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The potential scope of the ultrasonic surface reflection method towards mechanical characterisation of isotropic materials. Part 1.

INTRODUCTION

Ultrasonic methods are commonly used to determine the high-frequency mechanical properties of materials [START_REF] Ferry | Viscoelastic properties of polymers[END_REF][START_REF] Truell | Ultrasonic methods in solid state physics[END_REF]. Most ultrasonic methods are based on measurements of amplitude and time-of-flight of ultrasonic waves through a sample of known thickness and density. From these two measurements are deduced the celerity and attenuation of ultrasonic waves in the considered medium, which makes it possible to calculate the mechanical moduli (shear and P-wave moduli using respectively transverse and longitudinal waves). This principle can be implemented using various techniques illustrated in figure 1. In the transmission mode, two transducers (one emitter and one receiver) are placed face to face on both sides of the sample [START_REF] Nolle | Longitudinal and transverse ultrasonic waves in a synthetic rubber[END_REF][START_REF] Fujisawa | A new experimental method to estimate viscoelastic properties from ultrasonic wave transmission measurements[END_REF][START_REF] Lillamand | Acoustoelastic effect in concrete material under uni-axial compressive loading[END_REF][START_REF] Fan | Experimental investigation of thermal effects on dynamic behaviour of granite[END_REF][START_REF] Espinosa | Effect of wood anisotropy in ultrasonic wave propagation: A ray-tracing approach[END_REF][START_REF] Tinard | Experimental assessment of sound velocity and bulk modulus in high damping rubber bearings under compressive loading[END_REF]. This method is quite easy to implement but has some disadvantages. It requires access to both sides of the material to be tested, which may not be possible for in-situ measurements. Moreover the precise determination of attenuation often requires several sample thicknesses (in order to avoid the influence of transmission coefficients at interfaces between transducers and material) and appropriate consideration of the ultrasonic beam geometry. The latter problem can be addressed by using transmission mode in water bath [START_REF] Ivey | Propagation of ultrasonic bulk waves in high polymers[END_REF][START_REF] Kono | The dynamic bulk viscosity of polystyrene and polymethyl methacrylate[END_REF][START_REF] Capps | Influence of carbon black fillers on acoustic properties of polychloroprene (neoprene) elastomers[END_REF][START_REF] Wu | Determination of velocity and attenuation of shear waves using ultrasonic spectroscopy[END_REF][START_REF] Paterson | Elastic constant determination of unidirectional composite via ultrasonic bulk wave through transmission measurements: A review[END_REF]: it is sufficient in this case to make measurements with and without a sample in order to determine accurately the attenuation coefficient. Another advantage of this method is that the transmission of longitudinal and transverse waves can be studied using the same couple of pressure transducers by simply rotating the sample. However, this method is obviously reserved for laboratory tests. A third method is more suitable for some in-situ tests in which only one side of the material to be tested is accessible. This method, called pulse-echo mode [START_REF] Mcskimin | Analysis of the pulse superposition method for measuring ultrasonic wave velocities as a function of temperature and pressure[END_REF][START_REF] Bastien | The possibilities and limitations of ultrasonics in the nondestructive testing of steel[END_REF][START_REF] Afifi | Ultrasonic characterization of heavy metal TeO2 -WO3 -PbO glasses below room temperature[END_REF][START_REF] Hagan | Critical evaluation of pulseecho ultrasonic test method for the determination of setting and mechanical properties of acrylic bone cement: Influence of mixing technique[END_REF][START_REF] Metwally | Measuring mass density and ultrasonic wave velocity: a wavelet-based method applied in ultrasonic reflection mode[END_REF], measures the transit time and wave amplitude after reflection on the opposite side and only requires a single transducer. However, this method has some limitations.

If the sample is too thin, the echo may overlap with the sensor's emission signal.

Conversely, if the sample is too thick, the amplitude of the reflected signal may be too small to be accurately measured.

