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Surface registration is a fundamental problem in computer graphics and computer-aided design. The problem consists in finding a deformation from one surface to another that preserves some properties. For instance, in our inverse engineering context, we aim at finding the best, as isometric as possible, map between an input triangular model, and a large point cloud acquired on the actual mechanical part being processed. Existing solutions are not able to handle very large models with a good level of precision. We propose a method which is accurate and fast. Our solution combines an efficient iterative energy minimization scheme on a hierarchical decomposition of the problem geometry. Our experiments show that we obtain a fast and efficient algorithm compared to the state-of-the art method, while keeping its numerical accuracy.

Introduction

1 Surface registration is a fundamental problem in computer 2 graphics and computer-aided design. Given two surfaces, called 3 source and target, the objective of the registration is to find a de-4 formation that maps from the source into the target satisfying 5 some properties (isometric, conformal, one-to-one, partial. . . ). 6 This is a common problem, for example in 3D scanning, where 7 multiple datasets captured from different viewpoints must be 8 registered. In geometry processing, a mapping between the 9 source and the target is for example needed in post-processing 10 such as reconstruction, morphing or information transfer. 11 This is also a key problem in inverse engineering where CAD 12 models are compared to measure their real counterparts. In 13 this context, real objects are captured live using laser range or 14 probing devices. Hence, the source is a CAD model (e.g. a 15 clean triangular mesh), and the target a large, possibly noisy, 16 point cloud. In sheet metal manufacturing, which motivates 17 the present research, the springback problem [1], caused by the 18 elastoplastic material behavior of sheet metals, falls into reg-19 istration problems where the CAD model source must be reg-20 istered into the measure of the real model target before being 21 processed by the device (e.g. for machining). The springback 22 being mainly bending, a classical assumption is that tangential 23 shearing or stretching are neglected and therefore the deforma-24 tion can be considered as non-rigid and almost isometric. This 25 defines the class of maps between the source and the target we 26 are looking for.

Since time efficiency is central for engineering production, the registration method must be time efficient on very large datasets. In the following, we will assume that the source is a mesh with more than a million of vertices and the target is a point cloud with more than 5 million samples.

The computer graphics literature contains several non-rigid registration techniques, see e.g. [START_REF] Tam | Registration of 3d point clouds and meshes: A survey from rigid to nonrigid[END_REF] for a survey. Despite the quality of the results of such approaches, they may not be suited to handle very large models as it is the case in the production engineering field. The CAD literature proposes fewer solutions (see Section 2). Even though they are more suited for our problem, they are still not fast enough to deal with very large datasets. One common remark about the non-rigid isometric registration solutions is almost all of them register mesh to mesh instead of mesh to point cloud. Therefore they all require a reconstruction preprocessing on the point cloud to extract a mesh.

In this paper, we extend computer graphics techniques and propose an accurate and efficient algorithm to compute an asrigid-as-possible map from a 3D CAD model to a large (possibly noisy) point cloud. This approach combines an efficient iterative energy minimization scheme and a multiscale optimization using a hierarchical mesh representation of the source.

The paper is organized as follows: the next section reviews the state-of-the-art of non-rigid isometric registration. In Section 3 we introduce the concepts used in the paper. In Section 4 we present our registration algorithm. The method is validated on our dataset in Section 5.

Related works

Almost isometric, also known as as-rigid-as-possible (arap for short), and non-rigid approaches have been studied in many fields of computer graphics: Sorkine and Alexa [START_REF] Sorkine | As-Rigid-As-Possible Surface Modeling[END_REF] Chao and al. [START_REF] Chao | A simple geometric model for elastic deformations[END_REF] and Levi and al. [START_REF] Levi | Smooth rotation enhanced as-rigid-as-possible mesh animation[END_REF] proposed surface manipulation techniques based on the arap energy, which we detail in Section 3.1.

Gotsmam and al. [START_REF] Gotsman | A local/global approach to mesh parameterization[END_REF] introduced an arap parametrization method and more recently Smith and al. [START_REF] Smith | Analytic eigensystems for isotropic distortion energies[END_REF] proposed optimization solutions for distortion energy based problems (such as the ones previously cited). Functional maps have been widely used to map scalar or vector functions from a given mesh onto another one while preserving some arap properties [START_REF] Ovsjanikov | Functional maps: A flexible representation of maps between shapes[END_REF]. In this paper, we focus on the explicit construction of an arap map between a model (mesh) and a target (point cloud).

