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Analysis of waveform and amplitude of mouse rod and cone flash responses

Vertebrate eyes have rod and cone photoreceptors, which use a complex transduction pathway comprising many biological processes to transform the absorption of light into an electrical response. A fundamental question in sensory transduction is how these processes contribute to the response. To study this question, we use a well-accepted phototransduction model, which we analyze with a novel method based on the log-transform of the current. We derive an analytical solution that describes the entire time course of the photoreceptor response to dim flashes of light. We use this solution to dissect and quantify the contribution of each process to the response. We find that the entire dim-flash response is proportional to the flash intensity. By normalizing responses to unit amplitude, we define a waveform that is independent of the light intensity and characterizes the invariant shape of dim-flash responses. We show that this waveform is exclusively determined by deactivation rates; activation rates only scale the waveform and affect the amplitude. This analysis corrects a previous assumption that the rising phase is determined entirely by activation rates. We further show that the rising phase depends on Ca 2+ feedback to the cyclase, contrary to current belief. We identify the deactivation rates that control the recovery phase of the response, and we devise new methods to extract activation and deactivation rates from an analysis of response shape and response amplitude. In summary, we provide a comprehensive understanding of how the various transduction processes produce the cellular response.

INTRODUCTION

The signal transduction cascade of vertebrate rod and cone photoreceptors is a complex multistep process by which light-activation of a photopigment is transformed into a current response (see [START_REF] Burns | Lessons from photoreceptors: turning off G-protein signaling in living cells[END_REF][START_REF] Arshavsky | Photoreceptor signaling: supporting vision across a wide range of light intensities[END_REF][START_REF] Reingruber | How rods respond to single photons: Key adaptations of a G-protein cascade that enable vision at the physical limit of perception[END_REF][START_REF] Fain | Sensory Transduction[END_REF]. The photoreceptor response depends crucially on the interplay of two key molecules: the effector enzyme phosphodiesterase-6 (PDE), and the second messenger cyclic guanosine monophosphate (cGMP), which controls the opening of cyclic-nucleotide-gated (CNG) channels in the plasma membrane. Rhodopsin activation is coupled via a G-protein cascade to the activation of PDE, such that the number of activated PDE that are present in the outer segment at any time reflects the change in light intensity stimulating the photoreceptor. The light-signal encoded by the time course of light-activated PDE is then converted into a current response, because activated PDE hydrolyses cGMP and produces a net reduction in the number of open CNG channels. Finally, Ca 2+ -feedback modulates the transduction cascade, and this process is also light dependent because Ca 2+ concentration is controlled by influx through CNG channels which close during the light response.