Whichever of the three methods outlined above is used, the thickness of the sample must be precisely known, which is not always possible in the context of in-situ measurements. Above all, the main limitation of those three methods is that once the signal has passed through the material its amplitude has to be measurable. Ultrasonic measurement of the mechanical properties of high damping materials may therefore be impossible [START_REF] Ferry | Viscoelastic properties of polymers[END_REF][START_REF] Burg | Characterization of elastomers with transverse sonic waves[END_REF]. However, a fourth method, presented in [START_REF] Mason | Measurement of shear elasticity and viscosity of liquids at ultrasonic frequencies[END_REF][START_REF] Neil | Reflection and refraction of plane shear waves in viscoelastic media[END_REF], has been developed to overcome some of these drawbacks: the Surface Reflection Method (SRM). This method is founded on the influence of an interface change on the reflected acoustic wave. In other words, it is based on the measurement of the ratio of the amplitude of the reflected wave at the interface between two materials to the amplitude of the reflected wave at the air interface. These amplitudes depend on the mechanical properties of each medium. If one of the media (named in the following reference material) is known, this measurement makes it possible to determine the mechanical characteristics of the second. In this method, the incidence of the emitted pulse may be normal or oblique [START_REF] Yoneda | Ichibara M Shear viscoelasticity of ultrasonic couplers by broadband reflectivity measurements[END_REF][START_REF] Alig | Ultrasonic shear wave reflexion method for measurements of the viscoelastic properties of polymer films[END_REF][START_REF] Chang | Study on the viscoelasticity measurement of materials based on surface reflected waves[END_REF][START_REF] Omata | Viscoelasticity evaluation of rubber by surface reflection of supersonic wave[END_REF]. The measurement accuracy is increased for oblique incidence, at the expense of simplicity of implementation. Only the normal incidence method is considered in this study. A scheme illustrating how the method works is presented in figure 2. Given the limitations of the traditional methods described previously, the conditions for the applicability of the SRM is discussed below. First, this paper focuses on the theoretical formulation of the amplitude of reflected waves at the interface between two viscoelastic media according to the latter's mechanical characteristics. Subsequently, the analytical solution to the inverse problem (the mechanical characteristics of the tested medium based on those of the reference medium and the waves' amplitude) is given. From this analytical solution, an analysis of the measurand error is performed and a method for choosing the reference material is proposed.

THEORY

Ultrasonic wave propagation in viscoelastic medium

The propagation of a mechanical wave in a continuous and homogeneous medium is governed by Euler's equation:

∇σ * = ρa * Eq.
Where σ * is the complex Cauchy stress, ρ is the density of the material, a * is the complex acceleration and ∇ is the Laplacien operator.

The mechanical behaviour of the material is assumed to be linear viscoelastic in the small strain domain with a complex descriptor denoted below by D * with real and imaginary parts respectively denoted as D ′ and D ′′ . In case of transverse waves (respectively longitudinal waves) D * represents the complex shear modulus G *

(respectively the complex P-wave modulus M * = K * + 4G * 3 ⁄ , with K * the complex bulk modulus). In the case of a plane wave propagating in the x-direction, the complex stress is expressed according to equation 2.

σ * = D * ∂u * ∂x Eq.
Where u * represents the complex displacement.

From equations 1 and 2 the well-known relationship of propagation of mechanical waves in a continuous medium is obtained [START_REF] Kinsler | Fundamentals of Acoustics[END_REF].

D * ∂ 2 u * ∂x 2 = ρ ∂ 2 u * ∂t 2
Eq.

In a semi-infinite medium, the stationary solution of equation 3 in case of a harmonic wave of pulsation ω is expressed:

u * (t, x) = u 0 exp(-αx) exp (j (ω (t - x c ))) Eq. 4
Where u 0 is the amplitude of displacement at x=0, α is the attenuation coefficient, ω is the wave pulsation and c is the wave phase celerity.

