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A Wilcoxon-Mann-Whitney spatial scan statistic for
functional data

Zaineb SMIDA∗, Lionel CUCALA, Ali GANNOUN, Ghislain DURIF
Institut Montpelliérain Alexander Grothendieck, Université de Montpellier, France.

Abstract

A nonparametric scan method for functional data indexed in space is intro-
duced. The associated scan statistic is derived from the Wilcoxon-Mann-
Whitney test statistic defined for infinite dimensional data. It is completely
nonparametric as it does not assume any distribution concerning the func-
tional marks. Whatever the clustering scenario, this scan test seems to be
efficient to detect and locate the cluster. This method is applied to a data
set for extracting features in Spanish province population growth. A signif-
icant spatial cluster of low demographic evolution rates is found, exhibiting
a specific phenomenon in the North-West of Spain.

Keywords: Cluster detection, Functional data, Hilbert space, Spatial Scan
statistic, Wilcoxon-Mann-Whitney test.
2000 MSC: 46E20, 62G10, 62H11, 62R10.

1. Introduction

Spatial cluster detection has become a fruitful area of statistics that has
particulary expanded in recent decades. It is used to identify aggregations
of events in a specific area, see Lawson and Denison (2002) for a thorough
review. One of the most popular cluster detection technique is the scan
statistic which was firstly introduced by Naus (1963). It was defined as the
maximum number of events observed within a window with constant size,
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known as the scanning window, as it moves continuously over the studied
region. Knowing the distributions of these scan statistics (Alm, 1997) helps
to decide whether exceptional or not observing a cluster of events. The field
of spatial scan statistics was highly enhanced by the article written by Kull-
dorff (1997): he proposed scanning the study area with variable size circular
windows and selecting the most likely cluster as the one maximizing a likeli-
hood ratio test. He used either Bernoulli or Poisson model and estimated the
clusters’ statistical significance via a Monte-Carlo procedure. These innova-
tions gave birth to several works in which researchers adapted the spatial
scan statistics to different types of data, using different probability models:
exponential (Huang et al., 2007), normal (Kulldorff et al., 2009), multivariate
Gaussian (Cucala et al., 2017), etc.
All these spatial scan methods are developed for univariate and multivariate
data indexed in space. However, the development of sensoring and computing
tools brings more and more access to data of functional type coming from
various fields of applications such as environmetrics, biometrics, medecine
and econometrics (Ramsay and Silverman, 2005). These data are not real
random variables or vectors but they are a sample of random curves where
each element is considered as a function. Moreover, these functional data are
often indexed in space (Delicado et al., 2010) and, even if a few studies have
been conducted on modelling (Cronie et al., 2019) or clustering (Gaetan et
al., 2017) such data, to our knowledge, there is no spatial cluster detection
method designed for this kind of data yet.
In the present work, we develop a scan statistic for functional data indexed in
space: thanks to this statistic, we are able to detect spatial clusters in which
the observations of a functional random variable are different than elsewhere,
and also to compute the significance of these differences. Since no likelihood
is associated with functional random variables (Ferraty , 2011), maximising a
likelihood ratio test is not possible here. Thus, we follow the idea by Cucala
(2017) that any test for equality of two distributions can give birth to a scan
statistic.
The rest of this paper is organized as follows. In section 2, we build a non-
parametric spatial scan statistic for functional data based on the Wilcoxon-
Mann-Whitney statistic proposed by Chakraborty and Chaudhuri (2015) and
we evaluate its statistical significance using random permutations. In section
3, first, the spatial scan statistic is compared to other methods on simulated
datasets. Then, we apply it to a real dataset illustrating the demographic
evolution over time in Spanish provinces and we exhibit a specific behaviour
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in the North-West of Spain in the last twenty-two years. We conclude with
a discussion and a brief scope for future work.

2. A nonparametric spatial scan statistic for functional data

2.1. Introducing the statistic
Consider a random variable X taking values in a functional space χ.

For sake of simplicity, we will suppose that χ is an Hilbert space such as
L2([0, 1],R). Let X1, . . . , Xn be observations of X at n different spatial lo-
cations s1, . . . , sn included in D ⊂ R2. Following the terminology of point
process theory, D is the observation domain and Xi is the mark associated
with location si, for all i = 1, . . . , n.
Our goal is to detect a cluster of unusual marks, i.e. a spatial zone Z ⊂ D in
which the functional marks exhibit a different behaviour than elsewhere. In
order to do that, we aim to set up a scan statistic, which is usually defined
as the maximum of a concentration index observed in a collection of variable
size potential clusters (Nagarwalla, 1996). Concerning the potential clusters,
two main possibilities have been proposed in the literature. In the first one,
the windows have known geometric shapes: rectangular (Loader, 1991; Chen
and Glaz, 2009), circular (Kulldorff and Nagarwalla, 1995; Kulldorff, 1997),
elliptic (Kulldorff, 2006) or any other shape. In the second one, the win-
dows have irregular shapes and the procedure to identify them is based only
on pairwise distances (Demattei et al., 2007; Assunção et al., 2006; Duczmal
and Assunção, 2004). In this work, without loss of generality, we consider the
circular clusters introduced by Kulldorff (1997). Hence, the set of potential
clusters S is defined as follows:

S = {Di,j, 1 ≤ i ≤ n, 1 ≤ j ≤ n},

where Di,j is the disc centred on si and passing through sj. We remark that,
since i might be equal to j, the number of potential clusters is n2.
Following the initial work by Kulldorff (1997), the spatial scan statistics
designed for univariate or multivariate marks are most often based on a con-
centration index derived from a likelihood ratio. This likelihood ratio relies
on assuming a specific probability distribution for the marks and testing the
null hypothesis H0 (absence of a cluster) against an alternative one H1,Z

(presence of a cluster in Z) for every potential cluster Z ∈ S. However,
for functional random variables, even if approximations have been proposed
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(Jacques and Preda, 2013), the notion of probability density generally does
not exist. Thus, our clustering index will rely on a nonparametric test for
equality of distributions, as proposed by Jung and Cho (2015) and Cucala et
al. (2019) in the univariate and multivariate settings respectively.
Hereinafter, we suppose that X1, . . . , Xn are independent observations of
the functional random variable X (this is a classical assumption in scan
statistics). Let Z ∈ S be any potential cluster of size nZ , where nZ =∑︁n

i=1 1(si ∈ Z) and Zc its complement of size nZc = n − nZ . Assume
that the marks in Z and Zc respectively follow probability measures PZ

and PZc on χ. We suppose that PZ and PZc differ by a shift ∆Z ∈ χ.
For testing the hypothesis H0 : ∆Z = 0 (equality of distributions) against
H1,Z : ∆Z ̸= 0, a Wilcoxon-Mann-Whitney test statistic in such space is
defined by Chakraborty and Chaudhuri (2015) as:

TWMW(Z) =
1

nZnZc

∑︂
{i:si∈Z}

∑︂
{j:sj∈Zc}

Xj −Xi

∥Xj −Xi∥χ
,

where ∥.∥χ stands for a norm on χ. Remark that this statistic is a natural
extension to the functional setting of the well-known statistics introduced by
Wilcoxon (1945) and Mann and Whitney (1947) in the univariate setting,
since every element of the first sample is compared to every element of the
second one. The statistic TWMW(Z), taking values in χ, cannot be used
directly as a concentration index since its distribution highly depends on nZ ,
the size of the potential cluster Z. Thus, as recomended by Cucala (2017),
we introduce the standardized concentration index

U(Z) :=

√︃
nznZc

n
TWMW(Z)

which is designed to compare potential clusters having different population
sizes, as claimed by the following lemma.

