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A nonparametric scan method for functional data indexed in space is introduced. The associated scan statistic is derived from the Wilcoxon-Mann-Whitney test statistic defined for infinite dimensional data. It is completely nonparametric as it does not assume any distribution concerning the functional marks. Whatever the clustering scenario, this scan test seems to be efficient to detect and locate the cluster. This method is applied to a data set for extracting features in Spanish province population growth. A significant spatial cluster of low demographic evolution rates is found, exhibiting a specific phenomenon in the North-West of Spain.

Introduction

Spatial cluster detection has become a fruitful area of statistics that has particulary expanded in recent decades. It is used to identify aggregations of events in a specific area, see [START_REF] Lawson | Spatial cluster modelling[END_REF] for a thorough review. One of the most popular cluster detection technique is the scan statistic which was firstly introduced by [START_REF] Naus | Clustering of random points in the line and plane[END_REF]. It was defined as the maximum number of events observed within a window with constant size, known as the scanning window, as it moves continuously over the studied region. Knowing the distributions of these scan statistics [START_REF] Alm | On the Distributions of Scan Statistics of a Two-Dimensional Poisson Process[END_REF] helps to decide whether exceptional or not observing a cluster of events. The field of spatial scan statistics was highly enhanced by the article written by [START_REF] Kulldorff | A spatial scan statistic[END_REF]: he proposed scanning the study area with variable size circular windows and selecting the most likely cluster as the one maximizing a likelihood ratio test. He used either Bernoulli or Poisson model and estimated the clusters' statistical significance via a Monte-Carlo procedure. These innovations gave birth to several works in which researchers adapted the spatial scan statistics to different types of data, using different probability models: exponential [START_REF] Huang | A spatial scan statistic for survival data[END_REF], normal [START_REF] Kulldorff | A scan statistic for continuous data based on the normal probability model[END_REF], multivariate Gaussian [START_REF] Cucala | A Multivariate Gaussian scan statistic for spatial data[END_REF], etc. All these spatial scan methods are developed for univariate and multivariate data indexed in space. However, the development of sensoring and computing tools brings more and more access to data of functional type coming from various fields of applications such as environmetrics, biometrics, medecine and econometrics [START_REF] Ramsay | Functional Data Analysis[END_REF]. These data are not real random variables or vectors but they are a sample of random curves where each element is considered as a function. Moreover, these functional data are often indexed in space [START_REF] Delicado | Statistics for spatial functional data: some recent contributions[END_REF] and, even if a few studies have been conducted on modelling [START_REF] Cronie | Functional marked point processes -A natural structure to unify spatio-temporal frameworks and to analyse dependent functional data[END_REF] or clustering [START_REF] Gaetan | Spatial clustering of curves with an application of satellite data[END_REF] such data, to our knowledge, there is no spatial cluster detection method designed for this kind of data yet. In the present work, we develop a scan statistic for functional data indexed in space: thanks to this statistic, we are able to detect spatial clusters in which the observations of a functional random variable are different than elsewhere, and also to compute the significance of these differences. Since no likelihood is associated with functional random variables [START_REF] Ferraty | Recent advances in functional data analysis and related topics[END_REF], maximising a likelihood ratio test is not possible here. Thus, we follow the idea by [START_REF] Cucala | Variable Window Scan Statistics: Alternatives to Generalized Likelihood Ratio Tests[END_REF] that any test for equality of two distributions can give birth to a scan statistic. The rest of this paper is organized as follows. In section 2, we build a nonparametric spatial scan statistic for functional data based on the Wilcoxon-Mann-Whitney statistic proposed by [START_REF] Chakraborty | A Wilcoxon-Mann-Whitney type test for infinite-dimensional data[END_REF] and we evaluate its statistical significance using random permutations. In section 3, first, the spatial scan statistic is compared to other methods on simulated datasets. Then, we apply it to a real dataset illustrating the demographic evolution over time in Spanish provinces and we exhibit a specific behaviour in the North-West of Spain in the last twenty-two years. We conclude with a discussion and a brief scope for future work.

2. A nonparametric spatial scan statistic for functional data

Introducing the statistic

Consider a random variable X taking values in a functional space χ. For sake of simplicity, we will suppose that χ is an Hilbert space such as L 2 ([0, 1], R). Let X 1 , . . . , X n be observations of X at n different spatial locations s 1 , . . . , s n included in D ⊂ R 2 . Following the terminology of point process theory, D is the observation domain and X i is the mark associated with location s i , for all i = 1, . . . , n. Our goal is to detect a cluster of unusual marks, i.e. a spatial zone Z ⊂ D in which the functional marks exhibit a different behaviour than elsewhere. In order to do that, we aim to set up a scan statistic, which is usually defined as the maximum of a concentration index observed in a collection of variable size potential clusters [START_REF] Nagarwalla | A scan statistic with a variable window[END_REF]. Concerning the potential clusters, two main possibilities have been proposed in the literature. In the first one, the windows have known geometric shapes: rectangular [START_REF] Loader | Large-deviation approximations to the distribution of scan statistics[END_REF][START_REF] Chen | Approximations for Two-Dimensional Variable Window Scan Statistics[END_REF], circular [START_REF] Kulldorff | Spatial disease clusters: detection and inference[END_REF][START_REF] Kulldorff | A spatial scan statistic[END_REF], elliptic [START_REF] Kulldorff | Tests of spatial randomness adjusted for an inhomogeneity[END_REF] or any other shape. In the second one, the windows have irregular shapes and the procedure to identify them is based only on pairwise distances [START_REF] Demattei | Arbitrarily shaped multiple spatial cluster detection for case event data[END_REF][START_REF] Assunção | Fast detection of arbitrarily shaped disease clusters[END_REF][START_REF] Duczmal | A simulated annealing strategy for the detection of arbitrarily shaped spatial clusters[END_REF]. In this work, without loss of generality, we consider the circular clusters introduced by [START_REF] Kulldorff | A spatial scan statistic[END_REF]. Hence, the set of potential clusters S is defined as follows:

S = {D i,j , 1 ≤ i ≤ n, 1 ≤ j ≤ n},
where D i,j is the disc centred on s i and passing through s j . We remark that, since i might be equal to j, the number of potential clusters is n 2 . Following the initial work by [START_REF] Kulldorff | A spatial scan statistic[END_REF], the spatial scan statistics designed for univariate or multivariate marks are most often based on a concentration index derived from a likelihood ratio. This likelihood ratio relies on assuming a specific probability distribution for the marks and testing the null hypothesis H 0 (absence of a cluster) against an alternative one H 1,Z (presence of a cluster in Z) for every potential cluster Z ∈ S. However, for functional random variables, even if approximations have been proposed [START_REF] Jacques | Funclust: A curves clustering method using functional random variables density approximation[END_REF], the notion of probability density generally does not exist. Thus, our clustering index will rely on a nonparametric test for equality of distributions, as proposed by [START_REF] Jung | A nonparametric spatial scan statistic for continuous data[END_REF] and [START_REF] Cucala | A Multivariate nonparametric scan statistic for spatial data[END_REF] in the univariate and multivariate settings respectively. Hereinafter, we suppose that X 1 , . . . , X n are independent observations of the functional random variable X (this is a classical assumption in scan statistics). Let Z ∈ S be any potential cluster of size n Z , where n Z = ∑︁ n i=1 1(s i ∈ Z) and Z c its complement of size n Z c = n -n Z . Assume that the marks in Z and Z c respectively follow probability measures P Z and P Z c on χ. We suppose that P Z and P Z c differ by a shift ∆ Z ∈ χ. For testing the hypothesis H 0 : ∆ Z = 0 (equality of distributions) against H 1,Z : ∆ Z ̸ = 0, a Wilcoxon-Mann-Whitney test statistic in such space is defined by [START_REF] Chakraborty | A Wilcoxon-Mann-Whitney type test for infinite-dimensional data[END_REF] as:

T WMW (Z) = 1 n Z n Z c ∑︂ {i:s i ∈Z} ∑︂ {j:s j ∈Z c } X j -X i ∥X j -X i ∥ χ ,
where ∥.∥ χ stands for a norm on χ. Remark that this statistic is a natural extension to the functional setting of the well-known statistics introduced by [START_REF] Wilcoxon | Individual comparaisons by ranking methods[END_REF] and [START_REF] Mann | On a test of whether one of two random variables is stochastically larger than the order[END_REF] in the univariate setting, since every element of the first sample is compared to every element of the second one. The statistic T WMW (Z), taking values in χ, cannot be used directly as a concentration index since its distribution highly depends on n Z , the size of the potential cluster Z. Thus, as recomended by [START_REF] Cucala | Variable Window Scan Statistics: Alternatives to Generalized Likelihood Ratio Tests[END_REF], we introduce the standardized concentration index

U(Z) := √︃ n z n Z c n T WMW (Z)
which is designed to compare potential clusters having different population sizes, as claimed by the following lemma.

Lemma 1. The null limiting distribution of U (Z) is the same for any potential cluster Z ∈ S.

The proof comes directly from the convergence theorem by [START_REF] Chakraborty | A Wilcoxon-Mann-Whitney type test for infinite-dimensional data[END_REF] stating that, under

H 0 , if n Z /n → γ ∈ [0, 1] as n Z , n Z c → ∞, (n Z n Z c /n) 1/2 T WMW (Z) converges weakly to G(0, Γ), (1) 
where G(m, C) is the distribution of a Gaussian random element in χ with mean m ∈ χ and covariance C. Since the covariance operator Γ does not depend on n Z and n Z c , the result holds. Thus, the scan statistic can be defined as the maximum of the norm of this concentration index on the set of potential clusters S which has been previously defined. The Wilcoxon-Mann-Whitney functional scan statistic (WMWFSS) is

Λ WMWFSS = max Z∈S ∥U(Z)∥ χ
and the potential cluster detected, for which Λ WMWFSS is obtained, is

C ˆ= arg max Z∈S ∥U(Z)∥ χ .
This latter is called the most likely cluster.

Computing the scan statistic

• The computation of the scan statistic Λ WMWFSS involves the computation of the concentration index U (Z) for every potential cluster Z ∈ S and, since this index is issued from a sum of n Z × n Z c terms, a naive computation can be very time-consuming. However, here are two computational tricks to address this problem:

all concentration indices U (Z), for every Z ∈ S, rely on the computation of

R i,j = X j -X i ∥X j -X i ∥ χ
for every 1 ≤ i < j ≤ n. Thus, these (n-1) 2 /2 terms must be calculated at the very beginning of the process and stored. Remark that the computation of the R i,j 's will be different whether the functional marks X 1 , . . . , X n are known explicitly (for example by their decomposition on a certain basis) or only partially observed. See [START_REF] Ramsay | Functional Data Analysis[END_REF] for more details.

-In order to optimize the computation process, we decided to calculate the indices U (Z) in a very specific order. Here is an example: let Z and Z ′ be any potential clusters such that Z ′ = Z ∪ s k .

Then, the concentration index for Z ′ can be obtained from

(n Z ′ n Z ′c n) 1/2 U(Z ′ ) = ∑︂ {i:s i ∈Z ′ } ∑︂ {j:s j ∈Z ′c } X j -X i ∥X j -X i ∥ χ = ∑︂ {i:s i ∈Z} ∑︂ {j:s j ∈Z c } X j -X i ∥X j -X i ∥ χ + ∑︂ {j:s j ∈Z c } X j -X k ∥X j -X k ∥ χ - ∑︂ {i:s i ∈Z} X k -X i ∥X k -X i ∥ χ = (n Z n Z c n) 1/2 U(Z) + ∑︂ {j:s j ∈Z c } X j -X k ∥X j -X k ∥ χ - ∑︂ {i:s i ∈Z} X k -X i ∥X k -X i ∥ χ
This set-up requires to iterate over only n elements instead of (n Z -1) × (n -n Z + 1) and dramatically decreases the computational cost.

• When χ = L 2 ([a, b], R) where a, b ∈ R and a < b, the algorithm used to derive the WMWFSS and its associated most likely cluster C ˆis as follows:

Algorithm 1 Computing the WMWFSS and the most likely cluster MLC 1: Data: {(s 1 , X 1 ), . . . , (s n , X n )} 2: For all i, j ∈ {1, . . . , n} compute

R i,j = X j -X i ∥X j -X i ∥ L 2
and let R = {R i,j } i,j∈{1,...,n} .

3: For all i, j ∈ {1, . . . , n} compute the distance d i,j between locations s i and s j and let d = {d i,j } i,j∈{1,...,n} . 4: function TWMW (computing the WMW test statistic) 5: Initialization: c ˜= -∞, i ˜= 0 and j ˜= 0.