By substituting the solution expressed in equation 4 in equation 3, the relationship between the real and imaginary part of D * on the one hand and attenuation and celerity on the other hand has been revealed (equations 5 and 6). This system of equations establishes the method for determining mechanical properties by ultrasonic transmission (figure 1).

{ α = ω√ρ√|D * | -D ′ √2|D * | c = √2|D * |√|D * | -D ′ D ′′ √ρ
Eq. 5

{ D ′ = ρc 2 1 -(αc ω ⁄ ) 2 (1 + (αc ω ⁄ ) 2 ) 2 D ′′ = ρc 2 2 αc ω ⁄ (1 + (αc ω ⁄ ) 2 ) 2
Eq. 6

Reflection at the interface of two viscoelastic media

Many authors have studied the mechanisms of reflection and transmission of plane waves at the interface between two elastic or viscoelastic media [START_REF] Lockett | The reflection and refraction of waves at an interface between viscoelastic materials[END_REF][START_REF] Cooper | Reflection and transmission of oblique plane waves at a plane interface between viscoelastic media[END_REF][START_REF] Schoenenberg | Transmission and reflection of plane waves at an elasticviscoelastic interface[END_REF]. Unlike these authors whose aim was to investigate the propagation of waves at the interface of two known materials, this study focuses on the inverse problem and its analytical solution.

Acoustic impedance

In the present paper, only the case of a normal incidence is considered. When an ultrasonic wave reaches the interface between two media, it is partially reflected and transmitted. The amplitudes of transmitted (denoted u t * ) and reflected (denoted u r * )

waves depend upon the acoustic impedances of the two media in contact and are proportional to the amplitude of the incident wave (denoted u i * ) as illustrated in figure 3. In what follows, subscript 1 is related to the medium of incident wave and subscript 2

to the secondary medium.

The acoustic impedance Z * for a viscoelastic medium is defined by equation 7 [START_REF] Kinsler | Fundamentals of Acoustics[END_REF].

σ * = -jωZ * u * with Z * = Z ℜ + jZ ℑ Eq. 7 

D * = Z * 2 ρ ⇔ { Z ℜ = √ ρ 2 D ′′ √|D * | -D ′ Z ℑ = √ ρ 2 √|D * | -D ′
Eq. 8 2.2.2. Conservation equation at the interface Displacement and stress continuity at the interface lead to the following set of equations:

{ u i * = u t * + u r * σ i * = σ t * + σ r { U rℜ = |Z 2 * | 2 -|Z 1 * | 2 |Z 1 * + Z 2 * | 2 U rℑ = 2(Z ℜ1 Z ℑ2 -Z ℜ2 Z ℑ1 ) |Z 1 * + Z 2 * | 2 U tℜ = 1 -U rℜ U tℑ = -U rℑ Eq. 13
Since SRM is based on echo measurements, only the reflected wave is of interest. By inverting the system it is possible to obtain the complex impedance components of medium 2 knowing those of medium 1 and by measuring the reflected wave's amplitude

(equation 14). { Z ℜ2 = - Z ℜ1 (U rℜ 2 + U rℑ 2 -1) + 2Z ℑ1 U rℑ (U rℜ -1) 2 + U rℑ 2 Z ℑ2 = - Z ℑ1 (U rℜ 2 + U rℑ 2 -1) + 2Z ℜ1 U rℑ (U rℜ -1) 2 + U rℑ 2
Eq. 14

The aim of the method exposed in the present paper is to determine the modulus of medium 2. By substituting in equation 14 the impedance components using their expressions in function of the components of modulus, the final relationship is obtained in equation 15. To the author's knowledge, such analytical relationship between two viscoelastic media does not exist in the literature.

