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Abstract

We investigate the problem of stabilising the attitude of an axially symmetric 3-D pendulum. The system is assumed to be
actuated by two torques acting orthogonally to the symmetry axis. In the process of stabilising the system, two main difficulties
are encountered: first, the presence of a well-known topological obstruction to the global stabilisation by means of continuous
feedback laws, and second, the fact that the linearised system around the target equilibrium is not controllable due to the
strong underactuation of the system. To cope with the first issue, in this paper we look for feedback laws capable of stabilising
the system starting from almost all initial conditions. The second issue entails the impossibility of stabilising the system
exponentially by means of a smooth feedback. The contributions of this paper are (1) to propose a family of smooth feedback
laws capable of almost-globally stabilising the system with a polynomial rate of convergence, and (2) to define a second family
of feedback laws presenting a discontinuity at the target attitude configuration and continuous elsewhere inducing almost
global exponential stabilisation.
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1 Introduction

The 3-D spherical pendulum is a benchmark mechani-
cal system providing a simplified model for robotic and
spacecraft systems [12,21,24,28,11] as well as for the hu-
man stance [13]. The space of its configurations is char-
acterised by 3 rotational degrees of freedom (DOFs) and
by 3 or 2 translational DOFs, depending on whether the
pivot of the pendulum is free or constrained to move on
a plane. When the pendulum presents a symmetry axis
it is usually referred to as axially symmetric pendulum.
Often, in this case, a reduced attitude is considered by
ignoring rotations around the symmetry axis. The en-
suing system, usually named 2-D spherical pendulum,
requires only two rotational DOFs.

Despite its deceiving simplicity, the 3-D pendulum is a
source of many challenging control problems (see for in-
stance [8,9,23] for a glimpse of the recent literature on
the topic). If the goal is to stabilise the full attitude of

? This research was partially supported by the iCODE in-
stitute, research project of the Idex Paris-Saclay.

a 3-D pendulum, for instance in the upright position
with a given angle around the vertical axis, then usu-
ally three control inputs are used, but it is not always a
trivial task. We recall, indeed, that, while a locally sta-
bilising, time invariant smooth feedback can be defined
in the case of three independent inputs [5], topological
obstructions prevent the construction of a global feed-
back with the same characteristics [26,3]. In [9] it has
been shown that three torques allow the almost global,
asymptotic stabilisation of the complete attitude in the
upright equilibrium with a smooth control law.

In the case of a 2-D spherical pendulum, two inputs are
sufficient not only to stabilise the pendulum to the un-
stable equilibrium and the cart (planar position of the
pivot) to a desired position on a large domain of attrac-
tion (see [4,18]), but also to impart even more complex
motions to the system: the pivot can follow a circular
path, while keeping the attitude confined in a cone close
to the upright position (see [17]).

The stabilisation, even in a local sense, becomes tougher
when a stronger under-actuation is present, i.e., in the
case of a 3-D pendulum, when only two control inputs
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are available. Indeed, the complete attitude cannot be
locally asymptotically stabilised to an equilibrium by
any time-invariant continuous state feedback control
law [21]. In the case the two controlled torques are
directed orthogonally to the symmetry axis, the lin-
earised system about the upright equilibrium is not
even controllable. Which fact implies that no smooth
feedback can ensure the stabilisation with an exponen-
tial rate. Therefore, in [12] a discontinuous feedback
and in [24,11] time-varying smooth feedbacks have been
proposed to locally stabilise the attitude of a spacecraft,
essentially a 3-D pendulum without gravity, by means
of two inputs. In [8] two smooth inputs (torques) are
used to almost globally, asymptotically stabilise a 2-D
spherical pendulum in the upright position. We stress
that the reduced attitude only is stabilised here. The
full attitude is globally asymptotically stabilised in [21]
via a discontinuous control law based on sequential ma-
noeuvres and in [6,27] by means of hybrid feedbacks. We
remark that in [27] the asymptotic stability is achieved
in a practical sense. In [28] the dynamics of an axially
symmetric spacecraft is considered. Two torques are
used to stabilise the complete attitude, but the control
law depends on the initial conditions, which have to
belong to a compact annular subset of the state space
not containing the target equilibrium. The feedback is
smooth except in the origin, where it is singular.

In this paper we focus on an axially symmetric 3-D pen-
dulum actuated by two torques acting on a plane orthog-
onal to the symmetry axis, with the pivot constrained to
move on a plane. We address the problem of stabilising
the complete attitude in the upright position, assuming
zero angular velocity along the symmetry axis. The sta-
bilisation problem is tackled in two steps. First, we de-
fine a virtual feedback for the angular velocity guaran-
teeing the attitude stabilisation for almost every initial
condition. Second, we look for a couple of control torques
ensuring the convergence of the actual angular velocity
to the virtual feedback. The virtual feedback is defined
in terms of two weighting functions (γ1 and γ2), whose
choice may produce a smooth as well as a non-smooth
control law. We present here two distinct results. In the
first one, whose preliminary version can be found in [22],
the virtual feedback is smooth and the control torques
are chosen to ensure an exponential convergence of the
angular velocity to the virtual feedback. To the best of
our knowledge, this is the first example in literature of
a family of smooth feedback laws that almost globally
asymptotically stabilise the system to the target configu-
ration. The smoothness of the controller, however, comes
with the limitation of a polynomial rate of convergence.
To overcome such drawback, we present a second result
where the virtual feedback is smooth everywhere except
on a zero measure set and the control torques are cho-
sen to ensure the convergence of the angular velocity to
the virtual feedback in finite time. The resulting overall
control law is capable of almost globally stabilising the
full attitude with an exponential rate. The non-smooth

feedback, however, could potentially lead to a high value
control signal when the state is close to the discontinuity
set. We stress that both feedbacks have merits and limi-
tations and it is up to the designer to choose the trade-off
(speed of convergence vs low control values) that better
fits his/her needs.

The paper is organised as follows. In Section 2 we briefly
present the model and state the stabilisation problem,
further discussing the main technical difficulties and lim-
itations. In Section 3 we show our main stabilisation re-
sults: first, in Section 3.1, we identify a general family of
virtual feedback laws for the angular velocity guarantee-
ing the almost global attitude stabilisation and then, in
Sections 3.2.1 and 3.2.2, we show the almost global atti-
tude stabilisation of the complete system with a smooth
feedback law and with a non-smooth one, respectively.
Finally, in Section 4, the effectiveness and characteris-
tics of the proposed feedback laws are investigated via
some simulations.