The NI-ICP algorithm introduced by Sacharow and al. [START_REF] Sacharow | Non-rigid isometric icp: A practical registration method for the analysis and compensation of form errors in production engineering[END_REF] is a Non-rigid Isometric variant of ICP that registers a mesh onto another one. The method deforms the source into the target using an alternate scheme that first projects the source vertices onto their nearest neighbor in the target, and then enforces the isometry of those projections (gradient mesh editing step).

Given the correspondences, the algorithm fits, for each source face, the best rigid transformation from the non-projected face to the projected one, transforming the source mesh into a soup of faces where each face is isometric to its original version. Because this last step breaks the mesh connectivity, a global stitching step is applied following the mesh editing proposed by Yu and al. [START_REF] Yu | Mesh editing with poisson-based gradient field manipulation[END_REF]. A final step NURBS-based technique is applied from the resulting deformation to compute a continuous map.

While the need for this final step is questionable in our context, the method provides an actual solution to the non-rigid isometric registration for CAD models under springback deformations. However, it requires a well-reconstructed surface mesh from the target point cloud and is still not fast enough on large datasets. Authors say in the paper they had to prematurely abort their experiments on full-resolution models. Schweinoch and al. [11] have proposed a similar non-rigid isometric registration algorithm based on a combination of ICP and arap mesh deformation. However, they use a hierarchical divide-and-conquer approach: the deformed source is considered as a collection of segments initially set to a single segment.

The core step of the algorithm consists of subdividing each segment according to its distance from the target and rigidly align all those segments onto the target. Similarly to the NI-ICP approach, the rigid alignment of all segments results in a loss of connectivity at the segment endpoints. This connectivity is subsequently reestablished using the arap mesh deformation proposed by Sorkine and al. [START_REF] Sorkine | As-Rigid-As-Possible Surface Modeling[END_REF] that we detail in Section 3. Similarly to Sacharow and al. [START_REF] Sacharow | Non-rigid isometric icp: A practical registration method for the analysis and compensation of form errors in production engineering[END_REF] algorithm, this method is an actual solution for CAD models under springback deformation. However it was not tested on full-resolution models. Although the method uses a hierarchical approach, the whole set of source vertices is used at each iteration. All vertices of each segment are used to compute the rigid alignment and only the boundary vertices are used for the stitching step. So over the iterations, the total number of vertices used for alignment remains the same and only the number of vertices used for the stitching step increases. Therefore the method does not benefit from the speed up of classical hierarchical approaches.

58 Klein and al. [12] propose a new method by exactly formulat-59 ing the isometry registration with a proper objective function:

60 min i j p i -p j 2 -z i -z j 2 , (1) 
with p i and p j being vertices of the source surface mesh, z i 61 and z j being their associated vertices on the target, and i j a set 62 of vertex pairs not specified yet. Finally, Huang and al. [START_REF] Huang | Non-rigid registration under isometric deformations[END_REF] proposed a non-rigid registration 78 method under isometric assumptions that alternates between a 79 correspondence and a deformation optimization step. The cor-80 respondences are computed by matching source and target us-81 ing the nearest neighbor approach in a metric space defined 82 by the Euclidean distance and a feature metric defined from 83 the principal curvatures of multi-level quadric patch fitted for 84 each vertex according to Cazals and Pouget formulation [START_REF] Cazals | Estimating Differential Quantities Using Polynomial Fitting of Osculating Jets[END_REF]. 85 Then the correspondences are pruned based on geodesic dis-86 tance consistency and the remaining ones are propagated to as-87 sure uniform correspondences. The source is segmented into 88 clusters whose deformations can be described as single rigid 89 deformations and then registration of the source onto the tar-90 get is computed by minimizing a combination of point-to-point 91 and point-to-plane energy according to the optimized corre-92 spondences. This method focuses on handling complex com-93 puter graphics geometries, leaving open its numerical accuracy 94 on controlled shapes in the engineering context. 

Preliminaries

96

In this section, we introduce the concepts used in the follow-97 ing. We denote by S a source triangle mesh and by T a target 100 point cloud. The mesh S has N vertices {s i } in R 3 , its vertex 101 normals are denoted {n i } and its faces are denoted {f k }. The 102 neighboring vertices to a vertex s i is given by N(i) and ∆ cotan is 103 the discrete Laplace-Beltrami operator on S following the cotan 104 approach of Meyer and al. [START_REF] Meyer | Discrete differentialgeometry operators for triangulated 2-manifolds[END_REF]. The target point cloud T has 105 M vertices {t i } and its normal vectors are denoted {m i }. When 106 not specified otherwise, we will assume that N < M (the CAD 107 model has fewer vertices than the acquired point cloud).