Experiments over the past 50 years have revealed many biological and biochemical details of this interconnected signaling pathway. More recently, considerable insight has come from experiments on genetically engineered photoreceptors, where specific components of the signaling cascade have been genetically modified. These findings have stimulated the development of sophisticated models, which we roughly classify into two main categories and which have different but complementary objectives. In the first category, modeling and mathematical analysis has been used to understand specific aspects of the photoreceptor response, for example (1) response amplification during the initial phase of the light response [START_REF] Pugh | Amplification and kinetics of the activation steps in phototransduction[END_REF], 2000), (2) dark noise and the variability of the single-photon response [START_REF] Rieke | Molecular origin of continuous dark noise in rod photoreceptors[END_REF][START_REF] Rieke | Origin of reproducibility in the responses of retinal rods to single photons[END_REF][START_REF] Holcman | Longitudinal diffusion in retinal rod and cone outer segment cytoplasm: the consequence of cell structure[END_REF]Reingruber & Holcman, 2008a;[START_REF] Caruso | Identification of key factors that reduce the variability of the single photon response[END_REF][START_REF] Reingruber | Detection of single photons by toad and mouse rods[END_REF], (3) spatio-temporal properties of cGMP diffusion and GMP hydrolysis by activated PDE [START_REF] Cameron | The magnitude, time course and spatial distribution of current induced in salamander rods by cyclic guanine nucleotides[END_REF][START_REF] Olson | Diffusion coefficient of cyclic GMP in salamander rod outer segments estimated with two fluorescent probes[END_REF][START_REF] Dumke | Rod outer segment structure influences the apparent kinetic parameters of cyclic GMP phosphodiesterase[END_REF][START_REF] Koutalos | Regulation of sensitivity in vertebrate rod photoreceptors by calcium[END_REF][START_REF] Holcman | Longitudinal diffusion in retinal rod and cone outer segment cytoplasm: the consequence of cell structure[END_REF][START_REF] Caruso | Modeling the role of incisures in vertebrate phototransduction[END_REF]Reingruber & Holcman, 2008b;Gross et al., 2012b), or (4) analysis of Ca 2+ -feedback for light-adaptation and cGMP synthesis [START_REF] Tranchina | Light adaptation in turtle cones. Testing and analysis of a model for phototransduction[END_REF][START_REF] Calvert | Onset of feedback reactions underlying vertebrate rod photoreceptor light adaptation[END_REF][START_REF] Burns | Dynamics of cyclic GMP synthesis in retinal rods[END_REF]Chen et al., 2010c;Gross et al., 2012a). In the second category, highly complex models have been proposed to reproduce a large variety of experimental data including the effects of gene deletions and adaptation to background light [START_REF] Field | Mechanisms regulating variability of the single photon responses of mammalian rod photoreceptors[END_REF][START_REF] Andreucci | Mathematical model of the spatio-temporal dynamics of second messengers in visual transduction[END_REF][START_REF] Hamer | Multiple steps of phosphorylation of activated rhodopsin can account for the reproducibility of vertebrate rod single-photon responses[END_REF][START_REF] Hamer | Toward a unified model of vertebrate rod phototransduction[END_REF]Reingruber & Holcman, 2008a;[START_REF] Shen | Dynamics of mouse rod phototransduction and its sensitivity to variation of key parameters[END_REF][START_REF] Korenbrot | Speed, sensitivity, and stability of the light response in rod and cone photoreceptors: facts and models[END_REF][START_REF] Invergo | A comprehensive model of the phototransduction cascade in mouse rod cells[END_REF][START_REF] Astakhova | Activation and quenching of the phototransduction cascade in retinal cones as inferred from electrophysiology and mathematical modeling[END_REF][START_REF] Lamb | A quantitative account of mammalian rod phototransduction with PDE6 dimeric activation: responses to bright flashes[END_REF].

Most recent models have been of this second category and have contained many equations and parameters that can be adjusted by numerical fitting procedures. These models attempt to describe the photoreceptor response in all of its intricacy, but because of this large parameter space, it is difficult to infer from simulations and fittings how individual parameters or parameter combinations affect various properties of the light response. For example, the recovery phase of flash responses can be fit with a single exponential, but because there are many deactivation rates it is not obvious how the fitted exponential time constant relates to the various rates of the model. Another drawback of complex models is that considerable effort is required to implement them in order to use them for data analysis. This may explain why simple concepts like amplification constant, recovery time, and dominant time constant are still frequently applied to analyze data and to extract parameter values: the amplification constant introduced by [START_REF] Pugh | Amplification and kinetics of the activation steps in phototransduction[END_REF] can be determined by fitting the initial phase of a flash response with a quadratic function, the recovery time constant by fitting the recovery phase with a single exponential, and the dominant time constant from a Pepperberg plot [START_REF] Pepperberg | Light-dependent delay in the falling phase of the retinal rod photoresponse[END_REF].

A closer examination, however, reveals that the mathematical expressions or procedures that relate these concepts to underlying model parameters are not derived from a precise analysis of a phototransduction model. For example, the formula for the amplification constant has been derived from an analysis of amphibian rod responses without taking deactivation processes into account [START_REF] Lamb | A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors[END_REF], and this formula was then subsequently generalized to many other species [START_REF] Pugh | Amplification and kinetics of the activation steps in phototransduction[END_REF], 2000). It still remains unclear exactly how deactivation processes affect the rising phase. As another example, in WT rods recovery and dominant time constants are both identified with the PDE deactivation rate [START_REF] Krispel | RGS Expression Rate-Limits Recovery of Rod Photoresponses[END_REF][START_REF] Tsang | GAP-Independent termination of photoreceptor light response by excess gamma subunit of the c-GMP-phosphodiesterase[END_REF]Chen et al., 2010a), which is based on empirical observations of how these values change between phenotypes but lacks a theoretical basis.

