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Analysis and Numerical Solution of a Modular Convex Nash Equilibrium Problem *

We investigate a modular convex Nash equilibrium problem involving nonsmooth functions acting on linear mixtures of strategies, as well as smooth coupling functions. An asynchronous blockiterative decomposition method is proposed to solve it.

Introduction

We consider a noncooperative game with p players indexed by I = {1, . . . , p}, in which the strategy x i of player i ∈ I lies in a real Hilbert space H i . A strategy profile is a point x = (x i ) i∈I in the Hilbert direct sum H = i∈I H i , and the associated profile of the players other than i ∈ I is the vector x i = (x j ) j∈I {i} in H i = j∈I {i} H j . For every i ∈ I and every (x i , y) ∈ H i × H, we set (x i ; y i ) = (y 1 , . . . , y i-1 , x i , y i+1 , . . . , y p ). Given a real Hilbert space H, we denote by Γ 0 (H) the class of lower semicontinuous convex functions ϕ : H → ]-∞, +∞] which are proper in the sense that dom ϕ = x ∈ H | ϕ(x) < +∞ = ∅.

A fundamental equilibrium notion was introduced by Nash in [START_REF] Nash | Equilibrium points in n-person games[END_REF][START_REF] Nash | Non-cooperative games[END_REF] to describe a state in which the loss of each player cannot be reduced by unilateral deviation. A general formulation of the Nash equilibrium problem is

find x ∈ H such that (∀i ∈ I) x i ∈ Argmin ℓ i ( • ; x i ), (1.1) 
where ℓ i : H → ]-∞, +∞] is the global loss function of player i ∈ I. We make the following assumption: for every i ∈ I and every x ∈ H, the function ℓ i ( • ; x i ) is convex. Such convex Nash equilibrium problems have been studied since the early 1970s [START_REF] Bensoussan | Sur les méthodes de décomposition, de décentralisation et de coordination, et applications[END_REF]; see [START_REF] Attouch | Alternating proximal algorithms for weakly coupled convex minimization problems. Applications to dynamical games and PDE's[END_REF][START_REF] Börgens | ADMM-Type methods for generalized Nash equilibrium problems in Hilbert spaces[END_REF][START_REF] Borzì | Formulation and numerical solution of Nash equilibrium multiobjective elliptic control problems[END_REF][START_REF] Briceño-Arias | Monotone operator methods for Nash equilibria in non-potential games[END_REF][START_REF] Cohen | Nash equilibria: Gradient and decomposition algorithms[END_REF][START_REF] Combettes | Fixed point strategies in data science[END_REF][START_REF] Cominetti | Modern Optimization Modelling Techniques[END_REF][START_REF] Facchinei | On generalized Nash games and variational inequalities[END_REF][START_REF] Gautam | Forward-backward-half forward dynamical systems for monotone inclusion problems with application to v-GNE[END_REF][START_REF] Heusinger | Relaxation methods for generalized Nash equilibrium problems with inexact line search[END_REF][START_REF] Sorin | Finite composite games: Equilibria and dynamics[END_REF] for further work. We consider the following modular formulation of (1.1), wherein the functions (ℓ i ) i∈I are decomposed into elementary components. This decomposition will provide more modeling flexibility and lead to efficient solution methods.

Problem 1.1 Let (H i ) i∈I and (G k ) k∈K be finite families of real Hilbert spaces, and set H = i∈I H i and G = k∈K G k . Suppose that the following are satisfied:

[a] For every i ∈ I, ϕ i ∈ Γ 0 (H i ).

[b] For every i ∈ I, f i : H → R is such that, for every x ∈ H, f i ( • ; x i ) : H i → R is convex and differentiable, and we denote its gradient at x i by ∇ i f i (x). Further, the operator G : H → H : x → (∇ i f i (x)) i∈I is monotone and Lipschitzian.

[c] For every k ∈ K, g k ∈ Γ 0 (G k ) and L k : H → G k is linear and bounded.

