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A B S T R A C T

Surface registration is a fundamental problem in computer graphics and computer-aided
design. The problem consists in finding a deformation from one surface to another that
preserves some properties. For instance, in our inverse engineering context, we aim
at finding the best, as isometric as possible, map between an input triangular model,
and a large point cloud acquired on the actual mechanical part being processed. Exist-
ing solutions are not able to handle very large models with a good level of precision.
We propose a method which is accurate and fast. Our solution combines an efficient
iterative energy minimization scheme on a hierarchical decomposition of the problem
geometry. Our experiments show that we obtain a fast and efficient algorithm compared
to the state-of-the art method, while keeping its numerical accuracy.

1. Introduction1

Surface registration is a fundamental problem in computer2

graphics and computer-aided design. Given two surfaces, called3

source and target, the objective of the registration is to find a de-4

formation that maps from the source into the target satisfying5

some properties (isometric, conformal, one-to-one, partial. . . ).6

This is a common problem, for example in 3D scanning, where7

multiple datasets captured from different viewpoints must be8

registered. In geometry processing, a mapping between the9

source and the target is for example needed in post-processing10

such as reconstruction, morphing or information transfer.11

This is also a key problem in inverse engineering where CAD12

models are compared to measure their real counterparts. In13

this context, real objects are captured live using laser range or14

probing devices. Hence, the source is a CAD model (e.g. a15

clean triangular mesh), and the target a large, possibly noisy,16

point cloud. In sheet metal manufacturing, which motivates17

the present research, the springback problem [1], caused by the18

elastoplastic material behavior of sheet metals, falls into reg-19

istration problems where the CAD model source must be reg-20

istered into the measure of the real model target before being21

processed by the device (e.g. for machining). The springback22

being mainly bending, a classical assumption is that tangential23

shearing or stretching are neglected and therefore the deforma-24

tion can be considered as non-rigid and almost isometric. This25

defines the class of maps between the source and the target we26

are looking for.27

∗Corresponding author:
e-mail: pierre.bourquat@liris.cnrs.fr (Pierre Bourquat)

Since time efficiency is central for engineering production, 28

the registration method must be time efficient on very large 29

datasets. In the following, we will assume that the source is 30

a mesh with more than a million of vertices and the target is a 31

point cloud with more than 5 million samples. 32

The computer graphics literature contains several non-rigid 33

registration techniques, see e.g. [2] for a survey. Despite the 34

quality of the results of such approaches, they may not be suited 35

to handle very large models as it is the case in the production 36

engineering field. The CAD literature proposes fewer solu- 37

tions (see Section 2). Even though they are more suited for 38

our problem, they are still not fast enough to deal with very 39

large datasets. One common remark about the non-rigid isomet- 40

ric registration solutions is almost all of them register mesh to 41

mesh instead of mesh to point cloud. Therefore they all require 42

a reconstruction preprocessing on the point cloud to extract a 43

mesh. 44

In this paper, we extend computer graphics techniques and 45

propose an accurate and efficient algorithm to compute an as- 46

rigid-as-possible map from a 3D CAD model to a large (possi- 47

bly noisy) point cloud. This approach combines an efficient it- 48

erative energy minimization scheme and a multiscale optimiza- 49

tion using a hierarchical mesh representation of the source. 50

The paper is organized as follows: the next section reviews 51

the state-of-the-art of non-rigid isometric registration. In Sec- 52

tion 3 we introduce the concepts used in the paper. In Section 4 53

we present our registration algorithm. The method is validated 54

on our dataset in Section 5. 55
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2. Related works1