Lemma 1. The null limiting distribution of U(Z) is the same for any po-
tential cluster Z ∈ S.

The proof comes directly from the convergence theorem by Chakraborty and
Chaudhuri (2015) stating that, under H0, if nZ/n → γ ∈ [0, 1] as nZ , nZc →
∞,

(nZnZc/n)1/2TWMW(Z) converges weakly to G(0,Γ), (1)
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where G(m,C) is the distribution of a Gaussian random element in χ with
mean m ∈ χ and covariance C. Since the covariance operator Γ does not
depend on nZ and nZc , the result holds.

Thus, the scan statistic can be defined as the maximum of the norm of
this concentration index on the set of potential clusters S which has been
previously defined. The Wilcoxon-Mann-Whitney functional scan statistic
(WMWFSS) is

ΛWMWFSS = max
Z∈S

∥U(Z)∥χ

and the potential cluster detected, for which Λ WMWFSS is obtained, is

Ĉ = arg max
Z∈S

∥U(Z)∥χ.

This latter is called the most likely cluster.

2.2. Computing the scan statistic
• The computation of the scan statistic ΛWMWFSS involves the computa-

tion of the concentration index U(Z) for every potential cluster Z ∈ S
and, since this index is issued from a sum of nZ × nZc terms, a naive
computation can be very time-consuming. However, here are two com-
putational tricks to address this problem:

– all concentration indices U(Z), for every Z ∈ S, rely on the com-
putation of

Ri,j =
Xj −Xi

∥Xj −Xi∥χ
for every 1 ≤ i < j ≤ n. Thus, these (n−1)2/2 terms must be cal-
culated at the very beginning of the process and stored. Remark
that the computation of the Ri,j’s will be different whether the
functional marks X1, . . . , Xn are known explicitly (for example by
their decomposition on a certain basis) or only partially observed.
See Ramsay and Silverman (2005) for more details.

– In order to optimize the computation process, we decided to calcu-
late the indices U(Z) in a very specific order. Here is an example:
let Z and Z ′ be any potential clusters such that Z ′ = Z ∪ sk.
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Then, the concentration index for Z ′ can be obtained from

(nZ′nZ′cn)1/2U(Z ′) =
∑︂

{i:si∈Z′}

∑︂
{j:sj∈Z′c}

Xj −Xi

∥Xj −Xi∥χ

=
∑︂

{i:si∈Z}

∑︂
{j:sj∈Zc}

Xj −Xi

∥Xj −Xi∥χ

+
∑︂

{j:sj∈Zc}

Xj −Xk

∥Xj −Xk∥χ
−

∑︂
{i:si∈Z}

Xk −Xi

∥Xk −Xi∥χ

= (nZnZcn)1/2U(Z)

+
∑︂

{j:sj∈Zc}

Xj −Xk

∥Xj −Xk∥χ
−

∑︂
{i:si∈Z}

Xk −Xi

∥Xk −Xi∥χ

This set-up requires to iterate over only n elements instead of
(nZ − 1)× (n− nZ + 1) and dramatically decreases the computa-
tional cost.

• When χ = L2([a, b],R) where a, b ∈ R and a < b, the algorithm used
to derive the WMWFSS and its associated most likely cluster Ĉ is as
follows:
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Algorithm 1 Computing the WMWFSS and the most likely cluster MLC
1: Data: {(s1, X1), . . . , (sn, Xn)}
2: For all i, j ∈ {1, . . . , n} compute

Ri,j =
Xj −Xi

∥Xj −Xi∥L2

and let R = {Ri,j}i,j∈{1,...,n}.
3: For all i, j ∈ {1, . . . , n} compute the distance di,j between locations si

and sj and let d = {di,j}i,j∈{1,...,n}.
4: function TWMW (computing the WMW test statistic)
5: Input: R, A ⊆ {1, · · · , n}, B ⊆ {1, · · · , n}
6: Output: WMW ∈ R+

7: Initialization: WMW = 0
8: for i ∈ A do
9: for j ∈ B do

10: WMW = WMW +Ri,j

11: WMW = WMW
length(A)length(B)

12: function Order
13: Input: v ∈ Rn

14: Output: p = permutation vector of (1, . . . , n)
15: for k = 1 to n do
16: pk = order of value vk in v following ascending order
17: function WMWFSS (computing the WMWFSS scan statistic)
18: Input: R, d
19: Output: c̃ (WMWFSS value), MLC (most likely cluster)
20: Initialization: c̃ = −∞, ĩ = 0 and j̃ = 0.
21: for i = 1 to n do
22: O = ORDER({di,j}j∈{1,...,n})
23: for j = 1 to (n− 1) do
24: vin = {Ok}k∈{1,...,j} and vout = {Ok}k∈{j+1,...,n}

25: c =
√︂

j(n−j)
n

× ∥TWMW(R, vin, vout)∥L2

26: if c > c̃ then
27: c̃ = c, ĩ = i, j̃ = j

28: Õ = ORDER({dĩ,j}j∈{1,...,n})
29: MLC = {Õk}k∈{1,...,j̃}
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2.3. Computing the statistical significance
After computing the scan statistic ΛWMWFSS and the most likely cluster Ĉ,

it is necessary to evaluate its significance. However, the distribution, under
H0, of a variable window scan statistic has no analytical form. To overcome
this problem, Dwass (1957) proposed a test procedure based on Monte-Carlo
simulations allowing to give an approximation of the null distribution. This
method was subsequently extended by Bernard (1963) and Hope (1968). It
relies on comparing the observed scan statistic to scan statistics issued from
datasets simulated under H0. Here, since no assumption is made on the
distribution of the functional marks, the only way to obtain such datasets
is by running a method called random labelling (Cucala, 2014): a simulated
dataset is obtained by randomly associating the functional marks Xi to the
spatial locations si. Based on T random permutations, let

Λ
(1)
WMWFSS, . . . ,Λ

(T )
WMWFSS

be the observations of the scan statistics associated with the simulated datasets.
Then, as stated by Dwass (1957), the p-value of the scan statistic ΛWMWFSS,
observed in the initial sample, is given by

pvalue =

1 +
T∑︂
i=1

1{Λ(i)
WMWFSS>ΛWMWFSS}

T + 1
.