The goal is to

find x ∈ H such that (∀i ∈ I) x i ∈ Argmin ϕ i + f i ( • ; x i ) + k∈K (g k • L k )( • ; x i ). (1.2)
In Problem 1.1, the individual loss of player i ∈ I is a nondifferentiable function ϕ i , while his joint loss is decomposed into a differentiable function f i and a sum of nonsmooth functions (g k ) k∈K acting on linear mixtures of the strategies. To the best of our knowledge, such a general formulation of a convex Nash equilibrium has not been considered in the literature. As will be seen in Section 3, it constitutes a flexible framework that subsumes a variety of existing equilibrium models. In Section 4, we embed Problem 1.1 in an inclusion problem in the bigger space H ⊕ G, and we employ the new problem to provide conditions for the existence of solutions to (1.2). This embedding is also exploited in Section 5 to devise an asynchronous block-iterative algorithm to solve Problem 1.1. The proposed method features several innovations that are particularly relevant in large-scale problems: first, each function and each linear operator in (1.2) is activated separately; second, only a subgroup of functions needs to be activated at any iteration; third, the computations are asynchronous in the sense that the result of calculations initiated at earlier iterations can be incorporated at the current one.

Notation

General background on monotone operators and related notions can be found in [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]. Let H be a real Hilbert space. We denote by 2 H the power set of H and by Id the identity operator on H.

Let A : H → 2 H . The domain of A is dom A = x ∈ H | Ax = ∅ , the range of A is ran A = x∈dom A Ax, the graph of A is gra A = (x, x * ) ∈ H × H | x * ∈ Ax , the set of zeros of A is zer A = x ∈ H | 0 ∈ Ax , the inverse of A is A -1 : H → 2 H : x * → x ∈ H | x * ∈ Ax , and the resolvent of A is J A = (Id + A) -1 . Now suppose that A is monotone, that is, ∀(x, x * ) ∈ gra A ∀(y, y * ) ∈ gra A x -y | x * -y * 0. (2.1)
Then A is maximally monotone if, for every monotone operator A :

H → 2 H , gra A ⊂ gra A ⇒ A = A; A is strongly monotone with constant α ∈ ]0, +∞[ if A -αId is monotone; and A is 3 * monotone if (∀x ∈ dom A)(∀x * ∈ ran A) sup (y,y * )∈gra A x -y | y * -x * < +∞. (2.2)
Let ϕ ∈ Γ 0 (H). Then ϕ is supercoercive if lim x →+∞ ϕ(x)/ x = +∞ and uniformly convex if there exists an increasing function φ : [0, +∞[ → [0, +∞] that vanishes only at 0 such that

(∀x ∈ dom ϕ)(∀y ∈ dom ϕ)(∀α ∈ ]0, 1[) ϕ αx + (1 -α)y + α(1 -α)φ x -y αϕ(x) + (1 -α)ϕ(y). (2.3)
For every x ∈ H, prox ϕ x denotes the unique minimizer of ϕ + (1/2) • -x 2 . The subdifferential of ϕ is the maximally monotone operator

∂ϕ : H → 2 H : x → x * ∈ H | (∀y ∈ H) y -x | x * + ϕ(x) ϕ(y) . (2.4) 
Finally, given a nonempty convex subset C of H, the indicator function of C is

ι C : H → [0, +∞] : x → 0, if x ∈ C; +∞, otherwise, (2.5) 
and the strong relative interior of

C is sri C =    x ∈ C λ∈ ]0,+∞[ λ(C -x) is a closed vector subspace of H    .
(2.6)

Instantiations of Problem 1.1

Throughout this section, H is a real Hilbert space. We illustrate the wide span of Problem 1.1 by showing that common formulations encountered in various fields can be recast as special cases of it.

Example 3.1 (quadratic coupling) Let I be a nonempty finite set. For every i ∈ I, let ϕ i ∈ Γ 0 (H), let Λ i be a nonempty finite set, let (ω i,ℓ,j ) ℓ∈Λ i ,j∈I {i} be in [0, +∞[, and let

(κ i,ℓ ) ℓ∈Λ i be in ]0, +∞[. Additionally, set H = i∈I H. The problem is to find x ∈ H such that (∀i ∈ I) x i ∈ Argmin ϕ i + ℓ∈Λ i κ i,ℓ 2 • - j∈I {i} ω i,ℓ,j x j 2 . (3.1)
It is assumed that

(∀x ∈ H)(∀y ∈ H) i∈I ℓ∈Λ i κ i,ℓ x i -y i x i -y i - j∈I {i} ω i,ℓ,j (x j -y j ) 0. (3.2) Define (∀i ∈ I) f i : H → R : x → ℓ∈Λ i κ i,ℓ 2 x i - j∈I {i} ω i,ℓ,j x j 2 . ( 3.3) 
Then, for every i ∈ I and every x ∈ H, f i ( • ; x i ) is convex and differentiable with