Almost isometric, also known as as-rigid-as-possible (arap2

for short), and non-rigid approaches have been studied in many3

fields of computer graphics: Sorkine and Alexa [3] Chao and4

al. [4] and Levi and al. [5] proposed surface manipulation tech-5

niques based on the arap energy, which we detail in Section 3.1.6

Gotsmam and al. [6] introduced an arap parametrization method7

and more recently Smith and al. [7] proposed optimization so-8

lutions for distortion energy based problems (such as the ones9

previously cited). Functional maps have been widely used to10

map scalar or vector functions from a given mesh onto another11

one while preserving some arap properties [8]. In this paper,12

we focus on the explicit construction of an arap map between a13

model (mesh) and a target (point cloud).14

The NI-ICP algorithm introduced by Sacharow and al. [9]15

is a Non-rigid Isometric variant of ICP that registers a mesh16

onto another one. The method deforms the source into the tar-17

get using an alternate scheme that first projects the source ver-18

tices onto their nearest neighbor in the target, and then enforces19

the isometry of those projections (gradient mesh editing step).20

Given the correspondences, the algorithm fits, for each source21

face, the best rigid transformation from the non-projected face22

to the projected one, transforming the source mesh into a soup23

of faces where each face is isometric to its original version. Be-24

cause this last step breaks the mesh connectivity, a global stitch-25

ing step is applied following the mesh editing proposed by Yu26

and al. [10]. A final step NURBS-based technique is applied27

from the resulting deformation to compute a continuous map.28

While the need for this final step is questionable in our con-29

text, the method provides an actual solution to the non-rigid30

isometric registration for CAD models under springback de-31

formations. However, it requires a well-reconstructed surface32

mesh from the target point cloud and is still not fast enough on33

large datasets. Authors say in the paper they had to prematurely34

abort their experiments on full-resolution models.35

Schweinoch and al. [11] have proposed a similar non-rigid36

isometric registration algorithm based on a combination of ICP37

and arap mesh deformation. However, they use a hierarchical38

divide-and-conquer approach: the deformed source is consid-39

ered as a collection of segments initially set to a single segment.40

The core step of the algorithm consists of subdividing each seg-41

ment according to its distance from the target and rigidly align42

all those segments onto the target. Similarly to the NI-ICP ap-43

proach, the rigid alignment of all segments results in a loss of44

connectivity at the segment endpoints. This connectivity is sub-45

sequently reestablished using the arap mesh deformation pro-46

posed by Sorkine and al. [3] that we detail in Section 3. Simi-47

larly to Sacharow and al. [9] algorithm, this method is an actual48

solution for CAD models under springback deformation. How-49

ever it was not tested on full-resolution models. Although the50

method uses a hierarchical approach, the whole set of source51

vertices is used at each iteration. All vertices of each segment52

are used to compute the rigid alignment and only the bound-53

ary vertices are used for the stitching step. So over the itera-54

tions, the total number of vertices used for alignment remains55

the same and only the number of vertices used for the stitching56

step increases. Therefore the method does not benefit from the57

speed up of classical hierarchical approaches. 58

Klein and al. [12] propose a new method by exactly formulat- 59

ing the isometry registration with a proper objective function: 60

min
∑

i j

∣∣∣ ‖pi − p j‖
2 − ‖zi − z j‖

2
∣∣∣ , (1)

with pi and p j being vertices of the source surface mesh, zi 61

and z j being their associated vertices on the target, and i j a set 62

of vertex pairs not specified yet. The first step of this method 63

consists in computing a neighborhood structure of the source 64

mesh for the objective function such that close-by situated ver- 65

tex pairs are conserved in the energy and distant pairs are re- 66

moved. The second step is a global registration where the (non- 67

convex) energy minimization is treated as a Quadratic Assign- 68

ment Problem (QAP for short) from the neighborhood structure 69

and the downsampled target. The final step is a local reopti- 70

mization where the energy is minimized by a gradient descent 71

method initialized by the QAP solutions. The method provides 72

an actual isometric registration energy and works on a point 73

cloud target. However the computation of the neighborhood 74

structure and the energy minimization being based on a QAP 75

problem (whose optimal solution is NP-hard) make the method 76

not suited for large datasets. 77

Finally, Huang and al. [13] proposed a non-rigid registration 78

method under isometric assumptions that alternates between a 79

correspondence and a deformation optimization step. The cor- 80

respondences are computed by matching source and target us- 81

ing the nearest neighbor approach in a metric space defined 82

by the Euclidean distance and a feature metric defined from 83

the principal curvatures of multi-level quadric patch fitted for 84

each vertex according to Cazals and Pouget formulation [14]. 85

Then the correspondences are pruned based on geodesic dis- 86

tance consistency and the remaining ones are propagated to as- 87

sure uniform correspondences. The source is segmented into 88

clusters whose deformations can be described as single rigid 89

deformations and then registration of the source onto the tar- 90

get is computed by minimizing a combination of point-to-point 91

and point-to-plane energy according to the optimized corre- 92

spondences. This method focuses on handling complex com- 93

puter graphics geometries, leaving open its numerical accuracy 94

on controlled shapes in the engineering context. 95

3. Preliminaries 96

In this section, we introduce the concepts used in the follow- 97

ing. 98

3.1. Notations and As-Rigid-As-Possible deformation 99

We denote by S a source triangle mesh and by T a target 100

point cloud. The mesh S has N vertices {si} in R3, its vertex 101

normals are denoted {ni} and its faces are denoted {fk}. The 102

neighboring vertices to a vertex si is given byN(i) and ∆cotan is 103

the discrete Laplace-Beltrami operator onS following the cotan 104

approach of Meyer and al. [15]. The target point cloud T has 105

M vertices {ti} and its normal vectors are denoted {mi}. When 106

not specified otherwise, we will assume that N < M (the CAD 107

model has fewer vertices than the acquired point cloud). 108
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We denote by π : {0 . . .N − 1} → {0 . . . M − 1} an assignment1

map from vertices of S to points of T . We further elaborate2

below on the definition of such assignment.3

Our objective is to determine the deformation S onto T re-4

sulting in the registered surface mesh S′ such that S and S′ are5

isometric and S′ and T are aligned. Because true isometric de-6

formation cannot be achieved, the deformation between S and7

S′ must be arap instead of isometric. This objective implies8

two different energies: a first one to account for the proximity9

between S′ and T , and a second one for the arap evaluation.10

The proximity energy is a simple quadratic fitting energy be-11

tween S′ and T from the assignment:12

Eprox(S′,T ) :=
∑

i

‖s′i − tπ(i)‖
2 . (2)