Input: R, A ⊆ {1, • • • , n}, B ⊆ {1, • • • , n}

21:

for i = 1 to n do

22:

O = ORDER({d i,j } j∈{1,...,n} )

23:

for j = 1 to (n -1) do 24:

v in = {O k } k∈{1,...,j} and v out = {O k } k∈{j+1,...,n} 25: c = √︂ j(n-j) n × ∥TWMW(R, v in , v out )∥ L 2 26: if c > c ˜then 27: c ˜= c, i ˜= i, j ˜= j 28:
O ˜= ORDER({d i ˜,j } j∈{1,...,n} )

29:

MLC = {O ˜k} k∈{1,...,j ˜}

Computing the statistical significance

After computing the scan statistic Λ WMWFSS and the most likely cluster C ˆ, it is necessary to evaluate its significance. However, the distribution, under H 0 , of a variable window scan statistic has no analytical form. To overcome this problem, [START_REF] Dwass | Modified randomization tests for nonparametric hypotheses[END_REF] proposed a test procedure based on Monte-Carlo simulations allowing to give an approximation of the null distribution. This method was subsequently extended by Bernard (1963) and [START_REF] Hope | A simplified monte carlo significance test procedure[END_REF]. It relies on comparing the observed scan statistic to scan statistics issued from datasets simulated under H 0 . Here, since no assumption is made on the distribution of the functional marks, the only way to obtain such datasets is by running a method called random labelling [START_REF] Cucala | A distribution-free spatial scan statistic for marked point processes[END_REF]: a simulated dataset is obtained by randomly associating the functional marks X i to the spatial locations s i . Based on T random permutations, let

Λ (1) WMWFSS , . . . , Λ (T ) WMWFSS
be the observations of the scan statistics associated with the simulated datasets. Then, as stated by [START_REF] Dwass | Modified randomization tests for nonparametric hypotheses[END_REF], the p-value of the scan statistic Λ WMWFSS , observed in the initial sample, is given by

p value = 1 + T ∑︂ i=1 1 {Λ (i) WMWFSS >Λ WMWFSS } T + 1 .
Of course, the larger the number of permutations T , the better the estimation of the p-value of the scan statistic. However, since the computational cost cannot be neglected, one needs to find a trade-off between the two aspects. The most likely cluster C ˆis said to be significant if p value is less than the type I error α.

Applications

Simulation study

We decided to run a simulation study to evaluate the performance of the functional scan statistic Λ WMWFSS proposed in the previous section. We generated artificial datasets using the geographic locations of the administrative centers of the 94 french administrative areas named as départements. The simulated true cluster, denoted by C, is defined as a set of départements in the Parisian area according to two configurations: (i) 8 départements and (ii) 10 départements. Maps of the simulated clusters are given in Fig. 1. The functional marks associated with each location take values in χ = L 2 ([0, 1], R) and are defined as follows:

∀i = 1, . . . , 94, X i (t) = ∞ ∑︂ k=1 Z i,k e k (t) + ∆(t)1 {s i ∈C} ,
where for all k ⩾ 1, e k (t) = √ 2 sin(t/σ k ) is an orthonormal basis of χ, σ k = ((k -0.5)π) -1 and Z i,k 's are independent random variables which correspond to the projection of X i on the Karhunen-Loève basis [START_REF] Karhunen | Uber lineare methoden in der wahrscheinlichkeitsrechnung[END_REF][START_REF] Lévy | Processus stochastiques et mouvement brownien[END_REF]. The decomposition of the functional marks above is based in the Karhunen-Loève expansion which is widely used in several issues related to image processing and functional data analysis [START_REF] Ahmed | Binary Functional Linear Models under Choice-Based Sampling[END_REF].

We have investigated two different cases, namely a standard Brownian motion (sBm) process: Z i,k /σ k having a N (0, 1) distribution and a centered Student-t process with five degrees of freedom: Z i,k /σ k having a t(5) distribution. The probability measures of the functional marks inside and outside the cluster C differ by a shift ∆. Three types of shifts are studied: and∆ 3 (t) = c sin(2πt), c > 0 for all t ∈ [0, 1]. The parameter c is called the cluster intensity: remark that, since the functional marks are independent, this parameter totally controls their level of spatial heterogeneity. Different values of this parameter were considered for each ∆. The range of ∆ 2 being smaller than the ranges of ∆ 1 and ∆ 3 , it is combined with larger values of c.

∆ 1 (t) = ct, ∆ 2 (t) = ct(1 -t)
Since, as already said in the Introduction, we do not know any other cluster detection method dedicated to functional data indexed in space, we decided to compare the Wilcoxon-Mann-Whitney functional scan statistic to two univariate scan statistics applied to summaries of the functional marks:

• the first scan method relies on the mean values of the marks

X ¯i = ∫︂ 1 0 X i (t)dt, i = 1, . . . , n.
Each mean value is associated with its location and the univariate Wilcoxon-Mann-Whitney scan statistic introduced by Cucala ( 2016) is computed, using the same set of potential clusters and same random permutations than the functional one. This mean-based univariate scan statistic is denoted by Λ MBUSS .

• the second one, inspired from the LISA function defined by [START_REF] Mateu | Detecting Features in Spatial Point Processes with Clutter via Local Indicators of Spatial Association[END_REF], relies on the deviations from the mean function of the marks

D i = ∫︂ 1 0 (X i (t) -X ¯(t)) 2 dt, i = 1, . . . , n,
where

X ¯(t) = 1 n n ∑︂ i=1 X i (t)
is the mean function of the observed functional marks. Each deviation is associated with its location and the univariate Wilcoxon-Mann-Whitney scan statistic is computed. This deviation-based univariate scan statistic is denoted by Λ DBUSS .

To compare the three scan methods, we generated 100 simulated datasets for each distribution of the marks and each value of the cluster intensity c and we computed three distinct criteria for each method: the alarm rate (AR), the True Positive (TP) rate (also called the sensitivity) and the False Positive (FP) rate. These three criteria were calculated as follows:

-The alarm rate (AR) was defined as the proportion of datasets exhibiting a significant cluster with a type I error equal to 0.05 and based on T = 99 random permutations.

-The TP rate, denoted by %TP, was defined as the mean proportion of the True Positive (TP) départements over all simulated datasets. It was calculated as the number of départements included both in the significant cluster C ˆand in the true cluster C divided by the number of départements included in C.

-The calculation of the FP rate, denoted by %FP, is similar to the TP one. It was defined as the average proportion of the False Positive (FP) départements i.e, the number of départements included in the most significant cluster C ˆbut not in the true cluster C divided by the number of départements not included in C.

The whole results of this simulation study are given in Appendix B but they are summarized in Table 1 and Table 2 below. From Table 1 andTable 2, the sizes of the different methods (i.e. the alarm rates when c=0) are close to the correct type I error which is equal to 0.05, regardless of the distribution of the marks. As expected, the performances of all scan statistics tend to increase with high cluster intensity c and we can remark that the alarm rate of Λ WMWFSS is higher than Λ MBUSS and Λ DBUSS in all different cases: this is expected as the first one relies on the whole information of the curves, the second one is only based on their mean value and the third one is derived from the distances between each curve and the mean curve. It should be noted that:

-When c increases, the alarm rate of all scan methods increases whatever the shift ∆ and the size of the true cluster C. However, when the process is Student-t distributed, the alarm rate increases more slowly than when it is normally distributed. This difference can be explained by the fact that the Student-t distribution is more heavy-tailed than the Gaussian one. The relation between the alarm rate and the cluster intensity c seems to be the following: the alarm rate slowly increases when c is small but then, when c reaches a certain threshold, the slope gets steeper and the alarm rate very quickly gets close to 1. Since this threshold is different depending on the distribution of the functional marks, the discrepancy between the alarm rates of Normal and Studentt distributions is far from being constant. Remark also that, for equal values of the cluster intensity c, the alarm rate is larger when the size of the cluster goes from 8 to 10: it is always easier to detect a larger cluster.