We denote by π : {0 . . . N -1} → {0 . . . M -1} an assignment 1 map from vertices of S to points of T . We further elaborate 2 below on the definition of such assignment. The proximity energy is a simple quadratic fitting energy be-11 tween S and T from the assignment:

E prox (S , T ) := i s i -t π(i)
2 .

(

) 2 
The arap energy is a local rigidity energy between S and S :

E arap (S, S , R) := i w i j∈N(i) w i j e i j -R i e i j 2 , (3) 
where e i j := (s js i ), resp. e i j := (s js i ), denotes the edge vec- 

S i = U i Σ i V T i of 21 S i := j∈N(i) w i j e i j e T i j , (4) 
leading to R i := V i U T i (up to changing the last column of

U i if 22 det(R i ) < 0).

23

From the arap energy, one can define several inverse prob-24 lems. For instance, given a dense set of rotations R and s, find 25 the s minimizing E arap . The new positions of a given vertex s i 26 minimizing E arap is given by solving the (sparse) linear system:

j∈N(i) w i j (s i -s j ) = j∈N(i) w i j 2 (R i + R j )e i j . (5) 
If s denotes the 3×N matrix where each row i is s i , and b the 3×

N matrix defined from the right-hand side of ( 5), optimizing the 29 positions amounts to solving the following Poisson problem:

30 ∆ cotan s = b . (6) 

Mesh simplification

Our approach relies on a hierarchical structure of the source 32 mesh S. Although many solutions exist in geometry processing al. [START_REF] Garland | Surface simplification using quadric error metrics[END_REF]. This method combines edge collapsing and quadric 36 error metric that estimates the squared distance to the mesh.

37

Initially an error quadric matrix Q i is assigned to each s i that 38 encodes the total squared distance a point p to s i 's neighboring 39 faces which is given by computing p T Q i p. The cost of each 40 edge (i, j) is computed by minimizing the energy p T (Q i + Q j )p where p is the point that minimizes the cost (see Figure 1). The edge with the minimal cost is collapsed into a new vertex whose position is the point p that minimizes the edge cost and its quadric error matrix is the sum of the quadrics of the edge extremities.

From this elementary edge collapse step, the overall hierarchical representation H : S → S h-1 → S h-2 → . . . → S 0 of S with h layers can be given by considering disjoint sequences of minimal edge collapses per layer (see 4.2 for details).

Fast and accurate hierarchical As-Rigid-As-Possible registration

In this section we present our solution to compute an arap registration of S onto T and then its hierarchical optimization.

Single level registration

Let us first detail the arap registration for a single layer of the hierarchical reconstruction. Algorithm 1 presents the overall algorithm to construct S with the same topology as S, such that S is close to T and arap with respect to S. This algorithm alternates between an assignment and an arap optimization step close to the one proposed by Sacharow and al. [START_REF] Sacharow | Non-rigid isometric icp: A practical registration method for the analysis and compensation of form errors in production engineering[END_REF]. We extend this preminilary formulation with two main contributions: First, we propose a hierarchical optimization detailed in Section 4.2. Second, Sacharow and al. method requires that the target is a triangulated surface to define per face rotations needed in their formulation, leading to a mandatory preliminary surface reconstruction step from the point cloud. Our formulation has per vertex rotation information allowing us to directly work on the input point cloud stored in an efficient associated data structure (see below).

Assignment step (line 4 to 6). This step consists in assigning each vertex s i to a point t π(i) of T and therefore results in a set of pairs (i, π(i)). Although the nearest neighbor operator from s to t is not injective and may produce inconsistent pairs, our experiments and the results of Sacharow and al. [START_REF] Sacharow | Non-rigid isometric icp: A practical registration method for the analysis and compensation of form errors in production engineering[END_REF] and Klein and al. [START_REF] Klein | A procedure for the evaluation and compensation of form errors by means of global isometric registration with subsequent local reoptimization[END_REF] has shown that its use under small or simple deformations is a good trade-off between assignment quality and computation efficiency. We use a kdTree structure to perform the nearest neighbor requests. Since T is static, the kdTree is computed only once before the optimization loop. During the minimization process, geometrical information from T will only be given through nearest-neighbor queries on the kdTree. We provide more technical details in Section 5.1, efficient NN the assignment π, rotation matrices R i are given by:

9 R i := I + [n i × m π(i) ] × + 1 1 + n i .m π(i) [n i × m π(i) ] 2 × . ( 7 
)
with I is the identity 3 × 3 matrix and [v] × is the map from a 3D

10 vector v to a 3×3 skew-symmetric matrix such that [v] × q = v×q 11 for any q ∈ R 3 . Because we assume the deformation of S onto T is isometric, R i is the rotation occurring between s i and s i local plane, thus R i can be computed from s i and s i normals according to [START_REF] Smith | Analytic eigensystems for isotropic distortion energies[END_REF]. With a rotation for each s i (5) can be solved to get new vertices s that respect the arap constraint. Solving (5) handles the rotational part of the mapping, but because it also writes off its translation part, we move the barycenter of s to T barycenter.

Solver (line 12

). The ∆ cotan being sparse, ( 5) can be efficiently solved either using factorized solvers (e.g. LU decomposition) or iterative schemes (e.g. conjugate gradient). The first one would lead to an expensive preprocessing overhead while the second approach also allows us to reuse results from previous iterations in Algorithm 1, i.e. vertices s (see line 11), as warm start. This warm start could be problematic for the very first iteration as S may be far from the target, but it becomes more and more efficient for the remaining iterations.

Hierarchical registration

When the source mesh S is large, the main bottleneck of Algorithm 1 is the linear system solve on line 12 (see Section 5). To improve the overall performances we use a geometrical multigrid approach which constructs a hierarchical representation of S, and a coarse-to-fine minimization of the arap energy.

As first sketched in Section 3.2, H denotes a hierarchical view of S in which S h denotes the h-th layer with vertices s h i (resp. normal vectors n h i , faces f h k and Laplace-Beltrami operator ∆ h cotan ). Layers are sorted in ascending order (with respect to the number of vertices), the last layer being S. Connections between two consecutive layers S h and S h+1 (see Figure 4) are given by linking each vertex s h+1 i to a face f h k and s h+1 i local position within f h k is represented by the barycentric coordinates (α h+1 i , β h+1 i , γ h+1 i ) of its projection onto f h k along the face normal and the (possibly negative) height d h+1 i from its projection such that:

d h+1 i = (s h+1 i -p 0 ) • q (8)
s h+1 i -d h+1 i q = α h+1 i p 0 + β h+1 i p 1 + γ h+1 i p 2 , ( 9 
)
where p is one of the three vertices of f h , and q the face normal vector. With s h+1 i local coordinates to f h k and given f h k updated vertices p and normal q , s h+1 i new position is simply:

s h+1 i = α h+1 i p 0 + β h+1 i p 1 + γ h+1 i p 2 + d h+1 i q . ( 10 
) (a) (b) (c) (d)
Fig. 3. Overall hierarchical workflow: Starting from a coarse mesh S 0 (a), we solve a first arap matching leading to the mesh S 0 (b). We then consider the mesh S 1 with updated positions from S 0 (c), and repeat the minimization+optimization process to obtain the final surface S after 3 iterations (d).

Since there is no inclusion between {s h } (resp. {f h }) and {s h+1 } 1 (resp. {f h+1 }), the sparse operator ∆ h+1 cotan is simply recon-

2
structed from S h+1 (linear time algorithm in the number of 3 edges/vertices). Our hierarchical optimization of the arap registration of S onto T is presented in Algorithm 2. Given a hierarchy H of the source surface mesh S and the target point cloud T , each layer S h from the coarsest to the finest is registered to T (line 2) and the current registration result S h is propagated to the next layer S h+1 (line 7). As S h has fewer vertices than S k (for k > h), fewer nearest neighbor queries are required and the size of the ∆ h cotan is smaller. The last iteration of Algorithm 2 is performed on the full resolution mesh S. Note thanks to the hierarchical construction, very few optimization steps of Algorithm 1 are necessary to obtain a correct registration of this last step.

s h+1 i f h k S h+1 S h α h+1 i β h+1 i γ h+1 i d h+1 i q p 0 p 1 p 2
In the next section, the hierarchical optimization is experimented on data to evaluate the quality and the efficiency of the method.