The arap energy is a local rigidity energy between S and S′:13

Earap(S,S′,R) :=
∑

i

wi

∑
j∈N(i)

wi j‖e′i j − Riei j‖
2 , (3)

where ei j := (s j− si), resp. e′i j := (s′j− s′i), denotes the edge vec-14

tor, R denotes a set of rotation with Ri the rotation of the tangent15

space at si. Weights wi and wi j are the cotangent weights of the16

∆cotan operator attached to S. A more generic and continuous17

elasticity model following this principle can be found in [4]. In18

Sorkine and al. [3] arap deformation framework they define Ri19

as the rotation between si and s′i neighborhoods and derive Ri20

from the singular value decomposition S i = UiΣiVT
i of21

S i :=
∑

j∈N(i)

wi jei je′Ti j , (4)

leading to Ri := ViUT
i (up to changing the last column of Ui if22

det(Ri) < 0).23

From the arap energy, one can define several inverse prob-24

lems. For instance, given a dense set of rotations R and s, find25

the s′ minimizing Earap. The new positions of a given vertex s′i26

minimizing Earap is given by solving the (sparse) linear system:27 ∑
j∈N(i)

wi j(s′i − s′j) =
∑

j∈N(i)

wi j

2
(Ri + R j)ei j . (5)

If s′ denotes the 3×N matrix where each row i is s′i , and b the 3×28

N matrix defined from the right-hand side of (5), optimizing the29

positions amounts to solving the following Poisson problem:30

∆cotan s′ = b . (6)

3.2. Mesh simplification31

Our approach relies on a hierarchical structure of the source32

mesh S. Although many solutions exist in geometry processing33

and computer graphics, we rely on the simple, yet very effi-34

cient, edge collapsing simplification proposed by Garland and35

al. [16]. This method combines edge collapsing and quadric36

error metric that estimates the squared distance to the mesh.37

Initially an error quadric matrix Qi is assigned to each si that38

encodes the total squared distance a point p to si’s neighboring39

faces which is given by computing pT Qip. The cost of each40

edge (i, j) is computed by minimizing the energy pT (Qi + Q j)p 41

where p is the point that minimizes the cost (see Figure 1). 42

(a) (b)

Fig. 1. Edge collapsing: the edge formed by the two green vertices in (a) is
collapsed and the green vertices are merged into the red vertex in (b).

The edge with the minimal cost is collapsed into a new vertex 43

whose position is the point p that minimizes the edge cost and 44

its quadric error matrix is the sum of the quadrics of the edge 45

extremities. 46

From this elementary edge collapse step, the overall hierar- 47

chical representationH : S → Sh−1 → Sh−2 → . . . → S0 of S 48

with h layers can be given by considering disjoint sequences of 49

minimal edge collapses per layer (see 4.2 for details). 50

4. Fast and accurate hierarchical As-Rigid-As-Possible reg- 51

istration 52

In this section we present our solution to compute an arap 53

registration of S onto T and then its hierarchical optimization. 54

4.1. Single level registration 55

Let us first detail the arap registration for a single layer of 56

the hierarchical reconstruction. Algorithm 1 presents the over- 57

all algorithm to construct S′ with the same topology as S, such 58

that S′ is close to T and arap with respect to S. This algorithm 59

alternates between an assignment and an arap optimization step 60

close to the one proposed by Sacharow and al. [9]. We extend 61

this preminilary formulation with two main contributions: First, 62

we propose a hierarchical optimization detailed in Section 4.2. 63

Second, Sacharow and al. method requires that the target is a 64

triangulated surface to define per face rotations needed in their 65

formulation, leading to a mandatory preliminary surface recon- 66

struction step from the point cloud. Our formulation has per 67

vertex rotation information allowing us to directly work on the 68

input point cloud stored in an efficient associated data structure 69

(see below). 70

Assignment step (line 4 to 6). This step consists in assigning 71

each vertex s′i to a point tπ(i) of T and therefore results in a set 72

of pairs (i, π(i)). Although the nearest neighbor operator from 73

s′ to t is not injective and may produce inconsistent pairs, our 74

experiments and the results of Sacharow and al. [9] and Klein 75

and al. [12] has shown that its use under small or simple de- 76

formations is a good trade-off between assignment quality and 77

computation efficiency. We use a kdTree structure to perform 78

the nearest neighbor requests. Since T is static, the kdTree 79

is computed only once before the optimization loop. During 80

the minimization process, geometrical information from T will 81

only be given through nearest-neighbor queries on the kdTree. 82
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S

T

(a)

π

(b)

R

(c) (d)

Fig. 2. Overall workflow: Starting from a source mesh S and a target point cloud T (a), we first start with assignation π : S → T (b). From rotations R
computed from the assignment, we solve a first arap matching (c). In (d) we illustrate the final surface after 3 iterations.