∇ i f i (x) = ℓ∈Λ i κ i,ℓ x i - j∈I {i} ω i,ℓ,j x j . (3.4)
Hence, in view of (3.2), the operator G :

H → H : x → (∇ i f i (x)
) i∈I is monotone and Lipschitzian. Thus, (3.1) is a special case of (1.2) with K = ∅ and (∀i ∈ I) H i = H. This scenario unifies models found in [START_REF] Acker | Convergence d'un schéma de minimisation alternée[END_REF][START_REF] Alwadani | Attouch-Théra duality, generalized cycles, and gap vectors[END_REF][START_REF] Combettes | Fixed point strategies in data science[END_REF].

j∈I {i} ω i,1,j x j 2 . (3.5)
In addition, (3.2) is satisfied when

(∀i ∈ I) j∈I {i} ω i,1,j 1 (∀j ∈ I) i∈I {j} ω i,1,j 1, (3.6) 
which places us in the setting of Example 3.1. The formulation (3.5)-(3.6) unifies models found in [START_REF] Baillon | There is no variational characterization of the cycles in the method of periodic projections[END_REF].

Example 3.3 (minimax)

Let I be a finite set and suppose that ∅ = J ⊂ I. Let (H i ) i∈I be real Hilbert spaces, and set U = i∈I J H i and V = j∈J H j . For every i ∈ I, let ϕ i ∈ Γ 0 (H i ). Further, let L : U ⊕ V → R be differentiable with a Lipschitzian gradient and such that, for every u ∈ U and every v ∈ V, the functions -L(u, • ) and L( • , v) are convex. Consider the multivariate minimax problem

minimize u∈U maximize v∈V i∈I J ϕ i (u i ) + L(u, v) - j∈J ϕ j (v j ). (3.7) 
Now set H = U ⊕ V and define

(∀i ∈ I) f i : H → R : (u, v) → L(u, v), if i ∈ I J; -L(u, v), if i ∈ J. (3.8) 
Then H = i∈I H i and (3.7) can be put in the form

find x ∈ H such that (∀i ∈ I) x i ∈ Argmin ϕ i + f i ( • ; x i ). (3.9) 
Let us verify Problem 1.1 [b]. On the one hand, we have

(∀i ∈ I)(∀x ∈ H) ∇ i f i (x) = ∇ i L(x), if i ∈ I J; -∇ i L(x), if i ∈ J. (3.10)
Hence, the operator

G : H → H : x → ∇ i f i (x) i∈I = ∇ i L(x) i∈I J , -∇ j L(x) j∈J (3.11)
is monotone [START_REF] Rockafellar | Monotone operators associated with saddle-functions and minimax problems[END_REF][START_REF] Rockafellar | Saddle-points and convex analysis[END_REF] and Lipschitzian. Consequently, (3.7) is an instantiation of (1.2). Special cases of (3.7) under the above assumptions can be found in [START_REF] Combettes | Fixed point strategies in data science[END_REF][START_REF] He | Accelerating block-decomposition first-order methods for solving composite saddle-point and two-player Nash equilibrium problems[END_REF][START_REF] Nemirovski | Prox-method with rate of convergence O(1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems[END_REF][START_REF] Rockafellar | Variational Inequalities and Network Equilibrium Problems[END_REF][START_REF] Thekumparampil | Efficient algorithms for smooth minimax optimization[END_REF][START_REF] Yoon | Accelerated algorithms for smooth convex-concave minimax problems with O(1/k 2 ) rate on squared gradient norm[END_REF]. 