Notation

The unit 3-sphere, i.e. the set of unit vectors in R4, is de-
noted by S3. We denote by SO(3) the group of matrices
R ∈ R3×3 satisfying R−1 = RT and det(R) = 1 (special
orthogonal group). The symbol ∧ denotes the usual cross
product in R3. With each vector w = (w1, w2, w3)T we
associate a skew-symmetric matrix

ŵ =


0 −w3 w2

w3 0 −w1

−w2 w1 0

 .

Recall that ŵx = w ∧ x for any w, x ∈ R3. Given a
function F defined on a manifoldM we use Ḟ to denote
the (Lie) derivative of F along the flow of a differential
equation onM, assuming that the differential equation
is clear from the context.

2 Problem formulation

The derivation of the mathematical model for the me-
chanical system considered in this paper is fairly stan-
dard. A thorough analysis of its features and dynamical
properties is conducted in [7]. We consider here a simpli-
fied model of a 3-D pendulum of mass m, whose pivot is
constrained on the horizontal plane. An inertial frame is
centred in the pivot with the first two axes lying in the
horizontal plane and the third one pointing opposite to
the gravity vector. A body-fixed frame is centred in the
pivot, with the third axis aligned with the vector from
the pivot to the centre of mass (the symmetry axis). We
denote with Jpiv = diag(J1, J2, J3) the inertia matrix
with respect to the pivot in the body-fixed frame. Due to
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Fig. 1. Representation of a controlled axially symmetric pen-
dulum; the torques τ1, τ2 acting on the pendulum are di-
rected along the axes xP , yP of the body-fixed frame.

symmetry, in the following we assume that J1 = J2 = J
and J 6= J3. We use a rotation matrix R ∈ SO(3) to de-
scribe the state of the 3-D pendulum:R describes the ori-
entation of the body-fixed frame with respect to the in-
ertial frame. The angular velocity vector is represented,
in the body-fixed frame, by ω = (ω1, ω2, ω3)T ∈ R3.

We assume that the pendulum is actuated by a pair of
torques τ1, τ2 acting on a plane orthogonal to the sym-
metry axis (see Figure 1). We set τ = (τ1, τ2, 0)T . The
dynamics of the pendulum is given by

Jpivω̇ = (Jpivω) ∧ ω +mg(RT e3) ∧ wcm + τ, (1)

where g is the gravity acceleration, e3 = (0, 0, 1)T ,
wcm = le3 is the centre of mass of the pendulum in the
body-fixed frame. The rotational kinematics equation is

Ṙ = Rω̂. (2)

From (1) it is easy to see that ω̇3 = 0, which implies that
the system is not completely controllable. Therefore, we
assume that ω3 ≡ 0 and we focus on the dynamics of the
remaining variables. The fact that J1 = J2 and ω3 ≡ 0
implies that (Jpivω) ∧ ω ≡ 0 in (1).

We choose (
τ1

τ2

)
= mglP ê3R

T e3 + Ju (3)

where

P =

(
1 0 0

0 1 0

)
(4)

and u = (u1, u2)T are the new control variables. By

using (3), equation (1) reduces to

ω̇1 = u1
ω̇2 = u2 .

(5)

In order to analyse the rotational kinematics (2) it is
convenient to rewrite rotations in terms of quaternions.
Recall that any rotation matrix may be identified with
a rotation axis, represented by a unit vector p, and an
angle α, that is R = exp(α p̂ ). This allows us to define
the associated unit quaternion as

q = (q0, q) ∈ S3

q0 = cos
α

2
, q = (q1, q2, q3) = p sin

α

2
.

Note that the quaternions q and −q identify the same
rotation. The kinematics (2) in the quaternion setting
takes the form [10]

q̇0 = −1

2
qTω

q̇ =
1

2
q ∧ ω +

1

2
q0ω.

(6)

We remark that the coupled system (5)-(6) is an equiv-
alent formulation of the one considered in [28].

The purpose of this work is to define a suitable feedback
law capable of asymptotically steering the body-fixed
frame to the inertial frame. In terms of quaternions, set-
ting qd = (1, 0, 0, 0), this amounts to finding a feedback
control (u1, u2) for the system (5)-(6) capable of asymp-
totically steering (ω1, ω2,q) ∈ R2 × S3 to (0, 0,qd).

When tackling this problem one has to deal with two
main issues. First of all, a well-known topological ob-
struction impedes the global stabilisation of the system
to the equilibrium. More precisely, the manifold R2×S3

turns out to be not contractible as a consequence of the
non-contractibility of S3. Then [26, Corollary 5.9.13] im-
plies that no globally stabilising feedback exists for (5)-
(6). A similar reasoning applies also to the original sys-
tem (1)-(2). Thus, in the following we will focus on the
almost global stabilisation of the system, that is, we
will look for feedback laws capable of stabilising the sys-
tem except for a zero measure set of initial conditions
(ω1, ω2,q) ∈ R2 × S3. A further important issue is il-
lustrated in the following. By using the components q
as a local set of coordinates to describe the quaternion
variables around (0, 0,qd), the equilibrium becomes the
origin in R5. The linearised system is simply given by
ω̇1 = u1, ω̇2 = u2, q̇ = 1

2ω and it is therefore not con-
trollable (recall that ω3 = 0). As a consequence, inde-
pendently of the chosen feedback law, the linearisation
of the closed loop system (5)-(6) is necessarily associ-
ated with a singular matrix. We immediately deduce the
following result.
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Proposition 1 There exists no feedback law (u1, u2)
for (5)-(6) which is continuously differentiable at
(0, 0,qd) and that makes (0, 0,qd) a (locally) exponen-
tially stable equilibrium for the closed loop system.

The previous proposition motivates the study of the sta-
bilisation problem by considering separately smooth and
non-smooth feedback laws. In the first case one should
expect a regular behaviour of the closed loop system on
a neighbourhood of the target equilibrium, at the cost
of a slow convergence towards it. In the second case,
one may look for non-smooth feedback laws guarantee-
ing exponential convergence to the target state, however,
as a counterpart, it is reasonable to expect complicated
expressions for the control laws and abrupt changes or
high values of the control laws on a neighbourhood of
the equilibrium.