Of course, the larger the number of permutations T , the better the estimation
of the p-value of the scan statistic. However, since the computational cost
cannot be neglected, one needs to find a trade-off between the two aspects.
The most likely cluster Ĉ is said to be significant if pvalue is less than the
type I error α.

3. Applications

3.1. Simulation study
We decided to run a simulation study to evaluate the performance of the

functional scan statistic ΛWMWFSS proposed in the previous section. We gen-
erated artificial datasets using the geographic locations of the administrative
centers of the 94 french administrative areas named as départements. The
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simulated true cluster, denoted by C, is defined as a set of départements in
the Parisian area according to two configurations: (i) 8 départements and
(ii) 10 départements. Maps of the simulated clusters are given in Fig. 1.

Figure 1: The 94 French départements. In red: simulated clusters (8 and 10 départements).

The functional marks associated with each location take values in χ =
L2([0, 1],R) and are defined as follows:

∀i = 1, . . . , 94, Xi(t) =
∞∑︂
k=1

Zi,kek(t) + ∆(t)1{si∈C},

where for all k ⩾ 1, ek(t) =
√
2 sin(t/σk) is an orthonormal basis of χ,

σk = ((k − 0.5)π)−1 and Zi,k’s are independent random variables which cor-
respond to the projection of Xi on the Karhunen-Loève basis (Karhunen,
1947; Lévy and Loève, 1948). The decomposition of the functional marks
above is based in the Karhunen-Loève expansion which is widely used in sev-
eral issues related to image processing and functional data analysis (Ahmed
et al., 2017).

We have investigated two different cases, namely a standard Brownian
motion (sBm) process: Zi,k/σk having a N (0, 1) distribution and a centered
Student-t process with five degrees of freedom: Zi,k/σk having a t(5) distri-
bution.
The probability measures of the functional marks inside and outside the
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cluster C differ by a shift ∆. Three types of shifts are studied: ∆1(t) = ct,
∆2(t) = ct(1 − t) and ∆3(t) = c sin(2πt), c > 0 for all t ∈ [0, 1]. The pa-
rameter c is called the cluster intensity: remark that, since the functional
marks are independent, this parameter totally controls their level of spatial
heterogeneity. Different values of this parameter were considered for each ∆.
The range of ∆2 being smaller than the ranges of ∆1 and ∆3, it is combined
with larger values of c.

Since, as already said in the Introduction, we do not know any other
cluster detection method dedicated to functional data indexed in space, we
decided to compare the Wilcoxon-Mann-Whitney functional scan statistic to
two univariate scan statistics applied to summaries of the functional marks:

• the first scan method relies on the mean values of the marks

X̄ i =

∫︂ 1

0

Xi(t)dt, i = 1, . . . , n.

Each mean value is associated with its location and the univariate
Wilcoxon-Mann-Whitney scan statistic introduced by Cucala (2016)
is computed, using the same set of potential clusters and same random
permutations than the functional one. This mean-based univariate scan
statistic is denoted by ΛMBUSS.

• the second one, inspired from the LISA function defined by Mateu et
al. (2007), relies on the deviations from the mean function of the marks

Di =

∫︂ 1

0

(Xi(t)− X̄(t))2dt, i = 1, . . . , n,

where

X̄(t) =
1

n

n∑︂
i=1

Xi(t)

is the mean function of the observed functional marks. Each devia-
tion is associated with its location and the univariate Wilcoxon-Mann-
Whitney scan statistic is computed. This deviation-based univariate
scan statistic is denoted by ΛDBUSS.

To compare the three scan methods, we generated 100 simulated datasets
for each distribution of the marks and each value of the cluster intensity c
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and we computed three distinct criteria for each method: the alarm rate
(AR), the True Positive (TP) rate (also called the sensitivity) and the False
Positive (FP) rate. These three criteria were calculated as follows:

- The alarm rate (AR) was defined as the proportion of datasets exhibit-
ing a significant cluster with a type I error equal to 0.05 and based on
T = 99 random permutations.

- The TP rate, denoted by %TP, was defined as the mean proportion
of the True Positive (TP) départements over all simulated datasets.
It was calculated as the number of départements included both in the
significant cluster Ĉ and in the true cluster C divided by the number
of départements included in C.

- The calculation of the FP rate, denoted by %FP, is similar to the TP
one. It was defined as the average proportion of the False Positive
(FP) départements i.e, the number of départements included in the
most significant cluster Ĉ but not in the true cluster C divided by the
number of départements not included in C.

The whole results of this simulation study are given in Appendix B but they
are summarized in Table 1 and Table 2 below.
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Table 1: Simulation study–AR, %TP and %FP results of ΛWMWFSS, ΛMBUSS and ΛDBUSS
when ∆1 = ct, ∆2 = ct(1 − t) and ∆3 = c sin (2πt) using two distributions: Normal
and Student-t. The true cluster contains 8 départements. Bold values indicate the best
performance in each line.

Normal distribution Student-t distribution
c ΛWMWFSS ΛMBUSS ΛDBUSS c ΛWMWFSS ΛMBUSS ΛDBUSS

0.0 AR 0.070 0.050 0.060 0.0 AR 0.060 0.060 0.020
%TP 0.554 0.875 1.000 %TP 0.479 0.479 1.000
%FP 0.442 0.553 0.589 %FP 0.444 0.446 0.645

∆1(t) = ct

1.5 AR 0.380 0.340 0.150 1.5 AR 0.240 0.220 0.090
%TP 0.908 0.882 1.000 %TP 0.885 0.847 1.000
%FP 0.110 0.165 0.148 %FP 0.098 0.164 0.472

2.0 AR 0.730 0.660 0.300 2.0 AR 0.600 0.510 0.180
%TP 0.967 0.966 0.933 %TP 0.935 0.939 0.993
%FP 0.049 0.087 0.073 %FP 0.095 0.142 0.228

2.5 AR 0.920 0.890 0.570 2.5 AR 0.790 0.730 0.390
%TP 0.978 0.961 0.879 %TP 0.949 0.938 0.978
%FP 0.056 0.070 0.077 %FP 0.045 0.063 0.137

∆2 = ct(1− t)

4.5 AR 0.460 0.320 0.160 4.5 AR 0.360 0.310 0.130
%TP 0.853 0.844 0.938 %TP 0.760 0.706 0.904
%FP 0.101 0.139 0.262 %FP 0.121 0.144 0.286

