

Finally, Table IV shows three frames that we decoded from
the uncertainties with the help of Algorithms 1 and 2. We find
that frame 1 and frame 2 are the frames transmitted by the end
devices, according to Tab. I. Frame 3 is incorrectly decoded
by our algorithm. However, the incorrectly decoded frames are
rare when there are not many uncertainties. We will show this
later in Subsection VI-B.

C. Complexity analysis

The frames in collision meet certain conditions and can
produce several sets of indistinguishable frames. For example,
the frames transmitted in sub-slot 1 in GS-MAC produce a set
of indistinguishable frames, and the frames transmitted in sub-
slot 2 produce another set. So, we can consider the complexity
of each set of indistinguishable frames independently. Let us
take only one set of C indistinguishable frames as an input.

To validate a codeword block, Algorithm 1 applies Ham-
ming coding on the nybble of each codeword and compares
it with the ECC in the codeword. The length of a nybble
is fixed at 4. So, we can maintain a small dictionary of 16
different nybble values and their corresponding ECC for each
CR. Thus, calculating Hamming coding becomes a query in
a dictionary, which takes constant time. The complexity of
validating a codeword block of SF codewords is O(SF ). To



obtain a codeword block from a symbol block, the algorithm
uses deinterleaving, which takes a (CR+4)×SF matrix and
returns a SF × (CR + 4) matrix. The manipulation is just
a rearrangement of the data bits. So, its time complexity is
O(SF.(CR+ 4)), or O(SF.CR).

The time complexity on the validation of codewords is
O(SF.CR.K.CCR+4 +8.SF.C8), where K is the number of
blocks of the payload in a LoRa frame. When C is not large,
the algorithm can decode many indistinguishable frames with
acceptable computational overhead. For example, suppose we
have C = 2, which means that two collided frames are not
distinguishable by a collision resolution algorithm. In that
case, the number of possible frames from the uncertainties can
be up to 28+K(CR+4). Algorithm 1 performs the deinterleaving
and the validations for each block with CR+4 symbols. The
decoder can perform 8SF ×28+SF × (CR+4)×2K(CR+4)

bit manipulations rather than iterating all the 28+K(CR+4)

possible LoRa frames to firstly reduce the uncertainties. In
our example, if we only consider the payload, the number
of possible LoRa frames from the uncertainties in II is 217

because the symbols 15, 17, 18 are identity for the two frames.
However, we successfully reduce the number of 27 (around
0.1% remaining) by leveraging Algorithm 1.

After validating blocks, we can get some validated blocks,
and we know their corresponding positions in possible LoRa
frames. By concatenating data bits in the deinterleaved blocks,
Algorithm 2 obtains a set of P possible MAC frames and their
corresponding CRCs. We use L to denote the length of the
largest frame. Calculating CRC takes linear time by iterating
all the data bits in a frame. Thus, the time complexity of
validation of CRC is O(P.L). The number of possible MAC
frames, P , depends on the number of validated blocks from
Algorithm 1. The number of validated blocks increases by
increasing C, and decreases by increasing CR. Indeed, larger
CR means there are more ECC bits in a codeword, which
increases the probability of reducing the number of possible
blocks. P only depends on the number of indistinguishable
frames when CR is constant. In our example, P is obviously
27 with CR = 1. The payload has nine bytes and L is 9. As a
result, we need to compute 128 CRC from 1152 bytes to get
the final frames.

We can tell that the complexities of Algorithms 1 and 2
largely depend on C. It is possible to define a threshold for
this number. The gateway does not need to perform extensive
computations when the possible frames are numerous.

V. SIMULATION RESULTS

In this section, we first present the parameter settings in our
simulations, and then show the performance of our proposed
algorithm, assuming uncertainties from different protocols.

A. Parameter settings

We implemented CHOIR, SIC, and GS-MAC using a Lo-
RaWAN module 2 in the network simulator NS-3. We present

2Available at https://github.com/signetlabdei/lorawan

Fig. 4: Architecture of simulated LoRa network with several end
devices, one LoRa gateway and one network server.

the parameter settings in the following. The network consists
of a network server, a single gateway, and several end devices
uniformly distributed within one kilometer around the gateway,
as shown in Fig. 4. We vary the number of end devices from
400 to 2000 for SF 7, and from 200 to 1000 for SF 12. CR
is set to 1 (although larger values of CR would improve the
performance of our algorithm).

We simulate unconfirmed traffic during one hour. Each end
device sends one frame with 10 bytes of random payload
(after applying LoRa coding with CR 1, the frame corresponds
to 28 symbols for SF 7, and to 38 symbols for SF 12).
The gateway simulates an SX1301 hardware [16] with eight
demodulation paths, which allows decoding up to eight frames
simultaneously. We do not limit the decoding time nor the
number of possible frames for our proposed algorithm.