Remark 1 The representation of the attitude in terms
of quaternions has some drawbacks. Namely, the space
of quaternions S3 provides a double covering of the space
of rotation matrices SO(3), hence any feedback depend-
ing on the quaternion variables gives rise to two (a pri-
ori) distinct actions associated with the same rotation
matrix. With any measured rotation R(t) are associated
two possible quaternion representation ±q. From a prac-
tical point of view, in order to ensure the continuity of
the solution of (5)-(6) with a given feedback law, the con-
troller must select a continuous representation q(t) of
R(t), whose existence is guaranteed by the continuity of
R(t).

Another drawback of the quaternion representation is
that the system dynamics may exhibit the unwinding
phenomenon (see [3]). For instance, while (0, 0,qd) and
(0, 0,−qd) correspond to the same physical configura-
tion, they are perceived as different points from the con-
troller. In particular, in our case (0, 0,qd) is the stable
equilibrium of the controlled dynamics, while (0, 0,−qd)
is not necessarily an equilibrium of the system. As a con-
sequence, the evolution of the system may pass through
the point (0, 0,−qd) without realising that it corresponds
to the target configuration. An appropriate initialisation
of the quaternion q(0) may alleviate this issue, for in-
stance q(0) may be chosen so that q0 ≥ 0. Note, in any
case, that the unwinding phenomenon does not prevent
the stabilisation of the system, it can just render it slightly
inefficient.

3 Main results

We divide the stabilisation problem in two steps. First,
we consider the system (6) with ω as a control variable,
and we identify a rather large family of feedbacks ωref

ensuring that q0 goes to 1 for almost every initial con-
dition. Second, under additional technical assumptions
on ωref , we show that a feedback u for (5), guaranteeing

that the solution ω converges to ωref , also almost glob-
ally stabilises the full system (5)-(6). The smooth case,
with a polynomial rate of convergence, and the non-
smooth one, with exponential convergence, are studied
separately.

3.1 Stabilisation of the rotation kinematics

We look for functions ω = (ω1, ω2, 0) of the form

ω(q) = γ1(q)(e3 ∧ q) + γ2(q)(e3 ∧ (e3 ∧ q)), (7)

for some functions γ1, γ2. Note that in the feedback
above, ω = 0 whenever q is parallel to e3, that is when-
ever q1 = q2 = 0. In other words, for any choice of the
functions γ1, γ2 the set of unit quaternions Q0 = {q ∈
S3 : q1 = q2 = 0} is made up of equilibria of the sys-
tem 1 . We would like to find γ1, γ2 such that, whenever
we start outside Q0, the trajectory always converges to
qd.

The advantage of the form (7) is that the dynamics of q0
and q3 are described by very simple equations in terms
of γ1, γ2. Indeed, setting f(q) = q21 + q22 = 1 − q20 − q23
we have

q̇0 = −1

2
qTω(q)

= −1

2
γ2(q)qT (e3 ∧ (e3 ∧ q))

=
1

2
γ2(q)|e3 ∧ q|2

=
1

2
γ2(q)f(q) (8)

and

q̇3 = eT3 q̇

=
1

2
eT3 (q ∧ ω(q))

=
1

2
γ1(q)eT3 (q ∧ (e3 ∧ q)) +

1

2
γ2(q)eT3 (q ∧ (e3 ∧ (e3 ∧ q)))

=
1

2
γ1(q)|e3 ∧ q|2 −

1

2
γ2(q)qT ê 3

3 q

=
1

2
γ1(q)f(q), (9)

which also imply

ḟ(q) =
d

dt
(1− q20 − q23)

= −(q0γ2(q) + q3γ1(q))f(q). (10)

1 The set Q0 \{qd} corresponds to the configurations which
differ from the target configuration only by a rotation about
the symmetry axis.
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We have the following result.

Proposition 2 Assume that the function γ2 is C1 and
strictly positive outside Q0. Moreover, set γ1(q) =
− 1

1−q0 k(q)q3, where k is a C1 function satisfying

k(q) ≥ γ2(q)/2 for q belonging to a neighbourhood U
of Q0. Then for every initial condition q /∈ Q0 the cor-
responding trajectory of (6) with the feedback law (7)
converges asymptotically to qd, without reaching qd in
finite time.

Proof. We first show that if the initial condition is differ-
ent from qd then the trajectory cannot reach qd in finite
time. Let us define

V (q) = (1− q0)2.

We observe that

f(q) ≤ 1− q20 ≤ 2(1− q0) (11)

for any q ∈ S3, so that

V̇ (q) = −γ2(q)(1− q0)f(q) ≥ −2γ2(q)V (q).

Since γ2 is continuous, and thus bounded, on the com-
pact set S3 we deduce from Gronwall lemma that
V (q(t)) > 0 for all t ≥ 0, and in particular qd cannot
be reached in finite time.

On the other hand, if γ2 is chosen to be positive out-
side Q0 we have that V̇ (q) ≤ 0 with equality holding
true only on Q0. Although the feedback law may be dis-
continuous at the point qd, a trivial adaptation of the
LaSalle invariance principle shows that any trajectory
of the system whose initial condition is different from qd

must necessarily converge to Q0.

Note that the convergence to Q0 is solely a consequence
of the fact that γ2 > 0 outside Q0, and is obtained in-
dependently of the choice of γ1. Next, by exploiting the
extra condition on γ1, we show that any trajectory start-
ing outside Q0 converges precisely to qd. Let us consider
the function

W (q) =
1− q0
f(q)

,

which is well defined outsideQ0. Note that f goes to zero
as a consequence of what precedes. Hence, if we show
that Ẇ ≤ 0 on a neighbourhood of Q0, we can conclude
that the function 1− q0 is dominated by a multiple of f

and thus must also converge to 0. We have

Ẇ =
−q̇0f − (1− q0)ḟ

f2

=
− 1

2γ2f
2 + (1− q0)(q0γ2 + q3γ1)f

f2

=
− 1

2γ2(1− q20 − q23) + (1− q0)q0γ2 − q23k
f

= −γ2(1− q0)2

2f
− (k − γ2/2)

q23
f
≤ 0 (12)

on the neighbourhood U of Q0, which concludes the
proof of the asymptotic convergence to qd. 2

Remark 2 We stress that under the assumptions of
Proposition 2 the feedback law (7) may be discontinuous
at qd. For instance, this happens when one considers
constant functions γ2, k.