ϕ i = ι C i , where C i is a nonempty closed convex subset of H i . [c'] K = {1} and g 1 = ι D 1 , where D 1 is a nonempty closed convex subset of G 1 .
Then (1.2) reduces to

find x ∈ H such that (∀i ∈ I) x i ∈ Argmin C i f i ( • ; x i ) + (ι D 1 • L 1 )( • ; x i ). (3.12)
This formulation is often referred to as a generalized Nash equilibrium; see, e.g., [START_REF] Facchinei | On generalized Nash games and variational inequalities[END_REF][START_REF] Heusinger | Relaxation methods for generalized Nash equilibrium problems with inexact line search[END_REF][START_REF] Kanzow | The multiplier-penalty method for generalized Nash equilibrium problems in Banach spaces[END_REF]. However, as noted in [START_REF] Rockafellar | Applications of convex variational analysis to Nash equilibrium[END_REF], it is really a standard Nash equilibrium in the sense of (1.1) since functions are allowed to take the value +∞. For every i ∈ I, let r i ∈ H i , let α i ∈ ]0, +∞[, and suppose that

f i : x → α i 2 x i 2 
H i + 1 2 Sx -r i 2 H i . (3.14)
In addition, suppose that G 1 = H 1 0 (Ω) and L 1 = S. Then we recover frameworks investigated in [START_REF] Borzì | Formulation and numerical solution of Nash equilibrium multiobjective elliptic control problems[END_REF][START_REF] Kanzow | The multiplier-penalty method for generalized Nash equilibrium problems in Banach spaces[END_REF]. 

ϕ i (x i ) + f (x) + k∈K g k j∈I L k,j x j . (3.15) 
Instances of this problem are found in [START_REF] Argyriou | Sparse prediction with the k-support norm[END_REF][START_REF] Attouch | Alternating proximal algorithms for weakly coupled convex minimization problems. Applications to dynamical games and PDE's[END_REF][START_REF] Briceño-Arias | A random block-coordinate Douglas-Rachford splitting method with low computational complexity for binary logistic regression[END_REF][START_REF] Briceño-Arias | Convex variational formulation with smooth coupling for multicomponent signal decomposition and recovery[END_REF][START_REF] Briceño-Arias | Proximal algorithms for multicomponent image recovery problems[END_REF][START_REF] Darbon | On decomposition models in imaging sciences and multi-time Hamilton-Jacobi partial differential equations[END_REF][START_REF] Habbal | Neumann-Dirichlet Nash strategies for the solution of elliptic Cauchy problems[END_REF].

Existence of solutions

Our first existence result revolves around an embedding of Problem 1.1 in a larger inclusion problem in the space H ⊕ G. 

Π i : H → H i : x → x i . Suppose that (x, v * ) ∈ H ⊕ G satisfies    (∀i ∈ I) -∇ i f i (x) - k∈K Π i (L * k v * k ) ∈ ∂ϕ i (x i ) (∀k ∈ K) L k x ∈ ∂g * k (v * k ).
(4.1)

Then x solves (1.2).
Proof. Take i ∈ I and set

f i = f i ( • ; x i ), s i = (0; x i ), and 
(∀k ∈ K) g k = (g k • L k )( • ; x i ). (4.2) Then, by Problem 1.1[b], f i : H i → R is convex and Gâteaux differentiable, and ∇f i (x i ) = ∇ i f i (x).
At the same time,

(∀k ∈ K)(∀x i ∈ H i ) g k (x i ) = (g k • L k )(Π * i x i + s i ) = g k (L k (Π * i x i ) + L k s i ) (4.3)
and it thus results from [6, Proposition 16.6(ii)] that

(∀k ∈ K)(∀x i ∈ H i ) (Π i • L * k ) ∂g k (L k (Π * i x i ) + L k s i ) ⊂ ∂ g k (x i ). (4.4) 
In particular,

(∀k ∈ K) (Π i • L * k ) ∂g k (L k x) = (Π i • L * k ) ∂g k L k (Π * i x i ) + L k s i ⊂ ∂ g k (x i ). (4.5) 
Hence, we deduce from (4.1) and [6, Proposition 16.6(ii)] that

0 ∈ ∂ϕ i (x i ) + ∇ i f i (x) + k∈K Π i (L * k v * k ) ⊂ ∂ϕ i (x i ) + ∇f i (x i ) + k∈K (Π i • L * k ) ∂g k (L k x) ⊂ ∂ϕ i (x i ) + ∇f i (x i ) + k∈K ∂ g k (x i ) ⊂ ∂ ϕ i + f i + k∈K g k (x i ). (4.6) 
Consequently, appealing to Fermat's rule [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Theorem 16.3] and (4.2), we arrive at

x i ∈ Argmin ϕ i + f i ( • ; x i ) + k∈K (g k • L k )( • ; x i ), (4.7) 
which completes the proof.