We provide more technical details in Section 5.1, efficient NN1

queries allow us to consider very large point clouds as targets.2

Algorithm 1: arap registration algorithm
Input: S = ({si}, {fk}, {ni},∆cotan): source surface mesh

T = ({ti}, {mi}): target point cloud
ε: a stopping criterion

Output: S′ =
(
{s′i}, {fk}

)
: as-rigid-as possible deformed

mesh with the same topology as S.
1 S′ ← S; d ← +∞

2 bT ← barycenter(T )
3 while d > ε do

/* Construct π. */

4 foreach s′i ∈ S
′ do

5 π(i) := nearest-neighbor(s′i ,T )
6 end

/* Optimize S′ such as S′ and S are arap. */

7 foreach s′i ∈ S
′ do

8 compute Ri according to (7)
9 end

10 compute b according to (5)
11 stmp ← {s′i} // warm start for the iterative solver

12 solve ∆cotan stmp = b
13 translate stmp by (bT−barycenter(stmp))

/* End of iteration. */

14 d ←
∑

i ||stmp − s′i ||
2

15 {s′i} ← stmp

16 end
17 return S′

Optimization step (line 7 to 13). We could use the {tπ(i)} as our3

mapping solution, but since they may not respect the arap con-4

straint, we need to refine those pairs to ensure that s′ minimizes5

Earap. The solution of the arap energy minimization (5) requires6

the original source vertices s, it’s cotangent weights expressed7

in the Laplacian operator ∆cotan and rotation matrices R. From8

the assignment π, rotation matrices Ri are given by:9

Ri := I + [ni ×mπ(i)]× +
1

1 + ni.mπ(i)
[ni ×mπ(i)]2

× . (7)

with I is the identity 3×3 matrix and [v]× is the map from a 3D10

vector v to a 3×3 skew-symmetric matrix such that [v]×q = v×q11

for any q ∈ R3. Because we assume the deformation of S onto 12

T is isometric, Ri is the rotation occurring between si and s′i 13

local plane, thus Ri can be computed from si and s′i normals 14

according to (7). With a rotation for each si (5) can be solved to 15

get new vertices s′ that respect the arap constraint. Solving (5) 16

handles the rotational part of the mapping, but because it also 17

writes off its translation part, we move the barycenter of s′ to T 18

barycenter. 19

Solver (line 12). The ∆cotan being sparse, (5) can be efficiently 20

solved either using factorized solvers (e.g. LU decomposition) 21

or iterative schemes (e.g. conjugate gradient). The first one 22

would lead to an expensive preprocessing overhead while the 23

second approach also allows us to reuse results from previous 24

iterations in Algorithm 1, i.e. vertices s′ (see line 11), as warm 25

start. This warm start could be problematic for the very first 26

iteration as S′ may be far from the target, but it becomes more 27

and more efficient for the remaining iterations. 28

4.2. Hierarchical registration 29

When the source mesh S is large, the main bottleneck of 30

Algorithm 1 is the linear system solve on line 12 (see Section 31

5). To improve the overall performances we use a geometrical 32

multigrid approach which constructs a hierarchical representa- 33

tion of S, and a coarse-to-fine minimization of the arap energy. 34

As first sketched in Section 3.2, H denotes a hierarchical 35

view of S in which Sh denotes the h−th layer with vertices sh
i 36

(resp. normal vectors nh
i , faces fh

k and Laplace-Beltrami oper- 37

ator ∆h
cotan). Layers are sorted in ascending order (with respect 38

to the number of vertices), the last layer being S. Connections 39

between two consecutive layers Sh and Sh+1 (see Figure 4) are 40

given by linking each vertex sh+1
i to a face fh

k and sh+1
i local po- 41

sition within fh
k is represented by the barycentric coordinates 42

(αh+1
i , βh+1

i , γh+1
i ) of its projection onto fh

k along the face normal 43

and the (possibly negative) height dh+1
i from its projection such 44

that: 45

dh+1
i = (sh+1

i − p0) · q (8)

sh+1
i − dh+1

i q = αh+1
i p0 + βh+1

i p1 + γh+1
i p2 , (9)

where p is one of the three vertices of fh, and q the face normal 46

vector. With sh+1
i local coordinates to fh

k and given fh
k updated 47

vertices p′ and normal q′, sh+1
i new position is simply: 48

sh+1
i = αh+1

i p′0 + βh+1
i p′1 + γh+1

i p′2 + dh+1
i q′ . (10)

4



(a) (b) (c) (d)

Fig. 3. Overall hierarchical workflow: Starting from a coarse mesh S0 (a), we solve a first arap matching leading to the mesh S′0 (b). We then consider the
mesh S1 with updated positions from S′0 (c), and repeat the minimization+optimization process to obtain the final surface S′ after 3 iterations (d).