As in Proposition 1, one can show that no smooth
feedback control law can stabilise (6) exponentially.
We show below that exponential stabilisation is possi-
ble under slightly stronger assumptions than those in
Proposition 2. In this case the feedback law becomes
discontinuous at qd. Furthermore, despite the discon-
tinuity at qd, the control ω converges to zero along
trajectories of the system.

Proposition 3 In addition to the hypotheses of Propo-
sition 2, assume that k(qd) > 1

2γ2(qd) > 0. Then, for
every solution q(·) of (6) with the feedback law (7) and
such that q(0) /∈ Q0

• the trajectory q(·) converges exponentially to qd as t
goes to infinity,

• ω(q(t)) converges exponentially to zero as t goes to
infinity.

Proof. Letting V,W as in the proof of Proposition 2 we
have 1− q0(t) ≤W (q(0))f(q(t)) for any trajectory q(·)
of (6)-(7) and hence

V̇ (q(t)) = −γ2(q(t))(1−q0)f(q(t)) ≤ − γ2(q(t))

W (q(0))
V (q(t)).

Being γ2 bounded from below by a positive constant on
a neighbourhood of qd we have the exponential conver-
gence of V to zero, i.e. the exponential convergence of
q(·) to qd.

In order to estimate the limit of ω(q(t)) as t goes to
infinity, we first note that the convergence of q(·) to
qd is equivalent to the convergence of q(·) to zero. This
implies that the second term in the right-hand side of (7)
converges to zero. As for the first term, using (11) we
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have

|γ1(q)(e3 ∧ q)| = |γ1(q)|
√
f(q) ≤ 2k(q)|q3|√

f(q)
. (13)

In the following we show that

lim
s→+∞

q23(s)

f(q(s))
= 0, (14)

which implies that (13) converges to zero as well.

In view of Proposition 2, we assume without loss
of generality that the trajectory q(·) is contained
in a small enough neighbourhood B of qd so that
C1 := infq∈B(k(q) − γ2(q)/2) is strictly positive. We
have from (12) that

−W (q(0)) ≤W (q(t))−W (q(0)) ≤ −C1

∫ t

0

q23(s)

f(q(s))
ds,

that is, letting t go to infinity,∫ ∞
0

q23(s)

f(q(s))
ds ≤ W (q(0))

C1
. (15)

In B \ {qd} we have that q3γ1 ≤ 0, hence

d

dt

(q23
f

)
= q3γ1 +

q23(q0γ2 + q3γ1)

f
≤ C2

q23
f
, (16)

with C2 = maxq∈S3 γ2(q). By (15) and (16) for every
ε > 0 there exists t > 0 large enough so that, for s > t,

q23(s)

f(q(s))
− q23(t)

f(q(t))
≤ C2

∫ s

t

q23(τ)

f(q(τ))
dτ ≤ ε

2

and, moreover, we can assume
q23(t)

f(q(t)) ≤
ε
2 by (15).

We thus get
q23(s)

f(q(s)) ≤ ε for any s ≥ t, that is

lim sups→+∞
q23(s)

f(q(s)) ≤ ε. By arbitrariness of ε > 0 we

get (14).

To conclude the proof it is enough to show that the con-
vergence in (14) occurs with an exponential rate. From
the equality in (16) and the fact that q3γ1 ≤ 0 we have

d

dt

(q23
f

)
≤ q3γ1 +

q23
f
q0γ2

= −q
2
3

f

(
f

1− q0
k − q0γ2

)
. (17)

Writing f
1−q0 k = (1+q0) 1

1+q23/f
k and using (14) and the

convergence of q(t) to qd, we obtain that f(q(t))
1−q0(t)k(q(t))

converges to 2k(qd) as t goes to infinity. Furthermore,
q0(t)γ2(q(t)) converges to γ2(qd). Hence the expression
within parentheses in (17) converges to the positive
value 2k(qd) − γ2(qd) as t goes to infinity and, for
µ ∈ (0, 2k(qd)− γ2(qd)), the inequality

d

dt

(q23
f

)
≤ −µq

2
3

f

holds true for t large enough. We deduce that the con-
vergence in (14) occurs with an exponential rate. 2

Remark 3 Note that, by (14), the action of the con-
troller forces the variable q3 to converge to zero faster
than q1, q2. This fact may be interpreted as an attempt to
counteract the lack of controllability of the linearised sys-
tem at the equilibrium in the direction of the component
q3.

We have shown in Proposition 2 that the reduced sys-
tem (6), accounting for the kinematics only, can be (al-
most globally) asymptotically stabilised by the virtual
control (7). Proposition 3 extends this result to exponen-
tial stability at the cost of a discontinuity of the control
feedback at qd. In the next section we will focus on the
entire system (5)-(6) with the goal of finding a stabilis-
ing feedback u.

3.2 Almost global stabilisation of the complete system

Recall that, by assumption, we have ω3 ≡ 0 along the
dynamics. Hence, we write ω = (ωp, 0) where ωp ∈ R2

(here and in the following the superscript p denotes the
projection of a three dimensional vector onto its first two
components). For simplicity, we also denote by G(ωp,q)
the right-hand side of (6). Motivated by the previous
section, we set

ωref(q) = γ1(q)(e3 ∧ q) + γ2(q)(e3 ∧ (e3 ∧ q)). (18)

The basic idea is to choose a feedback control law for (5)-
(6) forcing ω(t) to converge to the function ωref(q(t)).
This problem will be studied by considering separately
the case in which ωref(q) is smooth and the case in which
it is discontinuous at qd. While in the first case one can-
not expect exponential convergence to the equilibrium
as a consequence of Proposition 1, in the second one we
will show that the trajectories converge to qd exponen-
tially for almost every initial condition (ωp,q) in R2×S3

(where the measure in R2 × S3 is the product between
the Lebesgue measure in R2 and the spherical measure
in S3).

In the following sections we will exploit the previous re-
sults to devise a (almost globally) stabilising feedback
law for the complete system (5)-(6). In particular, The-
orem 4 makes use of Proposition 2 to provide a smooth
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control law with polynomial convergence, while Theo-
rem 9 exploits the results in Proposition 3 to provide a
non-smooth control feedback ensuring exponential con-
vergence.

3.2.1 Stabilisation by smooth feedback law

In addition to the assumptions of Proposition 2, we
suppose here that γ1 is smooth (as an example, taking
k = γ2 = 1 − q0, one has γ1 = −q3). In particular, this
guarantees that ωref is a smooth function.