Experiments

Dataset

The dataset (see Figure 5) is composed of three analytical models that mimic real-application deformations (springback, torsion and complex deformation), a car hood model (exhibiting high curvature features), and a CAD model corresponding to a real test case. To illustrate the springback, a hat shape whose parametrization is detailed in Appendix A is registered onto another hat. The hat shape is controlled by a bending factor and given its parametrization, two hats with different bending factor are isometric. For the torsion, a rectangle is mapped onto a helicoid twisted 90 • whose parametrization is also detailed in Appendix A. The sheet case corresponds to the registration of a square to a deformed one generated by applying several rotation fields according to (5) and [START_REF] Gotsman | A local/global approach to mesh parameterization[END_REF]. The same method is used to generate the deformed car hood. Because the rotation fields used are manually chosen, there is no reason for them to be actual solutions of E arap minimization.

Input scans for our analytical models and the hood have been generated by uniformly sampling each object and by adding Gaussian noise on the samples positions and normals. Given a triangular mesh, a face is randomly selected with an importance function proportional to the face area and the point lying on the For all experiments, the dataset has been normalized such 17 that the diagonal of source bounding box measures 1. Our algo-18 rithm has been implemented in C ++ with the libraries eigen [START_REF] Guennebaud | [END_REF] and libigl [START_REF] Jacobson | libigl: A simple C++ geometry processing library[END_REF] for the data structures and geometry processing, 20 nanoflann [START_REF] Blanco | nanoflann: a C++ header-only fork of FLANN, a library for nearest neighbor (NN) with kd-trees[END_REF] for the kdTree and polyscope [START_REF] Sharp | [END_REF] for the visual-21 ization. All tests were run on a 4.0 GHz PC with 16 GB RAM.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o)

22

For each experiment (e.g. Table 1) we measure the total num-23 ber of iterations n iter which is the sum of Algorithm 1 itera-

24

tions for all layers, the final E prox and E arap , the initialization 25 1 θ being the azimuthal angle and φ the polar angle.

step duration T init (construction of H and the Laplace-Beltrami operator ∆ cotan computations), the iterative step duration T core which is the execution time of Algorithm 2. The assignment step duration T NN is the timing of all nearest-neighbor queries on T (accumulated for all layers), T opt denotes the remaining optimization timing of S (also accumulated for all layers). Hence, T core = T NN + T opt and the final timing is given by T total = T init + T core . We denote a total (resp. a core ), the speedup between the hierarchical and the nonhierarchical variants of the algorithms (in total and for the core part only).

Hat and helicoid sources have both N = 10 6 vertices and their targets have M = 5 × 10 6 points. The sheet source has N = 4 × 10 5 vertices and its target has M = 2.5 × 10 6 points. The CAD model has N = 8 × 10 5 vertices and its target has M = 1.4 × 10 6 points. The number of layers for the hierarchical registration is set to 3 with the first, second and last layer having respectively N/100, N/10 and N vertices. The stopping criterion d and the maximum number of iterations of Algorithm 1 per layer are set to 10 -6 and 100.

Accuracy and Efficiency

In this experiment the hierarchical optimization is evaluated by comparing for each dataset case, the registration results with and without the hierarchy. The results for each case are displayed in Table 1.

For the hat object, both global and hierarchical approaches produce similar results in terms of energy. However, the hierarchical registration is 43 times faster in total and 115 times 1. Metrics of nonhierarchical and hierarchical registration on the dataset after convergence (with stopping criterion d = 10 -6 -see Algorithm 1and number of iterations per layer limited to 100). Metrics are n iter the sum of Algorithm 1 iterations for all layers, the final E prox and E arap , the total duration T total , the initialization step and iterative step duration T init and T core (T total = T init + T core ), the assignment steps and optimization step T NN and T opt (T core = T NN + T opt ) and the total and iteration step speedups a total and a core . Times are expressed in seconds.

faster if we only consider the iterative part. More detailed measures show that iterations with a bad alignment onto T (i.e. with large E prox ) were performed on the smaller layers. Even though the hierarchical registrations of the helicoid, the sheet and the CAD models have smaller speed ups and required more iterations than their nonhierarchical versions, they both produce mappings with lower arap energies. This can be due to the fact that optimizing the energies in a coarse-to-fine scheme make the process unlikely to get stuck on local minima.

For the sheet and hood cases for which the deformations are not fully arap, the hierarchical method produces better E prox than the nonhierarchical one. The speedup for the hierarchical car hood (1.5) is less favorable than for the other shapes as several high resolution iterations are required to cope with the high curvature features. Figure 6 shows E prox and E arap distributions on the sheet case.