5.5 AR 0.700 0.530 0.260 5.5 AR 0.450 0.380 0.150
%TP 0.950 0.934 0.923 %TP 0.908 0.898 1.000
%FP 0.042 0.077 0.178 %FP 0.070 0.130 0.261

6.5 AR 0.870 0.760 0.460 6.5 AR 0.610 0.470 0.200
%TP 0.991 0.984 0.929 %TP 0.932 0.910 0.988
%FP 0.041 0.068 0.091 %FP 0.067 0.097 0.153

∆3(t) = c sin(2πt)

1.0 AR 0.310 0.080 0.170 1.0 AR 0.170 0.070 0.140
%TP 0.895 0.531 0.882 %TP 0.772 0.571 0.938
%FP 0.156 0.552 0.347 %FP 0.126 0.150 0.273

1.25 AR 0.660 0.040 0.350 1.25 AR 0.390 0.060 0.200
%TP 0.981 0.781 0.979 %TP 0.949 0.667 0.938
%FP 0.037 0.573 0.250 %FP 0.109 0.455 0.251

1.5 AR 0.960 0.060 0.660 1.5 AR 0.820 0.050 0.310
%TP 0.988 0.833 0.981 %TP 0.970 0.425 0.960
%FP 0.010 0.271 0.071 %FP 0.053 0.490 0.199
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Table 2: Simulation study–AR, %TP and %FP results of ΛWMWFSS, ΛMBUSS and ΛDBUSS
when ∆1, ∆2 and ∆3 using two distributions: Normal and Student-t. The true cluster
contains 10 départements. Bold values indicate the best performance in each line.

Normal distribution Student-t distribution
c ΛWMWFSS ΛMBUSS ΛDBUSS c ΛWMWFSS ΛMBUSS ΛDBUSS

0.0 AR 0.060 0.050 0.030 0.0 AR 0.060 0.060 0.030
%TP 0.317 0.480 1.000 %TP 0.200 0.550 0.667
%FP 0.534 0.545 0.635 %FP 0.204 0.206 0.544

∆1(t) = ct

1.5 AR 0.650 0.540 0.160 1.5 AR 0.420 0.360 0.120
%TP 0.926 0.913 0.963 %TP 0.883 0.872 1.000
%FP 0.096 0.156 0.263 %FP 0.136 0.147 0.313

2.0 AR 0.900 0.860 0.400 2.0 AR 0.710 0.660 0.200
%TP 0.960 0.956 0.913 %TP 0.956 0.933 0.950
%FP 0.051 0.076 0.119 %FP 0.074 0.091 0.123

2.5 AR 1.000 0.980 0.600 2.5 AR 0.960 0.910 0.400
%TP 0.988 0.979 0.963 %TP 0.980 0.968 0.950
%FP 0.029 0.041 0.083 %FP 0.040 0.049 0.085

∆2 = ct(1− t)

4.5 AR 0.660 0.520 0.170 4.5 AR 0.420 0.380 0.120
%TP 0.950 0.933 0.918 %TP 0.874 0.871 0.942
%FP 0.090 0.139 0.218 %FP 0.118 0.129 0.289

5.5 AR 0.930 0.740 0.230 5.5 AR 0.650 0.530 0.170
%TP 0.974 0.972 1.000 %TP 0.906 0.898 0.994
%FP 0.040 0.051 0.139 %FP 0.058 0.097 0.345

6.5 AR 0.990 0.900 0.600 6.5 AR 0.900 0.820 0.360
%TP 0.980 0.973 0.960 %TP 0.956 0.952 0.975
%FP 0.026 0.049 0.091 %FP 0.035 0.055 0.162

∆3(t) = c sin(2πt)

1.0 AR 0.690 0.070 0.250 1.0 AR 0.340 0.050 0.120
%TP 0.948 0.757 0.912 %TP 0.953 0.800 1.000
%FP 0.052 0.388 0.259 %FP 0.096 0.429 0.348

1.25 AR 0.960 0.040 0.480 1.25 AR 0.760 0.020 0.230
%TP 0.993 0.950 0.975 %TP 0.963 0.500 0.874
%FP 0.015 0.393 0.143 %FP 0.042 0.369 0.151

1.5 AR 1.000 0.060 0.720 1.5 AR 0.950 0.100 0.350
%TP 1.000 0.983 0.994 %TP 0.984 0.840 0.971
%FP 0.004 0.274 0.056 %FP 0.014 0.411 0.148
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From Table 1 and Table 2, the sizes of the different methods (i.e. the
alarm rates when c=0) are close to the correct type I error which is equal to
0.05, regardless of the distribution of the marks.
As expected, the performances of all scan statistics tend to increase with
high cluster intensity c and we can remark that the alarm rate of ΛWMWFSS

is higher than ΛMBUSS and ΛDBUSS in all different cases: this is expected as
the first one relies on the whole information of the curves, the second one
is only based on their mean value and the third one is derived from the
distances between each curve and the mean curve. It should be noted that:

- When c increases, the alarm rate of all scan methods increases whatever
the shift ∆ and the size of the true cluster C. However, when the
process is Student-t distributed, the alarm rate increases more slowly
than when it is normally distributed. This difference can be explained
by the fact that the Student-t distribution is more heavy-tailed than
the Gaussian one. The relation between the alarm rate and the cluster
intensity c seems to be the following: the alarm rate slowly increases
when c is small but then, when c reaches a certain threshold, the slope
gets steeper and the alarm rate very quickly gets close to 1. Since this
threshold is different depending on the distribution of the functional
marks, the discrepancy between the alarm rates of Normal and Student-
t distributions is far from being constant. Remark also that, for equal
values of the cluster intensity c, the alarm rate is larger when the size
of the cluster goes from 8 to 10: it is always easier to detect a larger
cluster.
The difference in alarm rates between ΛWMWFSS and ΛMBUSS is slight
when the shift between the marks inside and outside the cluster is
linear, but it increases when this shift is quadratic and moreover when
it is sinusoidal (see TableB.7 and TableB.10 in Appendix B): we can
see that the alarm rate of ΛMBUSS does not exceed 10% (is close to the
nominal level 5%) using ∆3 whatever the size of the true cluster and the
distribution of the processes, since the sinusoidal shift has absolutely
no consequence on the mean value of the process. The deviation-based
scan statistic ΛDBUSS is more adapted to this sinusoidal shift but still
displays lower alarm rates than ΛWMWFSS.