The difference in alarm rates between Λ WMWFSS and Λ MBUSS is slight when the shift between the marks inside and outside the cluster is linear, but it increases when this shift is quadratic and moreover when it is sinusoidal (see Table B.7 and Table B.10 in Appendix B): we can see that the alarm rate of Λ MBUSS does not exceed 10% (is close to the nominal level 5%) using ∆ 3 whatever the size of the true cluster and the distribution of the processes, since the sinusoidal shift has absolutely no consequence on the mean value of the process. The deviation-based scan statistic Λ DBUSS is more adapted to this sinusoidal shift but still displays lower alarm rates than Λ WMWFSS .

-The true positive and false positive rates also improve when the cluster intensity c increases (increasing for %TP and decreasing for %FP). As for the alarm rate, the recovering of the location of the cluster is harder when the process is Student-t distributed than normally distributed but the size of the cluster has no great impact on %TP and %FP. The whole information included in the functional marks is as useful for detecting the presence of a cluster than for recovering its exact location. Thus, unsurprisingly, the %TP and %FP rates obtained by the functional method Λ WMWFSS are globally better than the ones obtained by the univariate methods. The difference is more obvious concerning the false positive rates: more often than the functional one, the univariate methods tend to exhibit clusters larger than the true cluster C.

Application to real data

Here, we give an example of the use of our scan statistic to extract features in Spanish province population growth, as presented by [START_REF] Cronie | Functional marked point processes -A natural structure to unify spatio-temporal frameworks and to analyse dependent functional data[END_REF]. In order to study the structure of the Spanish population, we considered one of the most important population characteristics which is the demographic evolution. This latter can change over time because of factors like birth and death rates, immigration rate or economical situations. The Spanish province population is provided by the Spanish Institute of Statistics (www.ine.es) and the boundary and centre coordinates of the 47 provinces of Spain (see Fig. 2) by the R package raster [START_REF] Hijmans | raster: Geographic data analysis and modelling[END_REF]. For geographical reasons, we decided to exclude from the study Baleares and Canarias islands as well as the Spanish autonomous cities (Melilla and Ceuta) which are located on the Northwest coast of Africa and sharing a border with Morocco. To each point (centre) i, for i = 1, . . . , 47, we associated the functional mark X i , i.e. the demographic evolution over time, for 22 distinct years starting from 1998 to 2019 (see Fig. 3). The demographic evolution in each province was defined as the total population over the years 1998 to 2019 divided by the total population in 1998. 

Analysis of the real dataset

Our objective here is to detect a spatial area where the demographic evolution would be significantly different. In order to identify such a cluster, we computed the functional scan statistic on this dataset: Λ WMWFSS = 2.72025. Remark that here the computation of the scan statistic is slightly different from what is done in the simulation study since it is estimated from 22 observation points. Based on T = 999 permutations, the value of the statistic is highly significant (p value = 0.001) and the most likely cluster C ˆis plotted in Fig. 4. This cluster includes 13 provinces in the west of Spain (Asturias, Galicia, Extremadura and the west of Castilla y León) in which the marks are significantly lower than in the rest of the observation domain. In the west part of Castilla y Leòn, the most likely cluster includes the región leonesa and the west of the Castilla la Vieja (Ávila, Palencia and Valladolid ). We can see the demographic evolution curves associated with the most likely cluster in Fig. 5. We can see that this cluster includes the provinces which have the lowest demographic evolution compared to the rest of Spain. This can be explained by the increase in mortality rate and the decrease in birth rate in these regions. Between years 2006 and 2018, according to the Spanish Institute of Statistics, the 4 autonomous communities detected in the cluster are the territories which have the lowest birth rates (per 1000 inhabitants) compared to the other autonomous communities in Spain. In particular, the last 2 provinces with the lowest birth rate (per 1000 inhabitants) are Ourense (6.12 in 2006 and 4.82 in 2018) and Zamora (6.08 in 2006 and 5.13 in 2018). Moreover, the mortality rate (per 1000 inhabitants) is higher in the provinces belonging to the detected cluster and in particular Zamora has the highest mortality rate (12.46 in 2006 and 15.75 in 2018). This explains why Zamora has the lowest evolution demographic (see Fig. 5) and is close to becoming a demographic desert. Such a demographic decrease can be explained by the emigration in the last years of the youngest population abroad and to other regions of Spain like Cataluña and Madrid where the average hourly wage is higher and the unemployment rate is lower than the autonomous communities detected by the functional scan statistic (for more details, see the website of the Spanish Institute of Statistics).

Then, using the same dataset, we also computed the univariate scan statistics Λ MBUSS and Λ DBUSS and their p-values and we recorded the computation time. The results are given in Table 3. Contrary to the deviation-based univariate scan statistic, the mean-based univariate scan statistic detects a very significant cluster which is very similar to the one detected by Λ WMWFSS (see Fig. 6). This is not surprising since the main difference between the curves inside this cluster and the curves outside is their mean level rather than their shape. Moreover, the cluster detected by Λ MBUSS is larger than the one detected by Λ WMWFSS . As said in the simulation study, contrary to the functional scan method, the univariate scan methods tend to exhibit larger clusters than the true one, as noticed by the %FP rate. Thus, we believe that the most likely cluster detected by our functional scan method, based on the analysis of the curves on the whole time period, should be investigated first. Concerning the computation time, we remark that the functional scan statistic, even if it takes advantage of the whole information of the data, is not that time-consuming compared to the univariate ones. This performance was achieved thanks to the use of the fonction NPFSS from the R package HDSpatialScan introduced very recently by [START_REF] Frévent | HDSpatialScan: Multivariate and Functional Spatial Scan Statistics[END_REF].

Finally, after identifying the most likely cluster, we have tested the presence of a secondary cluster, following the method by Zhang et al. (2010): once a significant cluster is found, remove the data included in that cluster and restart the analysis. However, on this dataset and using the functional scan statistic, the secondary cluster is not significant since its p-value equals 0.282, using T = 999 permutations.

Analysis of the sensitivity of the method

Secondly, we decided to add noise to the preceding real dataset in order to test the sensitivity of the proposed method. We also investigated the choice of the number of permutations. We considered the noisy data . . . , 47, ∀t ∈ [1998, 2019],

X ′ i (t) = X i (t) + αϵ i (t), ∀i = 1,
where the X i 's are the initial functional marks (the demographic evolution of the Spanish population measured in each province), the ϵ i 's are independent centered sBm processes and α is the parameter controlling the variance of the added noise. We simulated 100 noisy datasets with different levels of variance α and computed the functional scan statistic and its p-value based on different numbers of random permutations T . As in section 3.1, Table 4 presents the alarm rates, TP and FP rates we obtained. In this case, the TP and FP rates are not computed based on the true cluster (which is unknown) but on the most likely cluster obtained without noise (see Fig. 4). As expected, when the level of noise added to the initial data increases, the alarm rate of the test decreases since the presence of a significant cluster becomes less and less obvious. Moreover, for moderate level of noise, the clusters detected are not that different from the most likely cluster obtained without noise (the TP rate is close to 1 and the FP rate close to 0) but there is an evolution when α increases. It seems that, as already described by [START_REF] Mcdonough | Detection of signals in noise[END_REF], when the noise level α is small, the signal to noise ratio is large enough so that the scan method still works. However, when α reaches a certain threshold around 0.25, the signal to noise ratio becomes too small and the scan method fails. On the other hand, we can remark that the influence of the number of permutations T is quite limited: we may just mention that choosing T = 29 random permutations leads to less accurate p-values, so that the alarm rate obtained with that value of T might be slightly different from the others.