Results in Table 2 show the impact on the target point cloud size to the arap registration computation time. For all analytical cases, we thus increase the sample count of the target. The assignment time T NN (which is a function of N and M) scales up with M thanks to the kdTree structure used for nearest neighbor queries, while the optimization time T opt which is a function of N is constant as expected.

Robustness to noise

In this experiment, we evaluate the robustness to perturbations on the positions and normal vectors of T on the hat case (hierarchical approach). To evaluate the robustness with respect to the perturbations, we consider the l 2 -norm between the de-28 formed surface S * vertices for the the noise-free target T (the 29 groundtruth for this test), and the surface obtained on the per-30 turbed T :

31 E * (S, S * ) := i s i -s * i 2 . ( 11 
)
When perturbing the normal vectors, experiments (Figure 7) 32 show that Algorithm 1 is stable for small perturbations (closer 33 to our use-case). For extreme cases with strong perturbations 34 (30 • (c) and 60 • ), the output surface becomes highly impacted. 35 When perturbing the sample positions, (Table 3 and Figure 8), 36 the algorithm produces very stable solutions.

37

Finally, in Figure 9, we provide additional experiments when 38 we consider non-uniform point distributions for the target point 39 cloud T . Note that the last case (cd) exactly corresponds to 40 the kind of point clouds we are facing in inverse engineering 41 when T is given by a laser range or a probing device. Our 42 method can efficiently handles these cases. In this experiment we apply our registration method on data 45 that are slightly out-of-scope of the reverse engineering con-46 text. As illustrated in Figure 10, our method does not produce 47 satisfactory results on complex geometries, due to the assign-48 ment step. In the bunny case (see Figure 10 Table 3. Registration results with noisy positions and perfect normals after convergence: σ coord is expressed as percent of the diagonal length of the point cloud bounding box (see Table 1 for column details). See Figure 8 for visualizations of E * . Under σ coord = 0.4% the algorithm produces solutions with similar E arap and E prox (which is affected by σ coord ). Under σ coord = 0.1% the algorithm produces a solution quasi-equal to S * in the same amount of time and iterations. are assigned on the same side of one target ear, so one side of this case but providing a better assignment for these complex 8

shapes (mimicking the one in [START_REF] Huang | Non-rigid registration under isometric deformations[END_REF] without scarfing the speed of 9 our approach) is a challenging future work. 

  77

  95

98 3 . 1 .

 31 Notations and As-Rigid-As-Possible deformation 99

3 7 S

 7 Our objective is to determine the deformation S onto T re-4 sulting in the registered surface mesh S such that S and S are 5 isometric and S and T are aligned. Because true isometric de-6 formation cannot be achieved, the deformation between S and must be arap instead of isometric. This objective implies 8 two different energies: a first one to account for the proximity 9 between S and T , and a second one for the arap evaluation.

10

 10 

14 tor, 16 ∆

 1416 R denotes a set of rotation with R i the rotation of the tangent 15 space at s i . Weights w i and w i j are the cotangent weights of the cotan operator attached to S. A more generic and continuous 17 elasticity model following this principle can be found in[START_REF] Chao | A simple geometric model for elastic deformations[END_REF]. In 18 Sorkine and al. [3] arap deformation framework they define R i 19 as the rotation between s i and s i neighborhoods and derive R i 20 from the singular value decomposition

33

  and computer graphics, we rely on the simple, yet very effi-34 cient, edge collapsing simplification proposed byGarland and 35 

Fig. 1 .

 1 Fig. 1. Edge collapsing: the edge formed by the two green vertices in (a) is collapsed and the green vertices are merged into the red vertex in (b).

Fig. 2 .

 2 Fig. 2. Overall workflow: Starting from a source mesh S and a target point cloud T (a), we first start with assignation π : S → T (b). From rotations R computed from the assignment, we solve a first arap matching (c). In (d) we illustrate the final surface after 3 iterations.