- The true positive and false positive rates also improve when the cluster
intensity c increases (increasing for %TP and decreasing for %FP). As
for the alarm rate, the recovering of the location of the cluster is harder
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when the process is Student-t distributed than normally distributed but
the size of the cluster has no great impact on %TP and %FP.
The whole information included in the functional marks is as useful for
detecting the presence of a cluster than for recovering its exact location.
Thus, unsurprisingly, the %TP and %FP rates obtained by the func-
tional method ΛWMWFSS are globally better than the ones obtained by
the univariate methods. The difference is more obvious concerning the
false positive rates: more often than the functional one, the univariate
methods tend to exhibit clusters larger than the true cluster C.

3.2. Application to real data
Here, we give an example of the use of our scan statistic to extract features

in Spanish province population growth, as presented by Cronie et al. (2019).
In order to study the structure of the Spanish population, we considered one
of the most important population characteristics which is the demographic
evolution. This latter can change over time because of factors like birth and
death rates, immigration rate or economical situations. The Spanish province
population is provided by the Spanish Institute of Statistics (www.ine.es)
and the boundary and centre coordinates of the 47 provinces of Spain (see
Fig. 2) by the R package raster (Hijmans, 2019). For geographical reasons,
we decided to exclude from the study Baleares and Canarias islands as well
as the Spanish autonomous cities (Melilla and Ceuta) which are located on
the Northwest coast of Africa and sharing a border with Morocco. To each
point (centre) i, for i = 1, . . . , 47, we associated the functional mark Xi,
i.e. the demographic evolution over time, for 22 distinct years starting from
1998 to 2019 (see Fig. 3). The demographic evolution in each province was
defined as the total population over the years 1998 to 2019 divided by the
total population in 1998.
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Figure 2: The 47 Spanish provinces and
their geometrical centres.

Figure 3: Demographic evolution in the
47 provinces from 1998 to 2019.

3.2.1. Analysis of the real dataset
Our objective here is to detect a spatial area where the demographic evo-

lution would be significantly different. In order to identify such a cluster, we
computed the functional scan statistic on this dataset: ΛWMWFSS = 2.72025.
Remark that here the computation of the scan statistic is slightly different
from what is done in the simulation study since it is estimated from 22 ob-
servation points. Based on T = 999 permutations, the value of the statistic
is highly significant (pvalue = 0.001) and the most likely cluster Ĉ is plotted
in Fig. 4.
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Figure 4: The most likely cluster detected by the functional scan statistic ΛWMWFSS.

This cluster includes 13 provinces in the west of Spain (Asturias, Galicia,
Extremadura and the west of Castilla y León) in which the marks are signif-
icantly lower than in the rest of the observation domain. In the west part of
Castilla y Leòn, the most likely cluster includes the región leonesa and the
west of the Castilla la Vieja (Ávila, Palencia and Valladolid).
We can see the demographic evolution curves associated with the most likely
cluster in Fig. 5.
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Figure 5: The demographic evolution curves (from 1998 to 2019) in each province are
presented. Curves in red correspond to provinces inside the cluster, curves in black cor-
respond to provinces outside the cluster and the curve in green corresponds to Zamora
which is inside the cluster too.

We can see that this cluster includes the provinces which have the lowest
demographic evolution compared to the rest of Spain. This can be explained
by the increase in mortality rate and the decrease in birth rate in these
regions. Between years 2006 and 2018, according to the Spanish Institute
of Statistics, the 4 autonomous communities detected in the cluster are the
territories which have the lowest birth rates (per 1000 inhabitants) com-
pared to the other autonomous communities in Spain. In particular, the last
2 provinces with the lowest birth rate (per 1000 inhabitants) are Ourense
(6.12 in 2006 and 4.82 in 2018) and Zamora (6.08 in 2006 and 5.13 in 2018).
Moreover, the mortality rate (per 1000 inhabitants) is higher in the provinces
belonging to the detected cluster and in particular Zamora has the highest
mortality rate (12.46 in 2006 and 15.75 in 2018). This explains why Zamora
has the lowest evolution demographic (see Fig. 5) and is close to becoming
a demographic desert. Such a demographic decrease can be explained by
the emigration in the last years of the youngest population abroad and to
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other regions of Spain like Cataluña and Madrid where the average hourly
wage is higher and the unemployment rate is lower than the autonomous
communities detected by the functional scan statistic (for more details, see
the website of the Spanish Institute of Statistics).

Then, using the same dataset, we also computed the univariate scan
statistics ΛMBUSS and ΛDBUSS and their p-values and we recorded the com-
putation time. The results are given in Table 3.

Table 3: The p-values and computation time (in seconds) of the different scan methods
using different number of permutations.

T=99 T=999
Method pvalue time pvalue time

ΛWMWFSS 0.01 1.14 0.001 10.92
ΛMBUSS 0.01 0.62 0.003 7.20
ΛDBUSS 0.56 0.34 0.527 6.83

Contrary to the deviation-based univariate scan statistic, the mean-based
univariate scan statistic detects a very significant cluster which is very similar
to the one detected by ΛWMWFSS (see Fig. 6). This is not surprising since the
main difference between the curves inside this cluster and the curves outside
is their mean level rather than their shape. Moreover, the cluster detected by
ΛMBUSS is larger than the one detected by ΛWMWFSS. As said in the simulation
study, contrary to the functional scan method, the univariate scan methods
tend to exhibit larger clusters than the true one, as noticed by the %FP rate.
Thus, we believe that the most likely cluster detected by our functional scan
method, based on the analysis of the curves on the whole time period, should
be investigated first.
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Figure 6: The most likely cluster detected by ΛMBUSS and demographic evolution curves
associated.

Concerning the computation time, we remark that the functional scan
statistic, even if it takes advantage of the whole information of the data, is
not that time-consuming compared to the univariate ones. This performance
was achieved thanks to the use of the fonction NPFSS from the R package
HDSpatialScan introduced very recently by Frévent et al. (2021).

Finally, after identifying the most likely cluster, we have tested the pres-
ence of a secondary cluster, following the method by Zhang et al. (2010):
once a significant cluster is found, remove the data included in that cluster
and restart the analysis. However, on this dataset and using the functional
scan statistic, the secondary cluster is not significant since its p-value equals
0.282, using T = 999 permutations.

3.2.2. Analysis of the sensitivity of the method
Secondly, we decided to add noise to the preceding real dataset in order to

test the sensitivity of the proposed method. We also investigated the choice
of the number of permutations. We considered the noisy data

X ′
i(t) = Xi(t) + αϵi(t), ∀i = 1, . . . , 47, ∀t ∈ [1998, 2019],

where the Xi’s are the initial functional marks (the demographic evolution of
the Spanish population measured in each province), the ϵi’s are independent
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centered sBm processes and α is the parameter controlling the variance of
the added noise. We simulated 100 noisy datasets with different levels of
variance α and computed the functional scan statistic and its p-value based
on different numbers of random permutations T . As in section 3.1, Table 4
presents the alarm rates, TP and FP rates we obtained. In this case, the TP
and FP rates are not computed based on the true cluster (which is unknown)
but on the most likely cluster obtained without noise (see Fig. 4).