Since there is no inclusion between {sh} (resp. {fh}) and {sh+1}1

(resp. {fh+1}), the sparse operator ∆h+1
cotan is simply recon-2

structed from Sh+1 (linear time algorithm in the number of3

edges/vertices).4

sh+1
i

fh
k

Sh+1

Sh

αh+1
i

βh+1
i

γh+1
i

dh+1
i

qp0

p1

p2

Fig. 4. Exploded view of the hierarchical structure: Vertex sh+1
i of upper

layer Sh+1 is linked to face fh
k of lower layer Sh. Vertex sh+1

i position within
fh
k is encoded the barycentric coordinates (αh+1

i , βh+1
i , γh+1

i ) of its projection
and its signed distance dh+1

i from fh
k .

Algorithm 2: Hierarchical arap registration

Input: H = {S0 . . .Sh}: hierarchical source surface
mesh
T = ({ti}, {mi}): target point cloud
ε: a stopping criterion

1 foreach Sh ∈ H with h ascending do
/* Register Sh to T */

2 Sh′ ← arap registration(Sh,T , ε)
3 if Sh is last layer then
4 return Sh′

5 else
/* Propagate Sh′ to Sh+1 */

6 foreach sh+1
i ∈ Sh+1 do

7 compute sh+1
i according to (10)

8 end
9 end

10 end

Given a set of desired vertices sizes, Garland and Heckbert’s5

edge collapsing method [16] is applied to the original source S6

until all desired sizes are reached and results inH = {S0 . . .Sh} 7

without connection between layers. Because this method min- 8

imizes the distance between the vertices from collapsed edges 9

and their neighboring faces, each vertex sh+1 of Sh+1 is linked 10

to S closest face fh
k . 11

Our hierarchical optimization of the arap registration of S 12

onto T is presented in Algorithm 2. Given a hierarchyH of the 13

source surface mesh S and the target point cloud T , each layer 14

Sh from the coarsest to the finest is registered to T (line 2) and 15

the current registration result S′h is propagated to the next layer 16

Sh+1 (line 7). As Sh has fewer vertices than Sk (for k > h), 17

fewer nearest neighbor queries are required and the size of the 18

∆h
cotan is smaller. The last iteration of Algorithm 2 is performed 19

on the full resolution mesh S. Note thanks to the hierarchical 20

construction, very few optimization steps of Algorithm 1 are 21

necessary to obtain a correct registration of this last step. 22

In the next section, the hierarchical optimization is experi- 23

mented on data to evaluate the quality and the efficiency of the 24

method. 25

5. Experiments 26

5.1. Dataset 27

The dataset (see Figure 5) is composed of three analytical 28

models that mimic real-application deformations (springback, 29

torsion and complex deformation), a car hood model (exhibiting 30

high curvature features), and a CAD model corresponding to a 31

real test case. To illustrate the springback, a hat shape whose 32

parametrization is detailed in Appendix A is registered onto 33

another hat. The hat shape is controlled by a bending factor 34

and given its parametrization, two hats with different bending 35

factor are isometric. For the torsion, a rectangle is mapped onto 36

a helicoid twisted 90◦ whose parametrization is also detailed 37

in Appendix A. The sheet case corresponds to the registration 38

of a square to a deformed one generated by applying several 39

rotation fields according to (5) and (6). The same method is 40

used to generate the deformed car hood. Because the rotation 41

fields used are manually chosen, there is no reason for them to 42

be actual solutions of Earap minimization. 43

Input scans for our analytical models and the hood have been 44

generated by uniformly sampling each object and by adding 45

Gaussian noise on the samples positions and normals. Given a 46

triangular mesh, a face is randomly selected with an importance 47

function proportional to the face area and the point lying on the 48

5



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 5. Dataset: Yellow meshes are source models, blue point clouds correspond the target scans. Finally, red meshes are outputs we obtain after registration
(see Table 1 for the settings). From left to right columns: two hats (a, f ) under springback deformation, a mapping between a rectangle (b) and a twisted
helicoid (g) (90◦ to mimic a torsion), the sheet (c, h) for a complex deformation and a car hood model (d) with simulated scan (i). The last column (e, j, o)
corresponds to a real test case of a CAD model and a scan of the real metal sheet. Meshes and point clouds are downsampled for visualization purposes.