We are now in a position to provide specific existence conditions.

Proposition 4.2 Consider the setting of Problem

1.1, set C = (L k x -y k ) k∈K | (∀i ∈ I) x i ∈ dom ϕ i and (∀k ∈ K) y k ∈ dom g k , (4.8) 
and let Z ⊂ H ⊕ G be the set of solutions to (4.1). Suppose that 0 ∈ sri C and that one of the following is satisfied:

(i) For every i ∈ I, one of the following holds:

1/ ∂ϕ i is surjective.

2/ ϕ i is supercoercive.

3/ dom ϕ i is bounded.

4/ ϕ i is uniformly convex.

(ii) G : H → H : x → (∇ i f i (x)) i∈I is 3 * monotone and surjective.

Then Z = ∅ and Problem 1.1 has a solution.

Proof. Define      A : H → 2 H : x → × i∈I ∂ϕ i (x i ) B : G → 2 G : y → × k∈K ∂g k (y k ) L : H → G : x → (L k x) k∈K (4.9)
and

T : H → 2 H : x → Ax + L * B(Lx) + Gx. (4.10)
Note that the adjoint of L is Therefore, it suffices to show that zer T = ∅. To do so, define

L * : G → H : v * → k∈K L * k v * k . ( 4 
-∇ i f i (x) -k∈K Π i (L * k v * k ) ∈ ∂ϕ i (x i ).
     ϕ : H → ]-∞, +∞] : x → i∈I ϕ i (x i ) g : G → ]-∞, +∞] : y → k∈K g k (y k ) Q = A + L * • B • L. (4.13)
Then, by (4.9) and [6, Proposition 16.9], A = ∂ϕ and B = ∂g. In turn, since (4.8) and (4.9) imply that 0 ∈ sri C = sri(L(dom ϕ)dom g), we derive from [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Theorem 16.47

(i)] that Q = ∂(ϕ + g • L).
Therefore, in view of [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Theorem 20.25 

and Example 25.13],

A, B, and Q are maximally monotone and 3 * monotone. (4.14) (i): Fix temporarily i ∈ I. By [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Theorem 20.25], ∂ϕ i is maximally monotone. First, if (i)2/ holds, then [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Corollary 16.30,and Propositions 14.15 and 16.27] entail that ran ∂ϕ i = dom ∂ϕ * i = H i and, hence, (i)1/ holds. Second, if (i)3/ holds, then dom ∂ϕ i ⊂ dom ϕ i is bounded and, therefore, it follows from [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Corollary 21.25] that (i)1/ holds. Finally, if (i)4/ holds, then [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Proposition 17.26(ii)] implies that (i)2/ holds and, in turn, that (i)1/ holds. Altogether, it is enough to show that

(∀i ∈ I) ∂ϕ i is surjective ⇒ zer T = ∅. (4.15)
Assume that the operators (∂ϕ i ) i∈I are surjective and set

P = -Q -1 • (-Id) + G -1 . (4.16)
Then we derive from (4.9) that A is surjective. On the other hand, [10, Proposition 6] asserts that L * • B • L is 3 * monotone. Hence, (4.14) and [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Corollary 25.27(i)] yields

dom Q -1 = ran Q = H. (4.17)
In turn, since Q -1 and G -1 are maximally monotone, [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Theorem 25.3] implies that P is likewise. Furthermore, we observe that

dom G -1 ⊂ H = dom -Q -1 • (-Id) (4.18)
and, by virtue of (4.14) and [6, Proposition 25. Corollary 25.27(ii)] entails that P is surjective and, in turn, that zer P = ∅. Consequently, [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Proposition 26.33(iii)] asserts that zer T = ∅.

19(i)], that -Q -1 • (-Id) is 3 * monotone. Therefore, since ran G -1 = dom G = H, [6,
(ii): Since G is maximally monotone and dom G = H, it results from (4.14) and [6, Theorem 25.3] that T = Q + G is maximally monotone. Hence, since G is surjective, we derive from (4.14) and [6, Corollary 25.27(i)] that T is surjective and, therefore, that zer T = ∅. 

Algorithm

The main result of this section is the following theorem, where we introduce an asynchronous blockiterative algorithm to solve Problem 1.1 and prove its convergence.