Table 4: Real data plus noise –Alarm rate, %TP and %FP results of the functional scan
statistic ΛWMWFSS for different variance level α and number of permutations T .

α T=29 T=59 T=99 T=999
0.05 AR 0.990 1.000 1.000 1.000

%TP 1.000 1.000 1.000 1.000
%FP 0.000 0.000 0.000 0.000

0.1 AR 0.980 1.000 1.000 1.000
%TP 0.998 0.988 0.984 0.985
%FP 0.013 0.031 0.038 0.035

0.15 AR 0.940 1.000 1.000 1.000
%TP 0.980 0.948 0.949 0.943
%FP 0.096 0.100 0.130 0.129

0.2 AR 0.870 0.970 0.990 0.990
%TP 0.893 0.898 0.904 0.890
%FP 0.229 0.248 0.266 0.266

0.25 AR 0.560 0.630 0.680 0.690
%TP 0.771 0.866 0.769 0.817
%FP 0.380 0.350 0.407 0.383

0.3 AR 0.220 0.270 0.290 0.290
%TP 0.664 0.795 0.618 0.695
%FP 0.418 0.416 0.444 0.449

As expected, when the level of noise added to the initial data increases,
the alarm rate of the test decreases since the presence of a significant cluster
becomes less and less obvious. Moreover, for moderate level of noise, the
clusters detected are not that different from the most likely cluster obtained
without noise (the TP rate is close to 1 and the FP rate close to 0) but there
is an evolution when α increases. It seems that, as already described by
McDonough and Whalen (1995), when the noise level α is small, the signal
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to noise ratio is large enough so that the scan method still works. However,
when α reaches a certain threshold around 0.25, the signal to noise ratio
becomes too small and the scan method fails. On the other hand, we can
remark that the influence of the number of permutations T is quite limited:
we may just mention that choosing T = 29 random permutations leads to
less accurate p-values, so that the alarm rate obtained with that value of T
might be slightly different from the others.

4. Discussion

Nowadays and with the development of modern technology, scientists of-
ten observe functional data instead of univariate or multivariate ones. As a
consequence, there is a need for testing procedures adapted to these infinite
dimensional data. To this end, this paper proposes a nonparametric spa-
tial scan statistic based on the Wilcoxon-Mann-Whitney two-sample test for
functional data introduced by Chakraborty and Chaudhuri (2015). As shown
in the application to simulated and real data, this scan procedure is much
more suitable for functional data than existing ones, and its implementation
in the R package HDSpatialScan makes it easy and quick to compute.
For sake of simplicity, we decided to focus on functional data belonging to an
Hilbert space. We must mention that extending this work to data belonging
to a more general Banach space is straightforward since the Wilcoxon-Mann-
Whitney statistic of Chakraborty and Chaudhuri (2015) can be generalized
to such a space.
This scan statistic allows to detect clusters using functional data indexed by
space without assuming anything about their distribution. Another func-
tional spatial scan statistic could be proposed using any other two-sample
test statistic for functional data (Zhang and Chen, 2007; Zhang et al., 2010)
as long as its asymptotic distribution is known. In a preprint, Frévent et al.
(2020) recently proposed a parametric spatial scan statistic which is derived
from the functional ANOVA test introduced by Cuevas et al. (2004). In their
work, they compared our scan statistic ΛWMWFSS with their statistic. They
conclude, with simulation studies, that our nonparametric method performs
better against non Gaussian data. R codes of this parametric extension are
also available in the package HDSpatialScan (Frévent et al., 2021).
The scan method we propose allows to detect multiple clusters. If two "oppo-
site" clusters (for example one exhibiting higher rates than expected and the
other lower rates than expected) exist in two disjoint areas of the observation
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domain D, the scan method first computes the concentration index for both
of them and decides which one is the most significant one. Secondly, the
sequential procedure may exhibit the other cluster. Actually, two "opposite"
clusters can cancel out with each other only if the intersection of their areas
is not null but this seems very unlikely to happen.
When the functional marks associated with the spatial locations are time
series, another possibility would be considering spatio-temporal cluster de-
tection such as Kulldorff et al. (2005). Our approach is completely different
since each functional mark is taken as a whole and cannot be split: the goal
is to highlight the functional marks exhibiting a different behaviour on the
entire temporal observation domain.
Our work is based on the frequent assumption in the literature of spatial
scan statistics that the observations in different spatial locations are inde-
pendent. One should be aware that this sometimes unrealistic assumption
is just a means to introduce mathematical tools that can be applied even if
data are spatially correlated, as explained by Glaz (2017). However, taking
into account this spatial correlation in our method could be envisaged, as
Loh and Zhu (2007) did in the univariate case.
Finally, since we may observe different curves in each spatial location (for
example the temporal variation of different atmospheric pollutants), another
perspective would be to develop a functional extension of the multivariate
Gaussian scan statistic introduced by Cucala et al. (2017).

Appendix A. Examples of the generated data in subsection 3.1

The following figures show examples of simulated data using sBm process
with different types of shifts.
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Figure A.7: An example of the simulated data for the sBm process with ∆1(t) = t (left
panel) and ∆1(t) = 3t (right panel). Curves in red correspond to the observations in the
cluster.

Figure A.8: An example of the simulated data for the sBm process with ∆2(t) = 4t(1 −
t) (left panel) and ∆2(t) = 7t(1 − t) (right panel). Curves in red correspond to the
observations in the cluster.
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Figure A.9: An example of the simulated data for the sBm process with ∆3(t) = sin(2πt)
(left panel) and ∆3(t) = 2.5 sin(2πt) (right panel). Curves in red correspond to the
observations in the cluster.

Appendix B. Results of the simulation study subsection 3.1

• When the true cluster is a set of 8 départements :
The following TableB.5, Table B.6 and TableB.7 give the results ob-
tained in this simulation study. Bold values indicate the best perfor-
mance in each line.
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Table B.5: Simulation study–AR , %TP and %FP results of the functional scan statis-
tic ΛWMWFSS and the univariate ones ΛMBUSS and ΛDBUSS when ∆1(t) = ct using two
distributions: Normal and Student-t. The true cluster contains 8 départements.