face is selected by uniformly sampling its barycentric coordi-1

nates. The normal vector of the point is set to the normal vector2

of the face it belongs to, and this process is repeated until the3

desired number of points M has been sampled. The positions4

are perturbed by adding to their coordinates a noise sampled5

from a Gaussian distribution (µ = 0, σcoord) and the normals are6

perturbed by a rotation (θ, φ) 1 with θ sampled from an uniform7

distribution [0, π[ and φ sampled from a Gaussian distribution8

(µ = 0, σangle).9

Finally, the scan of the CAD model is a measure of the real10

piece which undergoes a springback deformation. Because of11

the machining context, the actual target surface (which corre-12

sponds to the source after deformation) is yet unknown. To en-13

sure that no part is missing, the scanned surface is bigger and so14

the arap registration is performed with a source being a sub-part15

of the target point cloud.16

For all experiments, the dataset has been normalized such17

that the diagonal of source bounding box measures 1. Our algo-18

rithm has been implemented in C++ with the libraries eigen [17]19

and libigl [18] for the data structures and geometry processing,20

nanoflann [19] for the kdTree and polyscope [20] for the visual-21

ization. All tests were run on a 4.0 GHz PC with 16 GB RAM.22

For each experiment (e.g. Table 1) we measure the total num-23

ber of iterations niter which is the sum of Algorithm 1 itera-24

tions for all layers, the final Eprox and Earap, the initialization25

1θ being the azimuthal angle and φ the polar angle.

step duration Tinit (construction ofH and the Laplace-Beltrami 26

operator ∆cotan computations), the iterative step duration Tcore 27

which is the execution time of Algorithm 2. The assignment 28

step duration TNN is the timing of all nearest-neighbor queries 29

on T (accumulated for all layers), Topt denotes the remain- 30

ing optimization timing of S (also accumulated for all layers). 31

Hence, Tcore = TNN + Topt and the final timing is given by 32

Ttotal = Tinit + Tcore. We denote atotal (resp. acore), the speedup 33

between the hierarchical and the nonhierarchical variants of the 34

algorithms (in total and for the core part only). 35

Hat and helicoid sources have both N = 106 vertices and 36

their targets have M = 5 × 106 points. The sheet source has 37

N = 4 × 105 vertices and its target has M = 2.5 × 106 points. 38

The CAD model has N = 8 × 105 vertices and its target has 39

M = 1.4 × 106 points. The number of layers for the hierarchi- 40

cal registration is set to 3 with the first, second and last layer 41

having respectively N/100, N/10 and N vertices. The stopping 42

criterion d and the maximum number of iterations of Algorithm 43

1 per layer are set to 10−6 and 100. 44

5.2. Accuracy and Efficiency 45

In this experiment the hierarchical optimization is evaluated 46

by comparing for each dataset case, the registration results with 47

and without the hierarchy. The results for each case are dis- 48

played in Table 1. 49

For the hat object, both global and hierarchical approaches 50

produce similar results in terms of energy. However, the hi- 51

erarchical registration is 43 times faster in total and 115 times 52
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Case sizes (N, M) niter Eprox Earap Ttotal Tinit
Tcore atotal acoreTNN Topt

hat N = 106 17 1.3 × 10−2 5.1 × 10−6 1734 2 (0.1%) 1732 (99.9%)

43 1151373 361

hat hierarchical M = 5 × 106 12 1.9 × 10−2 4.6 × 10−6 40 25 (62.5%) 15 (37.5%)
12 3

helicoid N = 106 100 2.5 × 10−1 5.0 × 10−3 514 2 (0.4%) 512 (99.6%)

7 10288 224

helicoid hierarchical M = 5 × 106 136 1.0 × 10−1 2.0 × 10−6 72 25 (34.7%) 47 (65.3%)
33 14

sheet N = 4 × 105 7 1.3 1.8 × 10−2 107 1 (0.9%) 106 (99.1%)

4 851 55

sheet hierarchical M = 2.5 × 106 40 1.3 × 10−1 2.7 × 10−3 24 11 (45.8%) 13 (54.2%)
3 10

hood N = 8 × 105 8 3.7 × 10−1 2.5 × 10−3 311 1 (0.3%) 310 (99.7%)

1.5 1.755 255

hood hierarchical M = 5 × 106 18 3.7 × 10−2 1.0 × 10−3 201 21 (10.4%) 180 (89.6%)
7 173

CAD N = 8 × 105 100 6.7 × 10−1 4.5 × 10−4 2065 1 (0.04%) 2065 (99.96%)

21 2838 2027

CAD hierarchical M = 1.4 × 106 150 6.3 × 10−1 3.8 × 10−6 94 21 (22.3%) 73 (81.7%)
3 70