1 2 Algorithm 1 : 7 foreach s i ∈ S do 8 compute 14 d

 217814 queries allow us to consider very large point clouds as targets. arap registration algorithm Input: S = ({s i }, {f k }, {n i }, ∆ cotan ): source surface mesh T = ({t i }, {m i }): target point cloud : a stopping criterion Output: S = {s i }, {f k } : as-rigid-as possible deformed mesh with the same topology as S. 1 S ← S; d ← +∞ 2 b T ← barycenter(T ) 3 while d > ε do /* Construct π. */ 4 foreach s i ∈ S do 5 π(i) := nearest-neighbor(s i ,T ) 6 end /* Optimize S such as S and S are arap. */ R i according to (7) 9 end 10 compute b according to (5) 11 s tmp ← {s i } // warm start for the iterative solver 12 solve ∆ cotan s tmp = b 13 translate s tmp by (b T -barycenter(s tmp )) /* End of iteration. */ ← i ||s tmps i || 2 15 {s i } ← s tmp 16 end 17 return S Optimization step (line 7 to 13). We could use the {t π(i) } as our 3 mapping solution, but since they may not respect the arap con-4 straint, we need to refine those pairs to ensure that s minimizes 5 E arap . The solution of the arap energy minimization (5) requires 6 the original source vertices s, it's cotangent weights expressed 7 in the Laplacian operator ∆ cotan and rotation matrices R. From

8

 8 

Fig. 4 .Algorithm 2 : 2 S 3 if S h is last layer then 4 return S h 5 else

 422345 Fig. 4. Exploded view of the hierarchical structure: Vertex s h+1 i of upper layer S h+1 is linked to face f h k of lower layer S h . Vertex s h+1 i position within f h k is encoded the barycentric coordinates (α h+1 i , β h+1 i , γ h+1 i ) of its projection and its signed distance d h+1 i from f h k .

Fig. 5 . 9 Finally

 59 Fig.5. Dataset: Yellow meshes are source models, blue point clouds correspond the target scans. Finally, red meshes are outputs we obtain after registration (see Table1for the settings). From left to right columns: two hats (a, f ) under springback deformation, a mapping between a rectangle (b) and a twisted helicoid (g) (90 • to mimic a torsion), the sheet (c, h) for a complex deformation and a car hood model (d) with simulated scan (i). The last column (e, j, o) corresponds to a real test case of a CAD model and a scan of the real metal sheet. Meshes and point clouds are downsampled for visualization purposes.

16

 16 

Fig. 6 . 1 ×

 61 Fig. 6. Sheet registration results: Top row displays nonhierarchical results, bottom row the hierarchical results. From left to right the results are registration output (with T in blue and S in red), the E prox per vertex and the E arap per vertex. E prox (resp. E arap ) share the same colormap for both versions with purple (resp. yellow) as lower (resp. upper) bound.

Fig. 7 .

 7 Fig. 7. Registration results with perfect position and noisy normals: The normals are perturbed using a Gaussian noise as specified in Section 5.1 with σ angle equals from left to right 3 • (a), 6 • (b), 30 • (c) and 60 • (d). Top row displays the normal distribution and bottom row the registration output S . With small enough noises (e.g. 3 • (a) and 6 • (b)) the mapping is not smooth but consistent while with too big noises (e.g. 30 • (c) and 60 • (d)) the algorithm produces degenerated results.

Fig. 8 .

 8 Fig. 8. Registration results with noisy positions and perfect normals: The positions are perturbed using a Gaussian noise as specified in Section 5.1 with σ coord equals from left to right 0.1% (a), 0.4% (b), 0.7% (c) and 1% (d) of the diagonal length of the point cloud bounding box. Top row displays the position distribution and bottom row the registration output S colored by E * per vertex, E * share the same colormap for all σ coord with purple (resp. yellow) as lower (resp. upper) bound. See Table1for detailed metrics.

Fig. 9 .Fig. 10 .

 910 Fig. 9. Robustness to different point distributions: When the sampling density is not uniform (a) or when its has high aliasing structure when simulating probing/laser based acquisition devices (c), our approach still provides stable and accurate outputs (b) and (c).
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 12357 Figure 7(h)). Note that the overall algorithm (assignment/arap 6
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 6 Conclusion 11 In this paper, we have presented a new method of non-rigid 12 isometric registration of a source triangle mesh onto a target 13 point cloud that is fast, accurate and can handle large geome-14 tries. Our solution is based on a hierarchy of meshes built from 15 the source triangle mesh. Our algorithm alternates between 16 an assignment and an arap optimization step, starting from the 17 coarsest mesh of the hierarchy, and going up progressively each 18 time the solution with the current level has converged. Our ex-19 periments show a very highest speed up compared to the non-20 hierarchical approach, while ensuring the same accuracy.21Several future works exist. As mentioned in Section 5.4, the 22 assignment step could be improved to be able to handle more 23 complex shapes in terms of geometry or topology. We would 24 also consider alternative schemes for the hierarchical construc-25 tion (for instance to keep some user-specified features, or to 26 preserve some spectral properties similarly to[START_REF] Lescoat | Spectral mesh simplification[END_REF]). The chal-27 lenge in these future works would be to keep a solution that 28 scales up with respect to the size of the source and the target, 29 while keeping the accuracy of the reconstruction as required in 30 our inverse engineering context. 31 Appendix A. Hat and helicoid parametrization By definition a ruled surface can be described by a parametrization p(u, v) = c(u) + v * r(u) with p the surface vertices, c its directrix curve and r its generator. Hat directrix c hat is controlled by a bending factor b and its piecewise definition is given on each piece i by: c hat (u, b) b) cos(ω i (b) u + φ i (b)) L i (b) sin(ω i (b) u + φ i (bL i , ω i , φ i and P i chosen such that c hat is at least C 1 and isometric for any b. Hat generator r hat is a simple constant [0, 0, W].The helicoid is a well known ruled surface, like with the hat we introduce a bending factor b to control its deformation such that: c helicoid (u) :=