Normal distribution Student-t distribution
c ΛWMWFSS ΛMBUSS ΛDBUSS c ΛWMWFSS ΛMBUSS ΛDBUSS

0.0 AR 0.070 0.050 0.060 0.0 AR 0.060 0.060 0.020
%TP 0.554 0.875 1.000 %TP 0.479 0.479 1.000
%FP 0.442 0.553 0.589 %FP 0.444 0.446 0.645

1.25 AR 0.310 0.260 0.110 1.5 AR 0.240 0.220 0.090
%TP 0.887 0.880 1.000 %TP 0.885 0.847 1.000
%FP 0.188 0.199 0.403 %FP 0.098 0.164 0.472

1.5 AR 0.380 0.340 0.150 2.0 AR 0.600 0.510 0.180
%TP 0.908 0.882 1.000 %TP 0.935 0.939 0.993
%FP 0.110 0.165 0.148 %FP 0.095 0.142 0.228

1.75 AR 0.590 0.450 0.160 2.5 AR 0.790 0.730 0.390
%TP 0.962 0.956 0.953 %TP 0.949 0.938 0.978
%FP 0.074 0.085 0.197 %FP 0.045 0.063 0.137

2.0 AR 0.730 0.660 0.300 3.0 AR 0.920 0.870 0.520
%TP 0.967 0.966 0.933 %TP 0.967 0.945 0.964
%FP 0.049 0.087 0.073 %FP 0.035 0.036 0.094

2.5 AR 0.920 0.890 0.570 3.5 AR 0.980 0.940 0.800
%TP 0.978 0.961 0.879 %TP 0.974 0.973 0.956
%FP 0.056 0.070 0.077 %FP 0.035 0.050 0.048

3.0 AR 1.000 1.000 0.870 4.0 AR 0.990 0.980 0.920
%TP 0.996 0.986 0.951 %TP 0.990 0.980 0.942
%FP 0.019 0.027 0.057 %FP 0.021 0.031 0.044

3.5 AR 1.000 1.000 0.910 4.5 AR 1.000 0.990 0.980
%TP 1.000 1.000 0.968 %TP 0.995 0.990 0.941
%FP 0.012 0.022 0.032 %FP 0.013 0.021 0.029
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Table B.6: Simulation study–AR, %TP and %FP results of the functional scan statistic
ΛWMWFSS and the univariate ones ΛMBUSS and ΛDBUSS when ∆2(t) = ct(1− t) using two
distributions: Normal and Student-t. The true cluster contains 8 départements.

Normal distribution Student-t distribution
c ΛWMWFSS ΛMBUSS ΛDBUSS c ΛWMWFSS ΛMBUSS ΛDBUSS

4.0 AR 0.410 0.330 0.120 4.5 AR 0.360 0.310 0.130
%TP 0.869 0.867 0.750 %TP 0.760 0.706 0.904
%FP 0.193 0.243 0.214 %FP 0.121 0.144 0.286

4.5 AR 0.460 0.320 0.160 5.5 AR 0.450 0.380 0.150
%TP 0.853 0.844 0.938 %TP 0.908 0.898 1.000
%FP 0.101 0.139 0.262 %FP 0.070 0.130 0.261

5.0 AR 0.560 0.470 0.210 6.5 AR 0.610 0.470 0.200
%TP 0.944 0.910 0.946 %TP 0.932 0.910 0.988
%FP 0.077 0.111 0.162 %FP 0.067 0.097 0.153

5.5 AR 0.700 0.530 0.260 7.5 AR 0.850 0.760 0.340
%TP 0.950 0.934 0.923 %TP 0.951 0.950 0.901
%FP 0.042 0.077 0.178 %FP 0.065 0.099 0.119

6.0 AR 0.830 0.590 0.290 8.5 AR 0.960 0.820 0.570
%TP 0.973 0.958 0.957 %TP 0.990 0.988 0.982
%FP 0.034 0.046 0.126 %FP 0.023 0.040 0.074

6.5 AR 0.870 0.760 0.460 9.5 AR 0.990 0.910 0.730
%TP 0.991 0.984 0.929 %TP 0.991 0.984 0.945
%FP 0.041 0.068 0.091 %FP 0.020 0.035 0.073

7.0 AR 0.960 0.810 0.530 10.5 AR 0.990 0.930 0.890
%TP 0.992 0.986 0.981 %TP 0.997 0.995 0.980
%FP 0.026 0.047 0.075 %FP 0.015 0.027 0.055
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Table B.7: Simulation study–AR, %TP and %FP results of the functional scan statistic
ΛWMWFSS and the univariate ones ΛMBUSS and ΛDBUSS when ∆3(t) = c sin(2πt) using
two distributions: Normal and Student-t. The true cluster contains 8 départements.

Normal distribution Student-t distribution
c ΛWMWFSS ΛMBUSS ΛDBUSS c ΛWMWFSS ΛMBUSS ΛDBUSS

1.0 AR 0.310 0.080 0.170 1.0 AR 0.170 0.070 0.140
%TP 0.895 0.531 0.882 %TP 0.772 0.571 0.938
%FP 0.156 0.552 0.347 %FP 0.126 0.150 0.273

1.25 AR 0.660 0.040 0.350 1.25 AR 0.390 0.060 0.200
%TP 0.981 0.781 0.979 %TP 0.949 0.667 0.938
%FP 0.037 0.573 0.250 %FP 0.109 0.455 0.251

1.5 AR 0.960 0.060 0.660 1.5 AR 0.820 0.050 0.310
%TP 0.988 0.833 0.981 %TP 0.970 0.425 0.960
%FP 0.010 0.271 0.071 %FP 0.053 0.490 0.199

1.75 AR 1.000 0.070 0.940 1.75 AR 0.880 0.030 0.460
%TP 1.000 0.911 0.899 %TP 0.972 0.833 0.959
%FP 0.009 0.400 0.058 %FP 0.015 0.217 0.096

2.0 AR 1.000 0.060 1.000 2.0 AR 0.990 0.070 0.760
%TP 1.000 1.000 0.993 %TP 0.996 0.893 0.991
%FP 0.007 0496 0.041 %FP 0.009 0.387 0.070

2.25 AR 1.000 0.020 1.000 2.25 AR 1.000 0.070 0.890
%TP 1.000 1.000 0.984 %TP 1.000 1.000 0.997
%FP 0.005 0.052 0.029 %FP 0.003 0.561 0.063

2.5 AR 1.000 0.050 1.000 2.5 AR 1.000 0.040 0.950
%TP 1.000 1.000 0.995 %TP 1.000 1.000 0.996
%FP 0.003 0.481 0.027 %FP 0.002 0.311 0.046

• When the true cluster is a set of 10 départements :
The following TableB.8, Table B.9 and TableB.10 give the results ob-
tained in this simulation study. Bold values indicate the best perfor-
mance in each line.
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Table B.8: Simulation study–AR, %TP and %FP results of the functional scan statis-
tic ΛWMWFSS and the univariate ones ΛMBUSS and ΛDBUSS when ∆1(t) = ct using two
distributions: Normal and Student-t. The true cluster contains 10 départements.