In order to stabilise (5)-(6) we define ω̃ = ω − ωref(q)

and we impose ˙̃ωp = −Kω̃p for some K > 0. This cor-
responds to choosing the feedback control

u(ωp,q) = ω̇p
ref(q)−K(ωp − ωp

ref(q))

=
dωp

ref

dq
(q)G(ωp,q)−Kωp +Kωp

ref(q). (19)

Theorem 4 Let the assumptions of Proposition 2 on
γ1, γ2 be satisfied and assume in addition that γ2 is
strictly positive on Q0 \ {qd} and γ1 is smooth. Then,
the feedback control (19) almost globally stabilises sys-
tem (5)-(6) to the equilibrium (0, 0,qd).

In order to prove Theorem 4, it is convenient to rewrite
system (5)-(6) in terms of the error variable ω̃:

˙̃ωp = −Kω̃p (20)

q̇ = G̃(ω̃p,q) (21)

where G̃(ω̃p,q) = G(ω̃p +ωp
ref(q),q). Note that the map

(ωp,q) 7→ (ω̃p,q) is a diffeomorphism from R2 × S3 to
itself.

We need some preliminary results. First, we show the
following non-smooth extension of the classical LaSalle
invariance theorem. 2

Lemma 5 Consider a differential equation

ẋ = F (x), (22)

where x belongs to a manifold M ⊂ RN and F is Lips-
chitz continuous. Let Ω be a compact invariant subset of
M,D be a compact subset of Ω such that bothD and Ω\D
are positively invariant. Moreover assume that there ex-
ists a continuous function V : Ω→ R strictly decreasing
along the flow of (22) on Ω \D. Then for any trajectory
x(·) in Ω \D there exists c ∈ R such that x(·) converges
to a connected component of D ∩ V −1(c).

2 for similar results in a much more general context, see
e.g. [1,25]

Proof. Let φ(x0, t) denote the trajectory of the sys-
tem (22) at time t starting from x0 ∈ Ω \ D. Then
V (φ(x0, t)) is decreasing with respect to t by assump-
tion and, since the continuous function V admits a min-
imum in the compact set Ω, V (φ(x0, t)) must converge
to a constant c ∈ R. Since, by the positive invariance
of Ω, the ω−limit set of x0 is connected, it remains to
show that φ(x0, t) necessarily converges to the set D.
Let ε > 0 and define Kε as the compact set formed by
the points of Ω whose distance from D is larger or equal
than ε. From the assumptions on V and by compactness
of Kε and continuity of the map x 7→ φ(x, 1), we have
V (φ(x, 1)) − V (x) ≤ −δ for every x ∈ Kε, for some
δ > 0. Then V (φ(x0, t+ 1))− V (φ(x0, t)) ≤ −δ as long
as φ(x0, t) ∈ Kε. But we also know that there exists
T > 0 such that V (φ(x0, t)) < c+δ for any t > T . Hence

c <V (φ(x0, t+ 1)) < V (φ(x0, t)) < c+ δ

⇒ V (φ(x0, t+ 1))− V (φ(x0, t)) > −δ

for any t > T , implying that φ(x0, t) /∈ Kε. Being ε
arbitrary this concludes the proof. 2

We apply Lemma 5 to the system (20)-(21). We define
Ω = [−1, 1]× [−1, 1]× S3, D = {(0, 0)} ×Q0 and

V (ω̃p,q) = (1− q0)2 + 3|ω̃p|/K.

It is immediate to see that both Ω and D are positively
invariant for (20)-(21). Furthermore, we have

V̇ = −γ2(1− q0)f(q) + (1− q0)qT ω̃ − 3|ω̃p|
≤ −γ2(1− q0)f(q)− |ω̃p|

which is well-defined and strictly negative outside
{(0, 0)} × Q0. It is easy to see that for any c ∈ R there
exists at most two distinct points in D ∩ V −1(c). Then
we deduce from Lemma 5 that any trajectory of the
system (20)-(21) starting in Ω \ D asymptotically con-
verges to a single point of D = {(0, 0)} ×Q0. Since the
set Ω defined above is globally attractive in finite time
the result extends to (R2×S3) \D. Summing up we get
the following.

Lemma 6 Under the assumptions of Theorem 4, any
trajectory of the system (20)-(21) asymptotically con-
verges to a single point of {(0, 0)} ×Q0.

It remains to show that almost every trajectory of the
system (20)-(21) converges exactly to (0, 0,qd).

The lemma below allows a characterisation of the set of
initial points such that the corresponding trajectories do
not converge to (0, 0,qd).

Lemma 7 Consider the system (20)-(21). Let q∗ =
(q∗0 , 0, 0, q

∗
3) ∈ Q0 \ {qd}. Then, under the assumptions
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of Theorem 4, the linearised system at the equilib-
rium (0, 0,q∗) (on the five-dimensional tangent space
T(0,0,q∗)(R2 × S3)) is associated with a Jacobian matrix
having two eigenvalues equal to −K and one eigenvalue
equal to 0. The remaining two eigenvalues have strictly
positive real part.

Proof. To simplify the computations we embed R2 × S3

in R6, using the coordinates (ω̃1, ω̃2, q0, q1, q2, q3).

Equation (20) immediately implies the existence of two
eigenvalues of the linearised system equal to −K. The
remaining ones are eigenvalues of the four dimensional
square matrix

∂G̃

∂q
(ω̃p,q)|(0,0,q∗) =

∂G

∂ωp
(0, 0,q∗)

dωp
ref

dq
(q∗)+

∂G

∂q
(0, 0,q∗),

where we have used the fact that ωref(q
∗) = 0. A direct

computation shows that the kernel of this matrix is gen-
erated by e1, e4 and therefore contains both q∗ and the
vectors tangent to Q0 at q∗. The zero eigenvalue corre-
sponding to the radial direction q∗ must be neglected,
being q∗ orthogonal to the tangent space TS3.

The two remaining eigenvalues of the matrix may be
easily computed as

1

2
(−γ1q∗3 − γ2q∗0)± 1

2
i(−γ2q∗3 + γ1q

∗
0),

and, by replacing the expression of γ1 in Proposition 2,
we have

−γ1q∗3−γ2q∗0 = k(1+q∗0)−γ2q∗0 ≥
γ2
2

(1−q∗0) > 0 if q∗0 6= 1.