Theorem 5.1 Consider the setting of Problem 1.1 and set (∀i

∈ I) Π i : H → H i : x → x i . Let (χ i ) i∈I be a family in [0, +∞[ such that (∀x ∈ H)(∀y ∈ H) x -y | Gx -Gy i∈I χ i x i -y i 2 , (5.1 
)

let α ∈ ]0, +∞[ and ε ∈ ]0, 1[ be such that 1/ε > α + max i∈I χ i , let (λ n ) n∈N be in [ε, 2 -ε],
and let D ∈ N. Suppose that the following are satisfied:

[a] There exists (x, v * ) ∈ H ⊕ G such that (4.1) holds.

[b] For every i ∈ I, x i,0 ∈ H i and, for every

n ∈ N, γ i,n ∈ [ε, 1/(χ i + α)] and c i (n) ∈ N satisfies n -D c i (n) n. [c] For every k ∈ K, v * k,0 ∈ G k and, for every n ∈ N, µ k,n ∈ [α, 1/ε] and d k (n) ∈ N satisfies n -D d k (n) n.
[d] (I n ) n∈N are nonempty subsets of I and (K n ) n∈N are nonempty subsets of K such that

I 0 = I, K 0 = K, and (∃ m ∈ N)(∀n ∈ N) n+m j=n I j = I and n+m j=n K j = K.
(5.2)

Further, set L : H → G : x → (L k x) k∈K . Iterate for n = 0, 1, . . .                                              for every i ∈ I n       x * i,n = x i,c i (n) -γ i,c i (n) ∇ i f i (x c i (n) ) + k∈K Π i L * k v * k,c i (n) a i,n = prox γ i,c i (n) ϕ i x * i,n a * i,n = γ -1 i,c i (n) (x * i,n -a i,n ) for every i ∈ I I n (a i,n , a * i,n ) = (a i,n-1 , a * i,n-1 ) for every k ∈ K n     y * k,n = µ k,d k (n) v * k,d k (n) + L k x d k (n) b k,n = prox µ k,d k (n) g k y * k,n b * k,n = µ -1 k,d k (n) (y * k,n -b k,n ) for every k ∈ K K n (b k,n , b * k,n ) = (b k,n-1 , b * k,n-1 ) t * n = a * n + Ga n + L * b * n t n = b n -La n π n = a n -x n | t * n + t n | b * n -v * n if π n < 0     α n = λ n π n / t n 2 + t * n 2 x n+1 = x n + α n t * n v * n+1 = v * n + α n t n else x n+1 , v * n+1 = (x n , v * n ).
(5.3)

Then (x n ) n∈N converges weakly to a solution to Problem 1.1.

The salient features of the proposed algorithm are the following:

• Decomposition: In (5.3), the functions (ϕ i ) i∈I and (g k ) k∈K are activated separately via their proximity operators.

• Block-iterative implementation: At iteration n, we require that only the subfamilies of functions (ϕ i ) i∈In and (g k ) k∈Kn be activated, as opposed to all of them as in standard splitting methods. To guarantee convergence, we ask in condition [d] of Theorem 5.1 that each of these functions be activated frequently enough.

• Asynchronous implementation: Given i ∈ I and k ∈ K, the asynchronous character of the algorithm is materialized by the variables c i (n) and d k (n) which signal when the underlying computations incorporated at iteration n were initiated. Conditions [b] and [c] of Theorem 5.1 ask that the lag between the initiation and the incorporation of such computations do not exceed D iterations. The synchronous implementation is obtained when c i (n) = n and d k (n) = n in (5.3). The introduction of asynchronous and block-iterative techniques in monotone operator splitting were initiated in [START_REF] Combettes | Asynchronous block-iterative primal-dual decomposition methods for monotone inclusions[END_REF].

In order to prove Theorem 5.1, we need to establish some preliminary properties.