We consider the European regional setting of LoRaWAN for
all protocols. The bandwidth is set to 125 kHz. All devices
use the same channel at 868.1 MHz in order to simulate a
heavy traffic. The demodulation paths are also set to listen
on the 868.1 MHz channel. We assume that the channel does
not produce frame error or symbol error, thus the symbols
are correctly demodulated by all algorithms. A log-distance
path loss model is configured as the propagation model in the
simulator. The loss can be represented as follows:

Loss = L0 + 10n log10
d

d0
(3)

where n = 3.76, L0 = 7.7 and d0 = 1 are set.
The collision resolution algorithms and our proposed algo-

rithm are only applied at the gateway.

• In CHOIR, end devices are initiated with uniformly
distributed frequency offsets to simulate hardware im-
perfection. These frequency offsets are fixed during the
whole simulation. We apply our algorithm when the
collided frames have a relative frequency offset smaller
than the given resolution, which is 0.1 symbol unit.

• In SIC, we consider that a large difference in signal power
is sufficient to extract the frame with the strongest signal.
[7] has shown that the error rate dramatically increases
with three or four signal levels. So, we applied our
algorithm only when several frames have similar signals
that are the strongest, or the second strongest under only



Fig. 5: Simulation results show that our proposed algorithm improves the decoding capacities for unconfirmed traffic with SF 7 and SF 12.

one stronger signal. The thresholds are set to -6 dB for
SF 7, and -20 dB for SF 12, according to [6].

• In GS-MAC, the number of sub-slots is set to 4. The end
devices randomly choose a sub-slot for each transmission,
following a uniform distribution. Our algorithm is applied
when there are uncertainties in a frame, regardless of the
causes, that is, if several frames are sent during the same
sub-slot, or if superposed symbols cause uncertainties.

The simulation results are averaged over 100 repetitions.
Note that the objective here is not to compare CHOIR,

SIC, and GS-MAC, as each protocol benefit from different
deployment settings, but rather to compare the benefits of our
algorithm when applied to each protocol.

B. Frame error rate

We evaluate the decoding capacities in terms of frame
error rate for all the frames sent during one hour. In the
simulation, frame errors come either from collisions that the
algorithms can not resolve, or by exceeding the limited number
of demodulation paths (which is a hardware constraint of the
SX1301).

Figure 5 shows the average frame error rate for each
collision resolution algorithm, with and without our proposed
algorithm, in terms of the number of end devices in the
network. By adding our algorithm, we can tell that errors on
frames are primarily due to the limited number of demodu-
lation paths. Our algorithm reduces most of the uncertainties
for SF 7 and SF 12, which brings fewer frame errors. With
SF 7, compared to the original CHOIR, SIC, and GS-MAC,
the gain with our proposed algorithm can reach, respectively,

13%, 35%, and 28%. With SF 12, the gain for each algorithm
reaches up to 11%, 47%, and 19%, respectively.

As our simulation scenario deals with unconfirmed traffic,
we did not show the results in terms of delay or energy
efficiency, as they are slightly impacted by the decoding
capabilities of the protocols. In the case of confirmed traffic
however, reducing the frame error rate also reduces the number
of retransmissions, which yields to a significant decrease in
terms of both the delay and the energy consumption.

VI. DISCUSSION

We briefly discuss here the limitations of our algorithm.

A. Computational overhead

The main limitation of the algorithm is the computation time
required at the gateway. If many end devices simultaneously
send frames, the computational overhead might be significant
for the gateway, delaying the overall decoding, reception, and
possibly acknowledgment. For example, for N indistinguish-
able frames, CR + 4 symbols can generate up to N (CR+4)

possible blocks, which might bring too much overhead at
the gateway. Thus, the gateway can set thresholds and waits
for retransmissions if the number of indistinguishable frames
exceeds the threshold.

B. Recovering fake frames

Our proposed algorithm might recover a few frames that
have not been actually transmitted. Such an example is shown
for frame 3 in Tab. IV. This occurs when a frame (here,
frame 3) is completely composed of symbols from the other
frames (here, frames 1 and 2), including a valid CRC. Since
our algorithm generates all combinations of possible frames,



it generates frame 3, being a valid combination of frames 1
and 2, which might have been sent. Designing an algorithm
that would minimize the number of possible frames is possible
and would not generate frame 3, but such an algorithm would
miss frame 3 if it was actually sent.

Such errors are theoretically impossible to avoid [9], without
making assumptions on the upper layers. However, they can be
detected and handled at a higher layer by the network server
because the data is corrupted, which is out of the scope of this
paper. The network server is not likely to reply to the fake
frames, due to data corruption. Moreover, having the gateway
acknowledge fake frames is not an issue, as either the end
device would not exist, or the end device would not have
opened the receive window for an acknowledgment (since it
has not sent a frame).