{ D ′ 2 = ρ 1 ρ 2 [((U rℜ 2 + U rℑ 2 -1) 2 -4U rℑ 2 ) D ′ 1 + 4(U rℜ 2 + U rℑ 2 -1)U rℑ D ′′ 1 ] ((U rℜ -1) 2 + U rℑ 2 ) 2 D ′′ 2 = ρ 1 ρ 2 [((U rℜ 2 + U rℑ 2 -1) 2 -4U rℑ 2 ) D ′′ 1 -4(U rℜ 2 + U rℑ 2 -1)U rℑ D ′ 1 ] ((U rℜ -1) 2 + U rℑ 2 ) 2
Eq. 15

UNCERTAINTY OF MEASURAND AND CHOICE OF REFERENCE

MATERIAL

Equation 15 being strongly non-linear, the measurand error is also non-linear and can become detrimental for some material combinations. The choice of material 1 is therefore crucial to ensure that the mechanical properties of material 2 are measured with an acceptable error margin. The way to achieve a given measurement error on U r *

is not discussed in this paper. In this section, based on the literal expression of measurand error, guidelines to assist the selection of the reference material are provided.

In order to determine the error on the components of the module (D ′ and D " ), it is first necessary to estimate the error on the components of acoustic impedance (equation 16 obtained from equation 8).

{ D 2 ′ = (Z ℜ2 2 -Z ℑ2 2 ) ρ 2 ⁄ D 2 ′′ = 2Z ℜ2 Z ℑ2 ρ 2 ⁄ Eq. 16
For the sake of simplicity, the error on the real and imaginary part of the reflected amplitude are set equal and noted ∆U. Arguments of Z 1 * and Z 2 * are respectively denoted θ 1 and θ 2 . The acoustic impedance argument is equal, as usual, to half the angle of the loss factor 𝛿 2 (tan

(𝛿 2 ) = D 2 ′′ D 2 ′ ⁄ ).
By differentiating equation 16, we obtain

{ ∆D 2 ′ D 2 ′ ∆U = ∆Z ℜ2 Z ℜ2 ∆U * ( 2 1 -tan 2 (θ 2 ) ) + ∆Z ℑ2 Z ℑ2 ∆U * ( 2tan 2 (θ 2 ) 1 -tan 2 (θ 2 ) ) ∆D 2 " D 2 " ∆U = ∆Z ℜ2 Z ℜ2 ∆U + ∆Z ℑ2 Z ℑ2 ∆U
Eq. 17

Where

{ ∆Z ℜ2 Z ℜ2 ∆U = (| ∂Z ℜ2 ∂U rℜ | + | ∂Z ℜ2 ∂U rℑ |) * 1 Z ℜ2 ∆Z ℑ2 Z ℑ2 ∆U = (| ∂Z ℑ2 ∂U rℜ | + | ∂Z ℑ2 ∂U rℑ |) * 1 Z ℑ2
Eq. 18 It appears that, whatever the impedance arguments of materials 1 and 2 are, the optimum value of the moduli ratio is always in the range 0.6 to 1.6. To this optimum ratio corresponds a minimum error that is plotted in figure 5. This minimal error depends mainly on the impedance argument of medium 2. The following analysis is based on the assumption of a measurement error of 1% on the reflected amplitude. In what concerns the real part of modulus D2', a minimal error in an acceptable range (i.e. < 10%) is only obtained for an impedance argument of medium 2 lower than 25°. For the imaginary part of modulus D2", the impedance argument of medium 2 has to be higher than 14°. Hence, with an assumption on the measurement error of 1%, both components of the modulus can only be determined accurately for an impedance argument in the range 14° to 25°, which corresponds to 0.5 < tan(𝛿 2 ) < 1.2. Two limit cases will now be investigated: loss modulus of medium 1 is null (θ1=0°) as illustrated in figure 6 and storage modulus of medium 1 null (θ 1 = 45°) as presented in figure 7. can be estimated at 1% and the error is expected to be less than 10%.