  The first step of this method 63 consists in computing a neighborhood structure of the source 64 mesh for the objective function such that close-by situated ver-65 tex pairs are conserved in the energy and distant pairs are re-66 moved. The second step is a global registration where the (non-67 convex) energy minimization is treated as a Quadratic Assign-68 ment Problem (QAP for short) from the neighborhood structure 69 and the downsampled target. The final step is a local reopti-70 mization where the energy is minimized by a gradient descent 71 method initialized by the QAP solutions. The method provides 72 an actual isometric registration energy and works on a point 73 cloud target. However the computation of the neighborhood 74 structure and the energy minimization being based on a QAP 75 problem (whose optimal solution is NP-hard) make the method 76 not suited for large datasets.

Table

  

	Case	sizes (N, M)	n iter	E prox	E arap	T total	T init	T NN	T core T opt	a total a core
	hat hat hierarchical	N = 10 6 M = 5 × 10 6	17 12	1.3 × 10 -2 5.1 × 10 -6 1.9 × 10 -2 4.6 × 10 -6	1734 40	2 (0.1%) 25 (62.5%)	1732 (99.9%) 1373 361 15 (37.5%) 12 3	43	115
	helicoid helicoid hierarchical	N = 10 6 M = 5 × 10 6	100 136	2.5 × 10 -1 5.0 × 10 -3 1.0 × 10 -1 2.0 × 10 -6	514 72	2 (0.4%) 25 (34.7%)	512 (99.6%) 288 224 47 (65.3%) 33 14	7	10
	sheet sheet hierarchical	N = 4 × 10 5 M = 2.5 × 10 6	7 40	1.3 1.3 × 10 -1 2.7 × 10 -3 1.8 × 10 -2	107 24	1 (0.9%) 11 (45.8%)	106 (99.1%) 51 55 13 (54.2%) 3 10	4	8
	hood hood hierarchical	N = 8 × 10 5 M = 5 × 10 6	8 18	3.7 × 10 -1 2.5 × 10 -3 3.7 × 10 -2 1.0 × 10 -3	311 201 21 (10.4%) 1 (0.3%)	310 (99.7%) 55 255 180 (89.6%) 7 173	1.5	1.7
	CAD CAD hierarchical	N = 8 × 10 5 M = 1.4 × 10 6	100 150	6.7 × 10 -1 4.5 × 10 -4 6.3 × 10 -1 3.8 × 10 -6	2065 1 (0.04%) 94 21 (22.3%)	2065 (99.96%) 38 2027 73 (81.7%) 3 70	21	28

Table 2 .

 2 

Scan size impact on hierarchical registration duration: For all cases the source vertex number N is fixed, M is the number of points in the target scan and T NN and T opti the total amounts of time spent on assignment and optimization steps (see Section 4.1 for step details).

Table 1

 1 for detailed metrics.

	σ coord	n iter	E prox	E arap	E *	T total (sec)
	0%	16	1.3 × 10 -2 3.6 × 10 -6	0	48
	0.1%	23	1.5 × 10 -2 7.0 × 10 -6 4.5 × 10 -3	43
	0.4%	81	3.2 × 10 -2 4.7 × 10 -6 3.0 × 10 -2	100
	0.7%	174	4.7 × 10 -2 1.2 × 10 -4 2.3 × 10 -2	179
	1%	290	5.9 × 10 -2 2.5 × 10 -4 8.5 × 10 -2	297