Indistinguishable frames 2 4 6 8
Encoded with CR1, SF8 0.05% 2.82% 37.50% 91.12%
Encoded with CR2, SF8 0.09% 1.67% 16.11% 55.21%
Encoded with CR3, SF8 0.05% 0.07% 0.22% 0.88%
Encoded with CR4, SF8 0.05% 0.05% 0.20% 0.63%

TABLE V: PERCENTAGE OF FAKE FRAMES IN ALL
DECODED FRAMES OVER 2000 REPETITIONS

In practice, this situation occurs very rarely when there
are not many indistinguishable frames. Table V shows the
statistical results of the percent of fake frames with different
CRs and different numbers of indistinguishable frames. We
can tell that as CR increases, there are fewer fake frames.

C. Potential performance issue

Both the CSS modulation and the LoRa coding enable
LoRa to be robust to minor errors in symbols. Our algorithm
currently assumes that all symbols are correctly received,
confirmed in a scenario with a fair SNR and no significant
time drift between transmitter and receiver. In the case where
the SNR is low, additional uncertainties might come from
erroneous symbol decoding. In this case, the performance of
our algorithm might be degraded. The study of our algorithm
in a noisy environment is left as future work.

VII. CONCLUSION

Collisions in LoRa negatively impact network performance.
Many works are concentrating on decoding collided LoRa
signals. However, there are specific cases where each protocol
cannot decode all frames. In this paper, we proposed a general
algorithm leveraging LoRa coding mechanisms to process
indistinguishable frames. Simulation results showed that our
algorithm can improve the decoding capabilities of most
collision resolution algorithms. In our future work, we will
explore how to cooperate with multiple gateways by separating
the workload and leveraging the different characterizations of
signals due to the relative positions of multiple gateways.

REFERENCES

[1] Semtech Corporation. AN1200.22 LoRa Modulation Basics. Application
note Revision 2, Semtech, 2015.

[2] Sigfox. http://www.sigfox.com. accessed 2020-10-01.

[3] Ingenu. http://www.ingenu.com. accessed 2020-10-01.
[4] Semtech Corporation. LoRaWAN v1.1 Regional Parameters. Technical

Report Revision A, Semtech, 2017.
[5] R. Eletreby, D. Zhang, S. Kumar, and O. Yağan. Empowering Low-

Power Wide Area Networks in Urban Settings. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication,
SIGCOMM ’17, August 2017.

[6] B. Laporte-Fauret, M. A. Ben Temim, G. Ferre, D. Dallet, B. Minger,
and L. Fuche. An Enhanced LoRa-Like Receiver for the Simultaneous
Reception of Two Interfering Signals. In Proceedings of Annual
International Symposium on Personal, Indoor and Mobile Radio Com-
munications, September 2019.

[7] M. A. Ben Temim, G. Ferre, R. Tajan, and B. Laporte-Fauret. A Novel
Approach to Process the Multiple Reception of Non-Orthogonal LoRa-
Like Signals. In Proceedings of IEEE International Conference on
Communications, June 2020.

[8] N. El Rachkidy, A. Guitton, and M. Kaneko. Generalized Slotted MAC
Protocol Exploiting LoRa Signal Collisions. In IEEE International
Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC), September 2020.

[9] N. El Rachkidy, A. Guitton, and M. Kaneko. Decoding Superposed
LoRa Signals. In IEEE Conference on Local Computer Networks (LCN),
October 2018.

[10] N. El Rachkidy, A. Guitton, and M. Kaneko. Collision Resolution Proto-
col for Delay and Energy Efficient LoRa Networks. IEEE Transactions
on Green Communications and Networking, April 2019.

[11] O. B. A. Seller and N. Sornin. Low power long range transmitter, 2014.
[12] A. Marquet, N. Montavont, and G. Z. Papadopoulos. Towards an SDR

implementation of LoRa: Reverse-engineering, demodulation strategies
and assessment over Rayleigh channel. IEEE Computer Communica-
tions, March 2020.

[13] P. Robyns, P. Quax, W. Lamotte, and W. Thenaers. A Multi-Channel
Software Decoder for the LoRa Modulation Scheme. In Proceedings of
International Conference on Internet of Things, Big Data and Security,
2018.

[14] Semtech Corporation. LoRaWAN Specification v1.1. Technical Report
Revision B, Semtech, 2017.

[15] Semtech Corporation. AN1200.13 SX1272/3/6/7/8: LoRa Modem De-
signer’s Guide. Application note, Semtech, 2013.

[16] Semtech Corporation. SX1301 Datasheet v2.4 ed. Application note,
Semtech, 2017.