Normal distribution Student-t distribution
c ΛWMWFSS ΛMBUSS ΛDBUSS c ΛWMWFSS ΛMBUSS ΛDBUSS

0.0 AR 0.060 0.050 0.030 0.0 AR 0.060 0.060 0.030
%TP 0.317 0.480 1.000 %TP 0.200 0.550 0.667
%FP 0.534 0.545 0.635 %FP 0.204 0.206 0.544

1.0 AR 0.210 0.200 0.050 1.0 AR 0.210 0.190 0.060
%TP 0.795 0.785 1.000 %TP 0.786 0.774 1.000
%FP 0.185 0.230 0.362 %FP 0.186 0.200 0.514

1.25 AR 0.360 0.300 0.050 1.25 AR 0.310 0.270 0.080
%TP 0.922 0.903 1.000 %TP 0.771 0.744 0.850
%FP 0.218 0.254 0.355 %FP 0.171 0.173 0.405

1.5 AR 0.650 0.540 0.160 1.5 AR 0.420 0.360 0.120
%TP 0.926 0.913 0.963 %TP 0.883 0.872 1.000
%FP 0.096 0.156 0.263 %FP 0.136 0.147 0.313

1.75 AR 0.750 0.630 0.260 1.75 AR 0.580 0.470 0.150
%TP 0.933 0.922 0.950 %TP 0.328 0.298 1.000
%FP 0.064 0.071 0.280 %FP 0.072 0.106 0.316

2.0 AR 0.900 0.860 0.400 2.0 AR 0.710 0.660 0.200
%TP 0.960 0.956 0.913 %TP 0.956 0.933 0.950
%FP 0.051 0.076 0.119 %FP 0.074 0.091 0.123

2.25 AR 0.950 0.870 0.480 2.25 AR 0.860 0.750 0.330
%TP 0.960 0.960 0.944 %TP 0.968 0.968 0.918
%FP 0.047 0.061 0.089 %FP 0.064 0.069 0.131

2.5 AR 1.000 0.980 0.600 2.5 AR 0.960 0.910 0.400
%TP 0.988 0.979 0.963 %TP 0.980 0.968 0.950
%FP 0.029 0.041 0.083 %FP 0.040 0.049 0.085
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Table B.9: Simulation study–AR, %TP and %FP results of the functional scan statistic
ΛWMWFSS and the univariate ones ΛMBUSS and ΛDBUSS when ∆2(t) = ct(1− t) using two
distributions: Normal and Student-t. The true cluster contains 10 départements.

Normal distribution Student-t distribution
c ΛWMWFSS ΛMBUSS ΛDBUSS c ΛWMWFSS ΛMBUSS ΛDBUSS

4.0 AR 0.440 0.410 0.100 4.5 AR 0.420 0.380 0.120
%TP 0.911 0.907 0.900 %TP 0.874 0.871 0.942
%FP 0.115 0.155 0.217 %FP 0.118 0.129 0.289

4.5 AR 0.660 0.520 0.170 5.5 AR 0.650 0.530 0.170
%TP 0.950 0.933 0.918 %TP 0.906 0.898 0.994
%FP 0.090 0.139 0.218 %FP 0.058 0.097 0.345

5.0 AR 0.800 0.550 0.180 6.5 AR 0.900 0.820 0.360
%TP 0.956 0.956 0.983 %TP 0.956 0.952 0.975
%FP 0.044 0.085 0.097 %FP 0.035 0.055 0.162

5.5 AR 0.930 0.740 0.230 7.5 AR 0.960 0.840 0.530
%TP 0.974 0.972 1.000 %TP 0.974 0.964 0.958
%FP 0.040 0.051 0.139 %FP 0.023 0.058 0.120

6.0 AR 0.980 0.880 0.440 8.5 AR 0.990 0.940 0.700
%TP 0.977 0.973 0.939 %TP 0.989 0.983 0.986
%FP 0.028 0.050 0.122 %FP 0.019 0.056 0.076

6.5 AR 0.990 0.900 0.600 9.5 AR 1.000 0.980 0.880
%TP 0.980 0.973 0.960 %TP 0.990 0.990 0.958
%FP 0.026 0.049 0.091 %FP 0.016 0.030 0.068

7.0 AR 0.990 0.950 0.700 10.5 AR 1.000 0.990 0.980
%TP 0.996 0.992 0.990 %TP 0.996 0.993 0.981
%FP 0.020 0.032 0.078 %FP 0.012 0.024 0.055
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Table B.10: Simulation study–AR, %TP and %FP results of the functional scan statistic
ΛWMWFSS and the univariate ones ΛMBUSS and ΛDBUSS when ∆3(t) = c sin(2πt) using
two distributions: Normal and Student-t. The true cluster contains 10 départements.

Normal distribution Student-t distribution
c ΛWMWFSS ΛMBUSS ΛDBUSS c ΛWMWFSS ΛMBUSS ΛDBUSS

0.5 AR 0.120 0.100 0.090 0.5 AR 0.110 0.080 0.090
%TP 0.442 0.650 0.989 %TP 0.755 0.725 0.822
%FP 0.356 0.430 0.413 %FP 0.443 0.571 0.500

0.75 AR 0.260 0.060 0.100 0.75 AR 0.110 0.050 0.100
%TP 0.877 0.333 1.000 %TP 0.855 0.820 1.000
%FP 0.138 0.343 0.239 %FP 0.134 0.238 0.307

1.0 AR 0.690 0.070 0.250 1.0 AR 0.340 0.050 0.120
%TP 0.948 0.757 0.912 %TP 0.953 0.800 1.000
%FP 0.052 0.388 0.259 %FP 0.096 0.429 0.348

1.25 AR 0.960 0.040 0.480 1.25 AR 0.760 0.020 0.230
%TP 0.993 0.950 0.975 %TP 0.963 0.500 0.874
%FP 0.015 0.393 0.143 %FP 0.042 0.369 0.151

1.5 AR 1.000 0.060 0.720 1.5 AR 0.950 0.100 0.350
%TP 1.000 0.983 0.994 %TP 0.984 0.840 0.971
%FP 0.004 0.274 0.056 %FP 0.014 0.411 0.148

1.75 AR 1.000 0.060 0.990 1.75 AR 0.990 0.050 0.770
%TP 1.000 1.000 1.000 %TP 0.989 0.900 0.973
%FP 0.003 0.294 0.050 %FP 0.013 0.560 0.122

2.0 AR 1.000 0.070 1.000 2.0 AR 1.000 0.070 0.920
%TP 1.000 1.000 1.000 %TP 1.000 1.000 0.997
%FP 0.002 0.332 0.031 %FP 0.006 0.425 0.057
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