This concludes the proof of the lemma. 2

The previous result allows us to cast our dynamical
model in the well established framework of normally
hyperbolic invariant manifolds, first developed in [14–
16,19,20], which generalises classical results on hyper-
bolic equilibrium points. A normally hyperbolic mani-
fold V is an invariant compact submanifold of the state
space such that the linearised dynamics around V may
be decoupled into three parts: a stable dynamics and an
unstable one, both of which are transverse to V, and a
dynamics tangent to the manifold V. In addition, it is
assumed that, roughly speaking, the rates of contraction
and expansion of the flow respectively in the direction of
the stable and unstable subspaces are larger than those
along V. The latter condition is automatically satisfied
if V is made of equilibrium points.

We are now ready to prove Theorem 4.

Proof of Theorem 4. From Lemma 6, in order to charac-
terise the trajectories that do not converge to (0, 0,qd)

it is enough to study the family of all trajectories con-
verging to the equilibria (0, 0,q∗) with q∗ ∈ Q0 \ qd.
For this purpose, let us fix an arbitrary small ε > 0 and
consider the compact manifold (with boundary)

P ε
0 = {(ω̃p,q) ∈ {(0, 0)} ×Q0 | q0 ≤ 1− ε}.

According to Lemma 7, for the linearised dynamics, the
tangent space at any equilibrium point p ∈ P ε

0 splits
into the sum of a two-dimensional stable subspace Es

p,
a two-dimensional unstable subspace Eu

p, and the one-
dimensional space TpP

ε
0 (which coincides with the kernel

of the linearised system). Thus, in the setting of e.g. [20],
P ε
0 is a normally hyperbolic invariant manifold. Hence,

by classical results, there exists a local invariant manifold
Ws

ε tangent to the direct sum Es
p⊕TpP ε

0 at any p ∈ P ε
0 ,

and which is therefore of dimension 3.

An interesting and helpful characterisation of Ws
ε is

given, in a very general setting, in [2]. In that paper the
authors show that for a small enough smooth tubular
neighbourhood N of P ε

0 one can write

Ws
ε ={p ∈ N | φt(p) ∈ N , ∀t ≥ 0 and lim

t→∞
φt(p) ∈ P ε

0 },

where φt(p) is the flow of the system at time t applied
to p. Let us further define the set

Ws

ε = {p ∈ R2 × S3 | lim
t→∞

φt(p) ∈ P ε
0 }.

Since Ws
ε is a three-dimensional manifold, it has zero

measure. Recall that the flow at a (positive or nega-
tive) time t is a diffeomorphism, hence we deduce that

the set φ−t(Ws
ε ) has zero measure as well. Then Ws

ε =
∪n≥0φ−n(Ws

ε ) is a countable union of zero measure sets
and thus it has zero measure.

Finally, the set of initial points in R2×S3 such that the
corresponding trajectories converge to a point of Q0 \qd

coincides with ∪m≥1W
s

1/m and thus it has zero measure.
2

3.2.2 Stabilisation by non-smooth feedback law

We analyse here the case in which the feedback law is
discontinuous at the equilibrium qd. For the complete
system (5)-(6) it is natural to require that the control law
u converges to zero as q converges to the equilibrium qd.
For this reason it is important to guarantee that not only
the virtual control ω but also its derivative converges to
zero along the solutions of the reduced system (6). This
is formalised in the following result.

Proposition 8 Assume that the hypotheses of Propo-
sition 3 are satisfied and, in addition, that k(qd) >
3
4γ2(qd). Then ω̇ converges to zero as time goes to infin-
ity along the trajectories of (6) with the feedback law (7)
starting from q(0) /∈ Q0.
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Proof. We have

ω̇ = γ̇1e3∧ q+ γ̇2e3∧ (e3∧ q) +γ1e3∧ q̇+γ2e3∧ (e3∧ q̇),
(23)

which is well-defined since, by Proposition 2, q(t) 6= qd

for every positive t. The second term in the sum (23)
converges to zero since q(t) goes to zero as t tends to in-
finity and γ2 is C1 on S3, so that γ̇2 is uniformly bounded.
Since ω converges to zero by Proposition 3, we have that
q̇ tends to zero, and so does the last term in the sum (23).
We are left to estimate the first and the third terms
in (23), which are more delicate since γ1, γ̇1 may grow
unbounded along the trajectory.

Since

γ̇1 = − (k̇q3 + kq̇3)(1− q0) + q̇0kq3
(1− q0)2

,

and

|k̇q3|
1− q0

|e3 ∧ q| ≤ 2|k̇| |q3|
f

√
f = 2|k̇| |q3|√

f
,

|q̇0q3|
(1− q0)2

|e3 ∧ q| =
γ2f |q3|

2(1− q0)2

√
f ≤ 2γ2

|q3|√
f
,

|q̇3|
1− q0

|e3 ∧ q| =
kf |q3|

2(1− q0)2

√
f ≤ 2k

|q3|√
f

go to zero by (14), it is immediate to see that the first
term in the sum (23) goes to zero.

To show that the third term in (23) goes to zero, we
notice, by (6), that

|q3|
1− q0

|e3 ∧ q̇| ≤
|q3|

1− q0
|e3 ∧ (q ∧ ω)|+ |q3|

1− q0
|e3 ∧ ω|,

so that it is enough to show that the right-hand side

converges to zero. We have that |q3|
1−q0 |e3 ∧ (q ∧ ω)| ≤

|q3||q|
1−q0 |ω| =

|q3||q|
|q|2 (1 + q0)|ω| ≤ 2|ω| tends to zero. We are

left to prove that |q3|
1−q0 |e3 ∧ ω| =

|q3|
1−q0 |ω| goes to zero as

well. By substituting the expression (7) we have

|q3|
1− q0

|ω| ≤ |q3|
1− q0

|γ1||e3 ∧ q|+
|q3|

1− q0
|γ2||e3 ∧ (e3 ∧ q)|

= |k| q23
√
f

(1− q0)2
+ |γ2|

|q3|
√
f

1− q0

≤ |k| q23
√
f

(1− q0)2
+ 2|γ2|

|q3|√
f
,

where the second term in the last estimate goes to zero

by (14). Hence, to show that |q3|
1−q0 |ω| converges to zero

it is left to prove that Γ =
q23

√
f

(1−q0)2 goes to zero. A direct

computation shows that

Γ̇ = Γ
(
− (k − γ2)

f

1− q0
− 1

2
q0γ2 + k

q23
2(1− q0)

)
.