Proposition 5.2 Let (X i ) i∈I be a finite family of real Hilbert spaces with Hilbert direct sum X = i∈I X i . For every i ∈ I, let P i : X i → 2 X i be maximally monotone and let Q

i : X → X i . It is assumed that Q : X → X : x → (Q i x)
i∈I is monotone and Lipschitzian, and that the problem find x ∈ X such that (∀i ∈ I) 0

∈ P i x i + Q i x (5.4) has a solution. Let (χ i ) i∈I be a family in [0, +∞[ such that (∀x ∈ X )(∀y ∈ X ) x -y | Qx -Qy i∈I χ i x i -y i 2 , (5.5 
)

let α ∈ ]0, +∞[, let ε ∈ ]0, 1[ be such that 1/ε > α + max i∈I χ i , and let D ∈ N. For every i ∈ I, let x i,0 ∈ X i and, for every n ∈ N, let γ i,n ∈ [ε, 1/(χ i + α)], let λ n ∈ [ε, 2 -ε], and let d i (n) ∈ N be such that n -D d i (n) n.
(5.6)

In addition, let (I n ) n∈N be nonempty subsets of I such that

I 0 = I and (∃ m ∈ N)(∀n ∈ N) n+m j=n I j = I. (5.7) 

Iterate

for n = 0, 1, . . .

                          for every i ∈ I n      x * i,n = x i,d i (n) -γ i,d i (n) Q i x d i (n) p i,n = J γ i,d i (n) P i x * i,n p * i,n = γ -1 i,d i (n) (x * i,n -p i,n ) for every i ∈ I I n (p i,n , p * i,n ) = (p i,n-1 , p * i,n-1 ) s * n = p * n + Qp n π n = p n -x n | s * n if π n < 0 α n = λ n π n / s * n 2 x n+1 = x n + α n s * n else x n+1 = x n .
(5.8)

Then the following holds:

(i) (∀i ∈ I) x i,n -p i,n → 0.
(ii) (x n ) n∈N converges weakly to a solution to (5.4).

Thus, (5.8) can be recast as (5.17)

for n = 0, 1, . . .              p n = (K n + M ) -1 K n x n s * n = K n x n -K n p n if p n -x n | s * n < 0 x n+1 = x n + λ n p n -x n | s *
Therefore, [15, Theorem 4.2(i)] yields n∈N x n+1x n 2 < +∞. On the one hand, in view of [16, Lemma A.3], we deduce from (5.7) and (5.10) that (∀i ∈ I) x δ i (n)x n → 0. On the other hand, for every n ∈ N, every x ∈ X , and every y ∈ X , we deduce from (5.12) and the Cauchy-Schwarz inequality that α xy 2

xy | K n x -K n y xy K n x -K n y , from which it follows that α xy K n x -K n y .

(5.18)

Hence, using (5.13), (5.8), (5.11), and the fact that Q is χ-Lipschitzian, we get x nx n + x n -p n x nx n + (1/α) K n x n -K n p n → 0.

α 2 x n -x n 2 K n x n -K n x n 2 = γ -1 i,δ i (n) x i,δ i (n) -γ i,δ i (n) Q i x δ i (n) i∈I -γ -1 i,δ i (n) x i,n -Q i x n i∈I 2 = i∈I γ -1 i,δ i (n) x i,δ i (n) -x i,n + Q i x n -Q i x δ i (n) 2 i∈I 2 ε -2 x i,δ i (n) -x i,n 2 + Q i x n -Q i x δ i (n) 2 i∈I 2(ε -2 + χ 2 ) x δ i (n) -x n 2 → 0. ( 5 
We are now ready to prove Theorem 5.1.

Proof. Consider the system of monotone inclusions find (x, v * ) ∈ H ⊕ G such that

(∀i ∈ I) 0 ∈ ∂ϕ i (x i ) + ∇ i f i (x) + k∈K Π i (L * k v * k ) (∀k ∈ K) 0 ∈ ∂g * k (v * k ) -L k x.
(5.20)

We assume, without loss of generality, that I and K are disjoint subsets of N. Then, in view of (4.11), (5.20) is a special case of (5. (5.21)

Example 3 . 4 (

 34 "generalized" Nash equilibria) Consider the setting of Problem 1.1 where [a] and [c] are respectively specialized to [a'] For every i ∈ I,

Example 3 . 5 (

 35 PDE model)Let Ω be a nonempty open bounded subset of R N . In Example 3.4, suppose that, for every i ∈ I,H i = L 2 (Ω). Let z ∈ L 2 (Ω), let (Ω i ) i∈I benonempty open subsets of Ω with characteristic functions (1 Ω i ) i∈I , and, for every x ∈ H, let Sx be the unique weak solution in H 1 0 (Ω) of the Dirichlet boundary value problem [23, Chapter IV.2.1]    -∆y = z + i∈I 1 Ω i x i , on Ω; y = 0, on bdry Ω. (3.13)