The frontier of the domain of acceptable error (<10%) is symbolised by the thick black line. The fields of applicability of the method are similar for the two extreme values of θ1 considered. Whatever θ1 and the modulus component, the minimum error is in the vicinity of a moduli ratio of 1, a result in accordance with previous findings (see figure 4).

Nevertheless, a reasonable accuracy is maintained over an extended moduli ratio range (0.1 to 10) if material 2 is purely linear elastic (only the real part of the complex modulus has to be determined in this case) or purely viscous (in which case only the imaginary part of the complex modulus has to be determined). However, in the case of a viscoelastic medium with an angle in a median zone, the choice of medium 1 is much more restricted to achieve the desired accuracy. For instance, let us consider a viscoelastic solid whose loss factor (tan(δ 2 ) = D 2 " D 2 ′ ⁄ ) is of 1. The corresponding impedance argument would be θ 2 = 𝛿 2 2 ⁄ = 22.5°. In this case, a sufficiently accurate estimation of both D' and D" would only be obtained for an impedance module ratio between 0.5 and 2. The error study highlights that only the storage moduli ratio between the two contacting media had an impact on the accuracy of the measurand. From this point of view, D ′′ 1 can take on any value. By contrast, a too large viscous component (which causes a very strong attenuation in the reference medium) would be detrimental in terms of the accuracy of the measurement of the reflected waves' amplitudes. In all cases, a high degree of accuracy in the measurement of reflected waves' amplitudes is required: in the most favourable case, the error on the modules is four times greater than that on amplitudes. More generally speaking, this method can be applied either for longitudinal or transverse waves. In the first case, media 1 and 2 can be either fluids or solids. In the second case, media 1 must be solid and media 2 can be either solid or fluid. In the last case, the applicability of the method implies high ultrasonic frequency and high viscosity so that the acoustical impedance of the fluid is equivalent to the one of a solid.

DISCUSSION

In the previous section, it is highlighted how to achieve the best measurand accuracy by applying the SRM. In the following, the accuracy obtained with this method is compared with that of traditional methods in order to determine the respective fields of application of the different methods.

Traditional methods (transmission mode, transmission mode in water bath, pulse-echo mode) are based, on the one hand, on the measurement of a transit time and a sample thickness in order to deduce the wave celerity and, on the other hand, on amplitude ratio measurements to deduce the attenuation. Depending on the method, the amplitude ratio most commonly used is as follows: At a given angle, the minimum error is obtained for a value of U = 1 e ⁄ = 0.368.


Another noteworthy value is the angle θ = 30° for which the theoretical error on D " is zero. More generally, an acceptable error (i.e. <10%) is only obtained for sufficiently high values of U. Considering the case of a solid with tan(δ) = 1 (corresponding to an angle θ = 22.5°), an error of less than 10% can only be obtained for a value of U greater than about 0.015.

The conventional modes can be very accurate if the thickness of the samples can be adjusted to obtain a value of U sufficiently close to the optimal value of 0.368. Under specific conditions, the required sample thickness would be so small that it prevent the practical implementation of the method. For detailed demonstration, please refer to Part 2.

CONCLUSION

The aim of this paper is to highlight the potential scope of the Surface Reflection Method (SRM). First, analytical formulas were established to relate the mechanical characteristics of a sample to be tested to those of a reference sample as well as to the amplitude of the waves reflected at the interface. The error study demonstrated that, in order to obtain a given accuracy on the measurands, the moduli ratio of the acoustic impedances of the two materials in contact had to be close (typically between 0.6 and 1.6). These conditions for the validity of the method apply to both viscoelastic and considered elastic materials. Although the error on the measurand expected with conventional methods is generally lower than that of the SRM, the conditions required to obtain a given accuracy cannot be met in some cases such as the study of the mechanical properties of polymers in rubbery state or highly viscous fluids (honey, crude oil, colloid suspensions …). For this type of tests, the only possible measurement method is the SRM. Other possible fields of application are quality control, the measurement of ageing or the study of the durability of materials.
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