Discussion

Nowadays and with the development of modern technology, scientists often observe functional data instead of univariate or multivariate ones. As a consequence, there is a need for testing procedures adapted to these infinite dimensional data. To this end, this paper proposes a nonparametric spatial scan statistic based on the Wilcoxon-Mann-Whitney two-sample test for functional data introduced by [START_REF] Chakraborty | A Wilcoxon-Mann-Whitney type test for infinite-dimensional data[END_REF]. As shown in the application to simulated and real data, this scan procedure is much more suitable for functional data than existing ones, and its implementation in the R package HDSpatialScan makes it easy and quick to compute. For sake of simplicity, we decided to focus on functional data belonging to an Hilbert space. We must mention that extending this work to data belonging to a more general Banach space is straightforward since the Wilcoxon-Mann-Whitney statistic of [START_REF] Chakraborty | A Wilcoxon-Mann-Whitney type test for infinite-dimensional data[END_REF] can be generalized to such a space. This scan statistic allows to detect clusters using functional data indexed by space without assuming anything about their distribution. Another functional spatial scan statistic could be proposed using any other two-sample test statistic for functional data [START_REF] Zhang | Statistical inferences for functional data[END_REF]Zhang et al., 2010) as long as its asymptotic distribution is known. In a preprint, [START_REF] Frévent | Detecting spatial clusters on functional data: new scan statistic approaches[END_REF] recently proposed a parametric spatial scan statistic which is derived from the functional ANOVA test introduced by [START_REF] Cuevas | An anova test for functional data[END_REF]. In their work, they compared our scan statistic Λ WMWFSS with their statistic. They conclude, with simulation studies, that our nonparametric method performs better against non Gaussian data. R codes of this parametric extension are also available in the package HDSpatialScan [START_REF] Frévent | HDSpatialScan: Multivariate and Functional Spatial Scan Statistics[END_REF]. The scan method we propose allows to detect multiple clusters. If two "opposite" clusters (for example one exhibiting higher rates than expected and the other lower rates than expected) exist in two disjoint areas of the observation domain D, the scan method first computes the concentration index for both of them and decides which one is the most significant one. Secondly, the sequential procedure may exhibit the other cluster. Actually, two "opposite" clusters can cancel out with each other only if the intersection of their areas is not null but this seems very unlikely to happen. When the functional marks associated with the spatial locations are time series, another possibility would be considering spatio-temporal cluster detection such as [START_REF] Kulldorff | A space-time permutation scan statistic for the early detection of disease outbreaks[END_REF]. Our approach is completely different since each functional mark is taken as a whole and cannot be split: the goal is to highlight the functional marks exhibiting a different behaviour on the entire temporal observation domain. Our work is based on the frequent assumption in the literature of spatial scan statistics that the observations in different spatial locations are independent. One should be aware that this sometimes unrealistic assumption is just a means to introduce mathematical tools that can be applied even if data are spatially correlated, as explained by [START_REF] Glaz | Research on probability models for cluster of points before the year 1960[END_REF]. However, taking into account this spatial correlation in our method could be envisaged, as [START_REF] Loh | Accounting for spatial correlation in the scan statistic[END_REF] did in the univariate case. Finally, since we may observe different curves in each spatial location (for example the temporal variation of different atmospheric pollutants), another perspective would be to develop a functional extension of the multivariate Gaussian scan statistic introduced by [START_REF] Cucala | A Multivariate Gaussian scan statistic for spatial data[END_REF]. 
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 1 Figure 1: The 94 French départements. In red: simulated clusters (8 and 10 départements).
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 2 Figure 2: The 47 Spanish provinces and their geometrical centres.
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 3 Figure 3: Demographic evolution in the 47 provinces from 1998 to 2019.

Figure 4 :

 4 Figure 4: The most likely cluster detected by the functional scan statistic Λ WMWFSS .

Figure 5 :

 5 Figure 5: The demographic evolution curves (from 1998 to 2019) in each province are presented. Curves in red correspond to provinces inside the cluster, curves in black correspond to provinces outside the cluster and the curve in green corresponds to Zamora which is inside the cluster too.

Figure 6 :

 6 Figure 6: The most likely cluster detected by Λ MBUSS and demographic evolution curves associated.
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  Figure A.7: An example of the simulated data for the sBm process with ∆ 1 (t) = t (left panel) and ∆ 1 (t) = 3t (right panel). Curves in red correspond to the observations in the cluster.

Figure A. 8 :

 8 Figure A.8: An example of the simulated data for the sBm process with ∆ 2 (t) = 4t(1t) (left panel) and ∆ 2 (t) = 7t(1 -t) (right panel). Curves in red correspond to the observations in the cluster.

Figure

  Figure A.9: An example of the simulated data for the sBm process with ∆ 3 (t) = sin(2πt) (left panel) and ∆ 3 (t) = 2.5 sin(2πt) (right panel). Curves in red correspond to the observations in the cluster.

Table 1 :

 1 Simulation study-AR, %TP and %FP results of Λ WMWFSS , Λ MBUSS and Λ DBUSS when ∆ 1 = ct, ∆ 2 = ct(1 -t) and ∆ 3 = c sin (2πt) using two distributions: Normal and Student-t. The true cluster contains 8 départements. Bold values indicate the best performance in each line.