Example 3 . 6 (

 36 multivariate minimization) Consider the setting of Problem 1.1 where [b] and [c] are respectively specialized to [b'] For every i ∈ I, f i = f , where f : K → R is a differentiable convex function such that G = ∇f is Lipschitzian. [c'] For every k ∈ K, g k : G k → R is convex and Gâteaux differentiable, and L k : H → G k : x → j∈I L k,j x j where, for every j ∈ I, L k,j : H j → G k is linear and bounded. Then (1.2) reduces to the multivariate minimization problem minimize x∈H i∈I

Proposition 4 . 1

 41 Consider the setting of Problem 1.1 and set (∀i ∈ I)

. 11 )

 11 Now suppose that x ∈ zer T . Then there exists v * ∈ B(Lx) such that -Gx -L * v * ∈ Ax or, equivalently, by Problem 1.1[b] and (4.11), (∀i ∈ I)

  Further, (4.9) yields v * k ∈ ∂g k (L k x). Altogether, in view of (4.1) and Proposition 4.1, we have established the implication zer T = ∅ ⇒ Z = ∅ ⇒ Problem 1.1 has a solution.(4.12)

Remark 4 . 3

 43 Sufficient conditions for 0 ∈ sri C to hold in Proposition 4.2 can be found in [18, Proposition 5.3].

  [START_REF] Attouch | Alternating proximal algorithms for weakly coupled convex minimization problems. Applications to dynamical games and PDE's[END_REF] whereI = I ∪ K and      (∀i ∈ I) X i = H i and P i = ∂ϕ i (∀k ∈ K) X k = G k and P k = ∂g * k Q : (x, v * ) → (Gx + L * v * , -Lx).

  .[START_REF] Combettes | Asynchronous block-iterative primal-dual decomposition methods for monotone inclusions[END_REF]) Thus, we conclude via [15, Theorem 4.2(ii) and Remark 4.3] that (x n ) n∈N converges weakly to a point in zer M , i.e., a solution to(5.4). Further, it is shown in the proof of[START_REF] Bùi | Warped proximal iterations for monotone inclusions[END_REF] Theorem 4.2(ii)] that K n x n -K n p n → 0. Hence, we derive from (5.18) and (5.19) that x n -p n

This work was supported by the National Science Foundation under grant DMS-1818946. = {1}, and κ i,1 = 1. Then

Proof. Define M : X → 2 X : x → Qx + × i∈I P i x i .

(5.9)

It follows from [6, Proposition 20.23] that the operator x → × i∈I P i x i is maximally monotone. Thus, since Q is maximally monotone by [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Corollary 20.28], we deduce from [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Corollary 25.5(i)] that M is maximally monotone. Further, since (5.4) has a solution, zer M = ∅. Set

and define

(5.11)

In addition, let χ be a Lipschitz constant of Q. Then, the operators (K n ) n∈N are Lipschitzian with constant β = 2(ε -2 + χ 2 ). At the same time, for every n ∈ N, we derive from (5.11) and (5.5) that

and, in turn, that K n is α-strongly monotone and maximally monotone [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Corollary 20.28]. Hence, for every n ∈ N, [6, Proposition 22.11(ii)] implies that there exists x n ∈ X such that

(5.13) Therefore, we infer from (5.8), (5.10), (5.9), and (5.11) that

On the other hand, by (5.8), (5.10), (5.13), (5.14), and (5.11),

(5.16)

Note that Q is Lipschitzian and that, for every (x, v * ) ∈ H ⊕ G and every (y, w * ) ∈ H ⊕ G, it follows from (5.1) that

(5.22)

In addition, for every n ∈ N and every 

Hence, (5.3) is a realization of (5.8) in the context of (5.21) with

Moreover, we observe that ∅ = Z is the set of solutions to (5.20) Remark 5.4 Consider the proof of Theorem 5.1. We deduce from Proposition 5.2(i) that x na n → 0 and, thus, that a n ⇀ x. Moreover, by (5.3), given i ∈ I, the sequence (a i,n ) n∈N lies in dom ∂ϕ i ⊂ dom ϕ i . In particular, if a constraint on x i is enforced via ϕ i = ι C i , then (a i,n ) n∈N converges weakly to the ith component of a solution x while being feasible in the sense that C i ∋ a i,n ⇀ x i .