Table 1. Metrics of nonhierarchical and hierarchical registration on the dataset after convergence (with stopping criterion d = 10−6 – see Algorithm 1 –
and number of iterations per layer limited to 100). Metrics are niter the sum of Algorithm 1 iterations for all layers, the final Eprox and Earap, the total
duration Ttotal, the initialization step and iterative step duration Tinit and Tcore (Ttotal = Tinit + Tcore), the assignment steps and optimization step TNN and
Topt (Tcore = TNN + Topt) and the total and iteration step speedups atotal and acore. Times are expressed in seconds.

faster if we only consider the iterative part. More detailed mea-1

sures show that iterations with a bad alignment onto T (i.e. with2

large Eprox) were performed on the smaller layers. Even though3

the hierarchical registrations of the helicoid, the sheet and the4

CAD models have smaller speed ups and required more iter-5

ations than their nonhierarchical versions, they both produce6

mappings with lower arap energies. This can be due to the fact7

that optimizing the energies in a coarse-to-fine scheme make8

the process unlikely to get stuck on local minima.9

For the sheet and hood cases for which the deformations are10

not fully arap, the hierarchical method produces better Eprox
11

than the nonhierarchical one. The speedup for the hierarchical12

car hood (1.5) is less favorable than for the other shapes as sev-13

eral high resolution iterations are required to cope with the high14

curvature features. Figure 6 shows Eprox and Earap distributions15

on the sheet case.16

Results in Table 2 show the impact on the target point cloud17

size to the arap registration computation time. For all analytical18

cases, we thus increase the sample count of the target. The19

assignment time TNN (which is a function of N and M) scales up20

with M thanks to the kdTree structure used for nearest neighbor21

queries, while the optimization time Topt which is a function of22

N is constant as expected.23

5.3. Robustness to noise24

In this experiment, we evaluate the robustness to perturba-25

tions on the positions and normal vectors of T on the hat case26

(hierarchical approach). To evaluate the robustness with respect27

to the perturbations, we consider the l2-norm between the de- 28

formed surface S∗ vertices for the the noise-free target T (the 29

groundtruth for this test), and the surface obtained on the per- 30

turbed T : 31

E∗(S,S∗) :=
∑

i

‖si − s∗i ‖
2 . (11)

When perturbing the normal vectors, experiments (Figure 7) 32

show that Algorithm 1 is stable for small perturbations (closer 33

to our use-case). For extreme cases with strong perturbations 34

(30◦ (c) and 60◦), the output surface becomes highly impacted. 35

When perturbing the sample positions, (Table 3 and Figure 8), 36

the algorithm produces very stable solutions. 37

Finally, in Figure 9, we provide additional experiments when 38

we consider non-uniform point distributions for the target point 39

cloud T . Note that the last case (c − d) exactly corresponds to 40

the kind of point clouds we are facing in inverse engineering 41

when T is given by a laser range or a probing device. Our 42

method can efficiently handles these cases. 43

5.4. Failure example 44

In this experiment we apply our registration method on data 45

that are slightly out-of-scope of the reverse engineering con- 46

text. As illustrated in Figure 10, our method does not produce 47

satisfactory results on complex geometries, due to the assign- 48

ment step. In the bunny case (see Figure 10(c)) the two sides of 49

the source left ear are assigned on the opposite sides of the tar- 50

get two ears. With this assignment the two sides of the source 51

ear should be flipped. The two sides of the source right ear 52

7



(a) (b) (c)

(d) (e) (f)

Fig. 6. Sheet registration results: Top row displays nonhierarchical results, bottom row the hierarchical results. From left to right the results are registration
output (with T in blue and S ′ in red), the Eprox per vertex and the Earap per vertex. Eprox (resp. Earap) share the same colormap for both versions with
purple (resp. yellow) as lower (resp. upper) bound.

Case N M 1 × 106 5 × 106 10 × 106 15 × 106 20 × 106 25 × 106

hat N = 106 TNN 3 13 20 28 34 40
Topt 4 10 11 12 11 11

helicoid N = 106 TNN 23 38 56 70 81 96
Topt 17 16 15 17 17 18

sheet N = 4 × 105 TNN 2 6 8 11 11 12
Topt 16 17 17 16 18 17

Table 2. Scan size impact on hierarchical registration duration: For all cases the source vertex number N is fixed, M is the number of points in the target
scan and TNN and Topti the total amounts of time spent on assignment and optimization steps (see Section 4.1 for step details).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. Registration results with perfect position and noisy normals: The normals are perturbed using a Gaussian noise as specified in Section 5.1 with
σangle equals from left to right 3◦ (a), 6◦ (b), 30◦ (c) and 60◦ (d). Top row displays the normal distribution and bottom row the registration output S′.
With small enough noises (e.g. 3◦ (a) and 6◦ (b)) the mapping is not smooth but consistent while with too big noises (e.g. 30◦ (c) and 60◦ (d)) the algorithm
produces degenerated results.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8. Registration results with noisy positions and perfect normals: The positions are perturbed using a Gaussian noise as specified in Section 5.1 with
σcoord equals from left to right 0.1% (a), 0.4% (b), 0.7% (c) and 1% (d) of the diagonal length of the point cloud bounding box. Top row displays the
position distribution and bottom row the registration output S′ colored by E∗ per vertex, E∗ share the same colormap for all σcoord with purple (resp.
yellow) as lower (resp. upper) bound. See Table 1 for detailed metrics.