		Normal distribution			Student-t distribution	
	c		Λ WMWFSS Λ MBUSS Λ DBUSS	c		Λ WMWFSS Λ MBUSS Λ DBUSS
	0.0	AR	0.070	0.050	0.060	0.0	AR	0.060	0.060	0.020
		%TP	0.554	0.875	1.000		%TP	0.479	0.479	1.000
		%FP	0.442	0.553	0.589		%FP	0.444	0.446	0.645
					∆ 1 (t) = ct					
	1.5	AR	0.380	0.340	0.150	1.5	AR	0.240	0.220	0.090
		%TP	0.908	0.882	1.000		%TP	0.885	0.847	1.000
		%FP	0.110	0.165	0.148		%FP	0.098	0.164	0.472
	2.0	AR	0.730	0.660	0.300	2.0	AR	0.600	0.510	0.180
		%TP	0.967	0.966	0.933		%TP	0.935	0.939	0.993
		%FP	0.049	0.087	0.073		%FP	0.095	0.142	0.228
	2.5	AR	0.920	0.890	0.570	2.5	AR	0.790	0.730	0.390
		%TP	0.978	0.961	0.879		%TP	0.949	0.938	0.978
		%FP	0.056	0.070	0.077		%FP	0.045	0.063	0.137
				∆ 2 = ct(1 -t)					
	4.5	AR	0.460	0.320	0.160	4.5	AR	0.360	0.310	0.130
		%TP	0.853	0.844	0.938		%TP	0.760	0.706	0.904
		%FP	0.101	0.139	0.262		%FP	0.121	0.144	0.286
	5.5	AR	0.700	0.530	0.260	5.5	AR	0.450	0.380	0.150
		%TP	0.950	0.934	0.923		%TP	0.908	0.898	1.000
		%FP	0.042	0.077	0.178		%FP	0.070	0.130	0.261
	6.5	AR	0.870	0.760	0.460	6.5	AR	0.610	0.470	0.200
		%TP	0.991	0.984	0.929		%TP	0.932	0.910	0.988
		%FP	0.041	0.068	0.091		%FP	0.067	0.097	0.153
				∆ 3 (t) = c sin(2πt)				
	1.0	AR	0.310	0.080	0.170	1.0	AR	0.170	0.070	0.140
		%TP	0.895	0.531	0.882		%TP	0.772	0.571	0.938
		%FP	0.156	0.552	0.347		%FP	0.126	0.150	0.273
	1.25 AR	0.660	0.040	0.350	1.25 AR	0.390	0.060	0.200
		%TP	0.981	0.781	0.979		%TP	0.949	0.667	0.938
		%FP	0.037	0.573	0.250		%FP	0.109	0.455	0.251
	1.5	AR	0.960	0.060	0.660	1.5	AR	0.820	0.050	0.310
		%TP	0.988	0.833	0.981		%TP	0.970	0.425	0.960
		%FP	0.010	0.271	0.071		%FP	0.053	0.490	0.199

Table 2 :

 2 Simulation study-AR, %TP and %FP results of Λ WMWFSS , Λ MBUSS and Λ DBUSS when ∆ 1 , ∆ 2 and ∆ 3 using two distributions: Normal and Student-t. The true cluster contains 10 départements. Bold values indicate the best performance in each line.

		Normal distribution			Student-t distribution	
	c		Λ WMWFSS Λ MBUSS Λ DBUSS	c		Λ WMWFSS Λ MBUSS Λ DBUSS
	0.0	AR	0.060	0.050	0.030	0.0	AR	0.060	0.060	0.030
		%TP	0.317	0.480	1.000		%TP	0.200	0.550	0.667
		%FP	0.534	0.545	0.635		%FP	0.204	0.206	0.544
					∆ 1 (t) = ct					
	1.5	AR	0.650	0.540	0.160	1.5	AR	0.420	0.360	0.120
		%TP	0.926	0.913	0.963		%TP	0.883	0.872	1.000
		%FP	0.096	0.156	0.263		%FP	0.136	0.147	0.313
	2.0	AR	0.900	0.860	0.400	2.0	AR	0.710	0.660	0.200
		%TP	0.960	0.956	0.913		%TP	0.956	0.933	0.950
		%FP	0.051	0.076	0.119		%FP	0.074	0.091	0.123
	2.5	AR	1.000	0.980	0.600	2.5	AR	0.960	0.910	0.400
		%TP	0.988	0.979	0.963		%TP	0.980	0.968	0.950
		%FP	0.029	0.041	0.083		%FP	0.040	0.049	0.085
				∆ 2 = ct(1 -t)					
	4.5	AR	0.660	0.520	0.170	4.5	AR	0.420	0.380	0.120
		%TP	0.950	0.933	0.918		%TP	0.874	0.871	0.942
		%FP	0.090	0.139	0.218		%FP	0.118	0.129	0.289
	5.5	AR	0.930	0.740	0.230	5.5	AR	0.650	0.530	0.170
		%TP	0.974	0.972	1.000		%TP	0.906	0.898	0.994
		%FP	0.040	0.051	0.139		%FP	0.058	0.097	0.345
	6.5	AR	0.990	0.900	0.600	6.5	AR	0.900	0.820	0.360
		%TP	0.980	0.973	0.960		%TP	0.956	0.952	0.975
		%FP	0.026	0.049	0.091		%FP	0.035	0.055	0.162
				∆ 3 (t) = c sin(2πt)				
	1.0	AR	0.690	0.070	0.250	1.0	AR	0.340	0.050	0.120
		%TP	0.948	0.757	0.912		%TP	0.953	0.800	1.000
		%FP	0.052	0.388	0.259		%FP	0.096	0.429	0.348
	1.25 AR	0.960	0.040	0.480	1.25 AR	0.760	0.020	0.230
		%TP	0.993	0.950	0.975		%TP	0.963	0.500	0.874
		%FP	0.015	0.393	0.143		%FP	0.042	0.369	0.151
	1.5	AR	1.000	0.060	0.720	1.5	AR	0.950	0.100	0.350
		%TP	1.000	0.983	0.994		%TP	0.984	0.840	0.971
		%FP	0.004	0.274	0.056		%FP	0.014	0.411	0.148

Table 3 :

 3 The p-values and computation time (in seconds) of the different scan methods using different number of permutations.

		T=99	T=999
	Method	p value time p value time
	Λ WMWFSS	0.01 1.14 0.001 10.92
	Λ MBUSS	0.01 0.62 0.003 7.20
	Λ DBUSS	0.56 0.34 0.527 6.83

Table 4 :

 4 Real data plus noise -Alarm rate, %TP and %FP results of the functional scan statistic Λ WMWFSS for different variance level α and number of permutations T .

	α		T=29 T=59 T=99 T=999
	0.05 AR	0.990	1.000	1.000	1.000
		%TP 1.000	1.000	1.000	1.000
		%FP 0.000	0.000	0.000	0.000
	0.1	AR	0.980	1.000	1.000	1.000
		%TP 0.998	0.988	0.984	0.985
		%FP 0.013	0.031	0.038	0.035
	0.15 AR	0.940	1.000	1.000	1.000
		%TP 0.980	0.948	0.949	0.943
		%FP 0.096	0.100	0.130	0.129
	0.2	AR	0.870	0.970	0.990	0.990
		%TP 0.893	0.898	0.904	0.890
		%FP 0.229	0.248	0.266	0.266
	0.25 AR	0.560	0.630	0.680	0.690
		%TP 0.771	0.866	0.769	0.817
		%FP 0.380	0.350	0.407	0.383
	0.3	AR	0.220	0.270	0.290	0.290
		%TP 0.664	0.795	0.618	0.695
		%FP 0.418	0.416	0.444	0.449

Table B .