Note that the last term inside the parenthesis goes to
zero as t goes to infinity because of (14). Since q0 con-

verges to 1 and f
1−q0 converges to 2 (again, as a con-

sequence of (14)), the sum of the first two terms con-
verges to −(2k(qd) − 3γ2(qd)/2). This shows that Γ
converges exponentially towards zero whenever k(qd) >
3γ2(qd)/4.

The convergence of ω̇ to zero is therefore demonstrated.
2

Remark 4 The additional condition k(qd) > 3
4γ2(qd)

is crucial. Indeed, by following the same lines of the previ-
ous proof one has that, if k(qd) < 3

4γ2(qd), then Γ grows
unbounded. In this case the dominant term in ω̇ along the
direction e3 ∧ (e3 ∧ q) goes to infinity, and thus ω̇ grows
unbounded as well.

The following result concerns the stabilisation of the
complete system (5)-(6) by using a control law contin-
uous everywhere except at (ωp,qd) for ωp ∈ R2. As
ωref(q) is undefined at the equilibrium qd, in order to en-
sure that the reference dynamics is well-defined we will
impose conditions on the feedback law u forcing the q
components of the trajectories of (5)-(6) not to reach qd

in finite time.

Theorem 9 Assume that the hypotheses of Proposi-
tion 8 are satisfied and let ω̃ = ω − ωref(q). Then:

• Ifϕ : R2 → R2 is a continuous function smooth outside
the origin and such that xTϕ(x) ≤ 0 for x ∈ R2, then
the feedback law defined by

u(ω,q) =


ϕ(ω̃p)− |qTω|

4(1−q0) ω̃
p +

dωp
ref

dq (q)G(ωp,q)

if q 6= qd

0 if q = qd

(24)
is such that the solutions of (5)-(6) with q(0) 6= qd are
such that q(t) 6= qd for every positive t.

• If ϕ is defined componentwise as

ϕ(x)i = −sign(xi)
√
|xi|

then the feedback control (24) almost globally expo-
nentially stabilises system (5)-(6) to the equilibrium
(0, 0,qd). Furthermore, the control variables converge
to zero along all trajectories converging to (0, 0,qd).
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Proof. We set V (q) = (1− q0)2, and we have

V̇ (q) = qTω(1− q0)

= qTωref(q)(1− q0) + qT ω̃(1− q0)

= −γ2(q)f(q)(1− q0) + qT ω̃(1− q0)

≥ −2‖γ2‖∞V −
√

2V 3/4|ω̃|,

where the last inequality is a consequence of (11) and
of the Cauchy-Schwarz inequality. In order to guarantee
that V does not vanish in finite time it is enough to find
a feedback control law such that, along each trajectory,
|ω̃| ≤ cV 1/4, with c > 0 possibly depending on the initial
condition q(0). It is therefore enough to ensure that

d

dt

(
|ω̃|2√
V

)
=
ω̃T
(
2(1− q0) ˙̃ω − 1

2 (qTω)ω̃
)

(1− q0)2
≤ 0.

This inequality is true in particular whenever ˙̃ω satisfies

˙̃ωp = ϕ(ω̃p)− |qTω|
4(1− q0)

ω̃p,

where (ω̃p)Tϕ(ω̃p) ≤ 0. Since ˙̃ωp = u(ω,q)−dωp
ref

dq (q)G(ωp,q),

the first part of the theorem is proved.

Concerning the second part of the theorem, defining
ϕ(ω̃p) componentwise as ϕ(ω̃p)i = −sign(ω̃i)

√
|ω̃i|, en-

forces ω̃ to reach the origin in finite time. This, together
with Proposition 3, implies that all the trajectories of
the complete system that do not reach the equilibria
in {(0, 0)} × (Q0 \ {qd}) in finite time necessarily con-
verge exponentially to (0, 0,qd). Indeed, for any such
trajectory, the value of ω̃ vanishes in finite time so that,
from that moment on, the q components satisfy the
equation (6) with ω = ωref(q), hence Proposition 3 ap-
plies. On the other hand, the trajectories reaching the
equilibria in {(0, 0)} × (Q0 \ {qd}) in finite time form
a three-dimensional manifold (with boundary) locally
parametrised by the point reached in Q0 \ {qd} and the
times ti such that the i-th component of ω̃ vanishes. Note
that the time t to reach Q0 \ {qd} coincides with the
largest of the times ti. In particular all the trajectories
of the complete system starting in the complement of
this manifold, a set of full measure, converge exponen-
tially to (0, 0,qd). Finally, the convergence of the control
variables follows from Proposition 8. 2

Remark 5 As observed in the introduction, several re-
sults concerning attitude stabilisation of the dynamics of
a rigid body (with two or three torques as control inputs)
are available in the literature. Some of these results, such
as those in [8], focus on the reduced attitude stabilisation
or, equivalently, the stabilisation of a 2-D spherical pen-
dulum. In our setting, the stabilisation of the reduced at-
titude corresponds to the stabilisation of the system (5)-
(6) to the manifold {(0, 0)}×Q0. It is easy to see that the

feedback law (7) with γ1 = q3 and γ2 = q0 stabilises the
kinematic subsystem (6) to Q0 with an exponential rate
(unless the initial position of the pendulum corresponds
to the downward position, i.e. q0(0) = q3(0) = 0). Then
it can be shown, by a standard Lyapunov analysis, that
a feedback control defined as in Section 3.2.1 stabilises
exponentially (almost globally) the complete system (5)-
(6). Note that in this case exponential stabilisation is
achieved without resorting to a non-smooth control law,
while this is impossible for the complete attitude stabili-
sation problem, due to Proposition 1.

Concerning the complete attitude stabilisation problem,
to the best of our knowledge Theorem 4 and Theorem 9
provide the first instances of almost globally stabilising
control laws in purely feedback form for the considered
model. The hybrid strategy developed in [6] to construct
a globally stabilising control law applies to the case in
which the rigid body is non-symmetric, although it is rea-
sonable to expect that it can be adapted to the axially
symmetric case considered in this paper. Compared to
this method, our control laws appear to have a simpler
form and, under the assumptions of Theorem 9, they en-
sure exponential convergence to the target state. Still for
the non-symmetric case, a hybrid control law stabilising
the system around the target state, but only in a practi-
cal sense, has been proposed in [27]. Closer in spirit to
our approach is [28], which studies the axially symmetric
case. In that work, the authors define a family of feed-
back laws, each one of which exponentially stabilises the
system to the target state, provided that the initial con-
dition belongs to a compact annular subset of the state
space not containing the target equilibrium. Note that, in
this case, the choice of the stabilising feedback law may
vary depending on the initial condition.