σcoord niter Eprox Earap E∗ Ttotal (sec)
0% 16 1.3 × 10−2 3.6 × 10−6 0 48

0.1% 23 1.5 × 10−2 7.0 × 10−6 4.5 × 10−3 43
0.4% 81 3.2 × 10−2 4.7 × 10−6 3.0 × 10−2 100
0.7% 174 4.7 × 10−2 1.2 × 10−4 2.3 × 10−2 179
1% 290 5.9 × 10−2 2.5 × 10−4 8.5 × 10−2 297

Table 3. Registration results with noisy positions and perfect normals after convergence: σcoord is expressed as percent of the diagonal length of the point
cloud bounding box (see Table 1 for column details). See Figure 8 for visualizations of E∗. Under σcoord = 0.4% the algorithm produces solutions with
similar Earap and Eprox (which is affected by σcoord). Under σcoord = 0.1% the algorithm produces a solution quasi-equal to S ∗ in the same amount of time
and iterations.

(a) (b) (c) (d)

Fig. 9. Robustness to different point distributions: When the sampling density is not uniform (a) or when its has high aliasing structure when simulating
probing/laser based acquisition devices (c), our approach still provides stable and accurate outputs (b) and (c).
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S
T

(a)

S′

(b)

π

(c) (d)

Fig. 10. Failed bunny registration: Registration between two Stanford bun-
nies (a) with one bunny having bent ears. The algorithm returns a bunny
with degenerated ears (b). Bad assignments (c) produce inconsistent rota-
tions leading to an inconsistent solution (d).

are assigned on the same side of one target ear, so one side of1

the source ear should also be flipped. Theses assignments pro-2

duce areas where two neighboring vertices could have opposite3

normals leading to a inconsistent rotation field R, and incon-4

sistent b and a degenerated (6) solution (e.g. bunny result and5

Figure 7(h)). Note that the overall algorithm (assignment/arap6

alternate steps, hierarchical construction. . . ) perfectly handles7

this case but providing a better assignment for these complex8

shapes (mimicking the one in [13] without scarfing the speed of9

our approach) is a challenging future work.10

6. Conclusion11

In this paper, we have presented a new method of non-rigid12

isometric registration of a source triangle mesh onto a target13

point cloud that is fast, accurate and can handle large geome-14

tries. Our solution is based on a hierarchy of meshes built from15

the source triangle mesh. Our algorithm alternates between16

an assignment and an arap optimization step, starting from the17

coarsest mesh of the hierarchy, and going up progressively each18

time the solution with the current level has converged. Our ex-19

periments show a very highest speed up compared to the non-20

hierarchical approach, while ensuring the same accuracy.21

Several future works exist. As mentioned in Section 5.4, the22

assignment step could be improved to be able to handle more23

complex shapes in terms of geometry or topology. We would24

also consider alternative schemes for the hierarchical construc-25

tion (for instance to keep some user-specified features, or to26

preserve some spectral properties similarly to [21]). The chal-27

lenge in these future works would be to keep a solution that28

scales up with respect to the size of the source and the target,29

while keeping the accuracy of the reconstruction as required in30

our inverse engineering context. 31

Appendix A. Hat and helicoid parametrization 32

By definition a ruled surface can be described by a 33

parametrization p(u, v) = c(u) + v ∗ r(u) with p the surface ver- 34

tices, c its directrix curve and r its generator. Hat directrix chat 35

is controlled by a bending factor b and its piecewise definition 36

is given on each piece i by: 37

chat(u, b) :=

Li(b) cos(ωi(b) u + φi(b))
Li(b) sin(ωi(b) u + φi(b))

0

 + Pi(b) (A.1)

with Li, ωi, φi and Pi chosen such that chat is at least C1 and 38

isometric for any b. Hat generator rhat is a simple constant 39

[0, 0,W]. 40

41

The helicoid is a well known ruled surface, like with the hat 42

we introduce a bending factor b to control its deformation such 43

that: 44

chelicoid(u) :=

 0
0

W u

 and rhelicoid(u) :=

L cos(b u)
L sin(b u)

0

 . (A.2)
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