 B 5: Simulation study-AR , %TP and %FP results of the functional scan statistic Λ WMWFSS and the univariate ones Λ MBUSS and Λ DBUSS when ∆ 1 (t) = ct using two distributions: Normal and Student-t. The true cluster contains 8 départements.TableB.6: Simulation study-AR, %TP and %FP results of the functional scan statistic Λ WMWFSS and the univariate ones Λ MBUSS and Λ DBUSS when ∆ 2 (t) = ct(1 -t) using two distributions: Normal and Student-t. The true cluster contains 8 départements. Table B.7: Simulation study-AR, %TP and %FP results of the functional scan statistic Λ WMWFSS and the univariate ones Λ MBUSS and Λ DBUSS when ∆ 3 (t) = c sin(2πt) using two distributions: Normal and Student-t. The true cluster contains 8 départements. The following Table B.8, Table B.9 and Table B.10 give the results obtained in this simulation study. Bold values indicate the best performance in each line.

		Normal distribution Normal distribution Normal distribution		Student-t distribution Student-t distribution Student-t distribution	
	c c c		Λ WMWFSS Λ MBUSS Λ DBUSS Λ WMWFSS Λ MBUSS Λ DBUSS Λ WMWFSS Λ MBUSS Λ DBUSS	c c c	Λ WMWFSS Λ MBUSS Λ DBUSS Λ WMWFSS Λ MBUSS Λ DBUSS Λ WMWFSS Λ MBUSS Λ DBUSS
	0.0 4.0 AR AR 1.0 AR	0.070 0.410 0.310	0.050 0.330 0.080	0.060 0.120 0.170	0.0 AR 4.5 AR 1.0 AR	0.060 0.360 0.170	0.060 0.310 0.070	0.020 0.130 0.140
		%TP %TP %TP	0.554 0.869 0.895	0.875 0.867 0.531	1.000 0.750 0.882	%TP %TP %TP	0.479 0.760 0.772	0.479 0.706 0.571	1.000 0.904 0.938
		%FP %FP %FP	0.442 0.193 0.156	0.553 0.243 0.552	0.589 0.214 0.347	%FP %FP %FP	0.444 0.121 0.126	0.446 0.144 0.150	0.645 0.286 0.273
	1.25 AR 4.5 AR 1.25 AR	0.310 0.460 0.660	0.260 0.320 0.040	0.110 0.160 0.350	1.5 AR 5.5 AR 1.25 AR	0.240 0.450 0.390	0.220 0.380 0.060	0.090 0.150 0.200
		%TP %TP %TP	0.887 0.853 0.981	0.880 0.844 0.781	1.000 0.938 0.979	%TP %TP %TP	0.885 0.908 0.949	0.847 0.898 0.667	1.000 1.000 0.938
		%FP %FP %FP	0.188 0.101 0.037	0.199 0.139 0.573	0.403 0.262 0.250	%FP %FP %FP	0.098 0.070 0.109	0.164 0.130 0.455	0.472 0.261 0.251
	1.5 5.0 AR AR 1.5 AR	0.380 0.560 0.960	0.340 0.470 0.060	0.150 0.210 0.660	2.0 AR 6.5 AR 1.5 AR	0.600 0.610 0.820	0.510 0.470 0.050	0.180 0.200 0.310
		%TP %TP %TP	0.908 0.944 0.988	0.882 0.910 0.833	1.000 0.946 0.981	%TP %TP %TP	0.935 0.932 0.970	0.939 0.910 0.425	0.993 0.988 0.960
		%FP %FP %FP	0.110 0.077 0.010	0.165 0.111 0.271	0.148 0.162 0.071	%FP %FP %FP	0.095 0.067 0.053	0.142 0.097 0.490	0.228 0.153 0.199
	1.75 AR 5.5 AR 1.75 AR	0.590 0.700 1.000	0.450 0.530 0.070	0.160 0.260 0.940	2.5 AR 7.5 AR 1.75 AR	0.790 0.850 0.880	0.730 0.760 0.030	0.390 0.340 0.460
		%TP %TP %TP	0.962 0.950 1.000	0.956 0.934 0.911	0.953 0.923 0.899	%TP %TP %TP	0.949 0.951 0.972	0.938 0.950 0.833	0.978 0.901 0.959
		%FP %FP %FP	0.074 0.042 0.009	0.085 0.077 0.400	0.197 0.178 0.058	%FP %FP %FP	0.045 0.065 0.015	0.063 0.099 0.217	0.137 0.119 0.096
	2.0 6.0 AR AR 2.0 AR	0.730 0.830 1.000	0.660 0.590 0.060	0.300 0.290 1.000	3.0 AR 8.5 AR 2.0 AR	0.920 0.960 0.990	0.870 0.820 0.070	0.520 0.570 0.760
		%TP %TP %TP	0.967 0.973 1.000	0.966 0.958 1.000	0.933 0.957 0.993	%TP %TP %TP	0.967 0.990 0.996	0.945 0.988 0.893	0.964 0.982 0.991
		%FP %FP %FP	0.049 0.034 0.007	0.087 0.046 0496	0.073 0.126 0.041	%FP %FP %FP	0.035 0.023 0.009	0.036 0.040 0.387	0.094 0.074 0.070
	2.5 6.5 AR AR 2.25 AR	0.920 0.870 1.000	0.890 0.760 0.020	0.570 0.460 1.000 2.25 AR 3.5 AR 9.5 AR	0.980 0.990 1.000	0.940 0.910 0.070	0.800 0.730 0.890
		%TP %TP %TP	0.978 0.991 1.000	0.961 0.984 1.000	0.879 0.929 0.984	%TP %TP %TP	0.974 0.991 1.000	0.973 0.984 1.000	0.956 0.945 0.997
		%FP %FP %FP	0.056 0.041 0.005	0.070 0.068 0.052	0.077 0.091 0.029	%FP %FP %FP	0.035 0.020 0.003	0.050 0.035 0.561	0.048 0.073 0.063
	3.0 7.0 AR AR 2.5 AR	1.000 0.960 1.000	1.000 0.810 0.050	0.870 0.530 1.000	4.0 AR 10.5 AR 2.5 AR	0.990 0.990 1.000	0.980 0.930 0.040	0.920 0.890 0.950
		%TP %TP %TP	0.996 0.992 1.000	0.986 0.986 1.000	0.951 0.981 0.995	%TP %TP %TP	0.990 0.997 1.000	0.980 0.995 1.000	0.942 0.980 0.996
		%FP %FP %FP	0.019 0.026 0.003	0.027 0.047 0.481	0.057 0.075 0.027	%FP %FP %FP	0.021 0.015 0.002	0.031 0.027 0.311	0.044 0.055 0.046
	3.5	AR	1.000	1.000	0.910	4.5 AR	1.000	0.990	0.980
		%TP	1.000	1.000	0.968	%TP	0.995	0.990	0.941
		%FP	0.012	0.022	0.032	%FP	0.013	0.021	0.029

• When the true cluster is a set of 10 départements:

Table B .