4 Simulations

In this section we are going to show some numerical
simulations of the controlled pendulum evolving from
two sets of initial conditions.

As a first set, we choose the following initial conditions:
ω(0) = (0, 0) and q(0) = (0.8, 0, 0.06, 0.597). It is an
interesting case to test the effectiveness of the presented
control feedbacks, since it is close to an equilibrium of
{(0, 0)}×Q0 different from (0, 0,qd). Notice that the use
of two control torques acting on a plane orthogonal to
the symmetry axis, impedes a direct rotation about that
axis. Hence, the attitude stabilisation would require the
third axis to first move sensibly away from the initial
configuration before coming back.

We consider first the smooth control law (19). According
to Proposition 2 and Theorem 4 we choose γ1 = −5q3,
γ2 = 2(1− q0) and K = 1. In Figure 2 the trajectory of
the tip of the pendulum is shown in red and its projec-
tions onto the planes in grey for a simulation of 1500 s.

10



Fig. 2. Evolution of the pendulum attitude from the initial
position (fainter axes) to the final one (stronger axes). The
red trace represents the trajectory of the tip of the pendulum,
while the grey ones their projections onto the planes. Case
with smooth feedback and initial conditions: ω(0) = (0, 0)
and q(0) = (0.8, 0, 0.06, 0.597).
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Fig. 3. Evolution of ω1 and ω2.

In the upper right corner two frames are shown with
the standard colour/axis association (R=x, G=y, B=z).
The fainter one represents the initial pendulum config-
uration, while the stronger one represents the final con-
figuration attained by the pendulum. As expected, the
pendulum quickly moves away from the unstable equilib-
rium to slowly approach the final equilibrium (0, 0,qd).
Figures 3 and 4 show how, after some oscillations, ω and
u quickly converge to (0, 0). Figure 5 depicts the evolu-
tion of the quaternions q, which is representative of the
slow convergence of the pendulum attitude to the de-
sired equilibrium.

While the smooth control law always ensures bounded
control values, its polynomial convergence is clearly very
slow. A faster (exponential) convergence can be ensured
to the system by the non-smooth control law (24) with ϕ

defined component-wise as ϕ(x)i = −sign(xi)
√
|xi|. In

order to compare the two control feedbacks, we perform a
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Fig. 4. Evolution of the control signals u1 and u2.
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Fig. 5. Evolution of the pendulum attitude in quaternion
representation.

simulation from the same initial conditions:ω(0) = (0, 0)
and q(0) = (0.8, 0, 0.06, 0.597). We fix the control pa-
rameters as γ1 = −q3/(1− q0) and γ2 = 1, such that the
condition k(qd) > 3

4γ2(qd) is verified. Figure 6 depicts
the evolution of the tip of the pendulum (red curve) and
the initial and final attitude (axes in the upper right
corner) for a simulation of 25 s. The faster convergence
is quite apparent, since in just 25 s the pendulum has
reached its desired equilibrium (see also the evolution of
q in Figure 7). Here also, after some oscillations, ω and
u quickly converge to (0, 0) as shown in Figures 8 and 9.

As a last case, we consider the non-smooth feedback
(with the same parameters as before) applied to the
system with non-null initial velocities. In particu-
lar, we choose the following initial conditions ω(0) =
(−10,−12) and q(0) = (−0.8, 0.267,−0.5,−0.197) and
we perform a simulation for 25 s. In Figure 6 the evo-
lution of the tip of the pendulum (red curve) and the
initial and final attitude (axes in the upper right corner)
are depicted. Here, the more ‘whimsical’ behaviour of
the pendulum is due to the non-null initial velocities.
The control feedback has to progressively zero them
to ensure the convergence to the final equilibrium (see
Figures 11 and 12). The fast convergence to the desired
attitude is confirmed by the evolution of the quaternions
in Figure 11.

5 Conclusion

In this paper we considered the problem of stabilising
an axially symmetric 3-D pendulum to the upright ver-
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Fig. 6. Evolution of the pendulum attitude from the ini-
tial position (fainter axes) to the final one (stronger axes).
The red trace represents the trajectory of the tip of the
pendulum, while the grey ones their projections onto the
planes. Case with non-smooth feedback and initial condi-
tions: ω(0) = (0, 0) and q(0) = (0.8, 0, 0.06, 0.597).
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Fig. 7. Evolution of the pendulum attitude in quaternion
representation.
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Fig. 8. Evolution of ω1 and ω2.

tical position with a fixed orientation by means of two
torques. The stabilisation was achieved in two steps.
First, by viewing the angular velocity as a control pa-
rameter, we exhibited some general conditions on the
control feedback enforcing stabilisation of the kinematic
subsystem. Then, we designed control feedbacks for the

0 5 10 15 20 25
time (s)

-1.5

-1

-0.5

0

0.5

1

1.5
u

1

u
2

Fig. 9. Evolution of the control signals u1 and u2.

Fig. 10. Evolution of the pendulum attitude from the initial
position (fainter axes) to the final one (stronger axes). The
red trace represents the trajectory of the tip of the pendu-
lum, while the grey ones their projections onto the planes.
Case with non-smooth feedback and initial conditions:
ω(0) = (−10,−12) and q(0) = (−0.8, 0.267,−0.5,−0.197).
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Fig. 11. Evolution of ω1 and ω2.

original inputs to force the angular velocity to follow the
reference computed in the previous step. By making dif-
ferent regularity assumptions on the reference feedback,
we proved that this control is capable of steering the
complete system to the desired equilibrium with poly-
nomial or exponential rate of convergence. Future works
will address the problem of stabilising the 3-D pendu-
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Fig. 12. Evolution of the control signals u1 and u2.
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Fig. 13. Evolution of the pendulum attitude in quaternion
representation.

lum in the case in which the pivot is constrained on a
plane, by controlling two planar forces. The case in which
the pivot satisfies a nonholonomic constraint will also be
taken into account.
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