 B 8: Simulation study-AR, %TP and %FP results of the functional scan statistic Λ WMWFSS and the univariate ones Λ MBUSS and Λ DBUSS when ∆ 1 (t) = ct using two distributions: Normal and Student-t. The true cluster contains 10 départements.TableB.9: Simulation study-AR, %TP and %FP results of the functional scan statistic Λ WMWFSS and the univariate ones Λ MBUSS and Λ DBUSS when ∆ 2 (t) = ct(1 -t) using two distributions: Normal and Student-t. The true cluster contains 10 départements.TableB.10: Simulation study-AR, %TP and %FP results of the functional scan statistic Λ WMWFSS and the univariate ones Λ MBUSS and Λ DBUSS when ∆ 3 (t) = c sin(2πt) using two distributions: Normal and Student-t. The true cluster contains 10 départements.

		Normal distribution Normal distribution Normal distribution				Student-t distribution Student-t distribution Student-t distribution
	c c c		Λ WMWFSS Λ MBUSS Λ DBUSS Λ WMWFSS Λ MBUSS Λ DBUSS Λ WMWFSS Λ MBUSS Λ DBUSS	c	c c		Λ WMWFSS Λ MBUSS Λ DBUSS Λ WMWFSS Λ MBUSS Λ DBUSS Λ WMWFSS Λ MBUSS Λ DBUSS
	0.0 4.0 AR AR 0.5 AR	0.060 0.440 0.120	0.050 0.410 0.100	0.030 0.100 0.090	0.0 4.5 0.5	AR AR AR	0.060 0.420 0.110	0.060 0.380 0.080	0.030 0.120 0.090
		%TP %TP %TP	0.317 0.911 0.442	0.480 0.907 0.650	1.000 0.900 0.989			%TP %TP %TP	0.200 0.874 0.755	0.550 0.871 0.725	0.667 0.942 0.822
		%FP %FP %FP	0.534 0.115 0.356	0.545 0.155 0.430	0.635 0.217 0.413			%FP %FP %FP	0.204 0.118 0.443	0.206 0.129 0.571	0.544 0.289 0.500
	1.0 4.5 AR AR 0.75 AR	0.210 0.660 0.260	0.200 0.520 0.060	0.050 0.170 0.100	1.0 5.5 0.75 AR AR AR	0.210 0.650 0.110	0.190 0.530 0.050	0.060 0.170 0.100
		%TP %TP %TP	0.795 0.950 0.877	0.785 0.933 0.333	1.000 0.918 1.000			%TP %TP %TP	0.786 0.906 0.855	0.774 0.898 0.820	1.000 0.994 1.000
		%FP %FP %FP	0.185 0.090 0.138	0.230 0.139 0.343	0.362 0.218 0.239			%FP %FP %FP	0.186 0.058 0.134	0.200 0.097 0.238	0.514 0.345 0.307
	1.25 AR 5.0 AR 1.0 AR	0.360 0.800 0.690	0.300 0.550 0.070	0.050 0.180 0.250	1.25 AR 6.5 AR 1.0 AR	0.310 0.900 0.340	0.270 0.820 0.050	0.080 0.360 0.120
		%TP %TP %TP	0.922 0.956 0.948	0.903 0.956 0.757	1.000 0.983 0.912			%TP %TP %TP	0.771 0.956 0.953	0.744 0.952 0.800	0.850 0.975 1.000
		%FP %FP %FP	0.218 0.044 0.052	0.254 0.085 0.388	0.355 0.097 0.259			%FP %FP %FP	0.171 0.035 0.096	0.173 0.055 0.429	0.405 0.162 0.348
	1.5 5.5 AR AR 1.25 AR	0.650 0.930 0.960	0.540 0.740 0.040	0.160 0.230 0.480	1.5 7.5 1.25 AR AR AR	0.420 0.960 0.760	0.360 0.840 0.020	0.120 0.530 0.230
		%TP %TP %TP	0.926 0.974 0.993	0.913 0.972 0.950	0.963 1.000 0.975			%TP %TP %TP	0.883 0.974 0.963	0.872 0.964 0.500	1.000 0.958 0.874
		%FP %FP %FP	0.096 0.040 0.015	0.156 0.051 0.393	0.263 0.139 0.143			%FP %FP %FP	0.136 0.023 0.042	0.147 0.058 0.369	0.313 0.120 0.151
	1.75 AR 6.0 AR 1.5 AR	0.750 0.980 1.000	0.630 0.880 0.060	0.260 0.440 0.720	1.75 AR 8.5 AR 1.5 AR	0.580 0.990 0.950	0.470 0.940 0.100	0.150 0.700 0.350
		%TP %TP %TP	0.933 0.977 1.000	0.922 0.973 0.983	0.950 0.939 0.994			%TP %TP %TP	0.328 0.989 0.984	0.298 0.983 0.840	1.000 0.986 0.971
		%FP %FP %FP	0.064 0.028 0.004	0.071 0.050 0.274	0.280 0.122 0.056			%FP %FP %FP	0.072 0.019 0.014	0.106 0.056 0.411	0.316 0.076 0.148
	2.0 6.5 AR AR 1.75 AR	0.900 0.990 1.000	0.860 0.900 0.060	0.400 0.600 0.990	2.0 9.5 1.75 AR AR AR	0.710 1.000 0.990	0.660 0.980 0.050	0.200 0.880 0.770
		%TP %TP %TP	0.960 0.980 1.000	0.956 0.973 1.000	0.913 0.960 1.000			%TP %TP %TP	0.956 0.990 0.989	0.933 0.990 0.900	0.950 0.958 0.973
		%FP %FP %FP	0.051 0.026 0.003	0.076 0.049 0.294	0.119 0.091 0.050			%FP %FP %FP	0.074 0.016 0.013	0.091 0.030 0.560	0.123 0.068 0.122
	2.25 AR 7.0 AR 2.0 AR	0.950 0.990 1.000	0.870 0.950 0.070	0.480 0.700 1.000	2.25 AR 10.5 AR 2.0 AR	0.860 1.000 1.000	0.750 0.990 0.070	0.330 0.980 0.920
		%TP %TP %TP	0.960 0.996 1.000	0.960 0.992 1.000	0.944 0.990 1.000			%TP %TP %TP	0.968 0.996 1.000	0.968 0.993 1.000	0.918 0.981 0.997
		%FP %FP %FP	0.047 0.020 0.002	0.061 0.032 0.332	0.089 0.078 0.031			%FP %FP %FP	0.064 0.012 0.006	0.069 0.024 0.425	0.131 0.055 0.057
	2.5	AR	1.000	0.980	0.600	2.5	AR	0.960	0.910	0.400
		%TP	0.988	0.979	0.963			%TP	0.980	0.968	0.950
		%FP	0.029	0.041	0.083			%FP	0.040	0.049	0.085

• When the true cluster is a set of 8 départements:

The following