To be able to perform a comprehensive mathematical analysis that provides a mathematical foundation for these widespread concepts, we have focused on a simple but representative model that comprises all the relevant transduction processes that are known to be necessary for a realistic flash response. We use a new mathematical approach based on the log transform of the current normalized by the amplitude of saturating flash responses to derive analytic expressions for the entire dim-flash response. We then apply these analytic results to verify the validity of asymptotic expressions, and to dissect the contributions of individual processes of the transduction pathway to the various phases of a flash response. In this way, we obtain a comprehensive understanding of how the variety of biochemical processes synergize to determine the final response.

METHODS

ANIMALS AND RECORDINGS

The data we used to analyze photoreceptor responses came from experiments previously described [START_REF] Ingram | Voltage-clamp recordings of light responses from wild-type and mutant mouse cone photoreceptors[END_REF][START_REF] Ingram | Elevated Energy Requirement of Cone Photoreceptors[END_REF][START_REF] Reingruber | A kinetic analysis of mouse rod and cone photoreceptor responses[END_REF]. The recordings were taken from WT and GCAPs -/-rods, and Gnat1 -/-and Gnat1 -/-;GCAPs -/-cones.

GCAPs -/-mutants lack the guanylyl-cyclase activating proteins (GCAPs), which are closely associated with guanylyl cyclase in both rods and cones and mediate Ca 2+ -dependent modulation of the rate of the cyclase. In GCAPs -/-mutants, Ca 2+ -dependent feedback to the cyclase is absent (𝛼 ̂= 1, see below). Recordings from cones were made from Gnat1 -/-retinas lacking Gnat1, the alpha-subunit of the rod G protein transducin. Cones in the mouse retina receive input from rods through connexin-36 gap junctions [START_REF] Asteriti | Connexin 36 expression is required for electrical coupling between mouse rods and cones[END_REF][START_REF] Jin | Molecular and functional architecture of the mouse photoreceptor network[END_REF], and this input is deleted in Gnat1 -/-cones. There is no effect on cone transduction, however, with the result that Gnat1 -/-cones essentially behave like WT cones [START_REF] Ingram | Voltage-clamp recordings of light responses from wild-type and mutant mouse cone photoreceptors[END_REF]. As we have previously explained [START_REF] Reingruber | A kinetic analysis of mouse rod and cone photoreceptor responses[END_REF], rod WT and GCAPs -/-responses had different collecting areas because GCAPs -/-rod responses were recorded with suction electrodes, whereas WT rod (and cone) responses were recorded in retinal slices with voltage clamp.

MODEL

We used a simplified phototransduction model that has been previously described [START_REF] Reingruber | A kinetic analysis of mouse rod and cone photoreceptor responses[END_REF]. Except for the activation of transducin and the inclusion of Ca 2+ feedback, this model is similar to that used by Pugh and Lamb to analyze the rising phase of the light response [START_REF] Lamb | A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors[END_REF][START_REF] Pugh | Amplification and kinetics of the activation steps in phototransduction[END_REF]. In brief, the photoreceptor current 𝐼 as a function of the cyclic guanosine-nucleotide (cGMP) concentration 𝑐 𝑐𝑔 is approximated as 𝐼 = 𝐼 𝑑 (

𝑐 𝑐𝑔 𝑐 𝑐𝑔,𝑑 ) 𝑛 𝑐ℎ
, where 𝐼 𝑑 and 𝑐 𝑐𝑔,𝑑 are the current and cGMP concentration in darkness, and 𝑛 𝑐ℎ is the cooperativity constant of the channel. This approximation for the current assumes that the concentration of cGMP that half activates the channels is large in comparison to the basal cGMP concentration in darkness [START_REF] Lamb | A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors[END_REF][START_REF] Pugh | Amplification and kinetics of the activation steps in phototransduction[END_REF] [START_REF] Tranchina | Light adaptation in turtle cones. Testing and analysis of a model for phototransduction[END_REF][START_REF] Burns | Dynamics of cyclic GMP synthesis in retinal rods[END_REF][START_REF] Hamer | Multiple steps of phosphorylation of activated rhodopsin can account for the reproducibility of vertebrate rod single-photon responses[END_REF]Gross et al., 2012b;[START_REF] Lamb | Implications of dimeric activation of PDE6 for rod phototransduction[END_REF], 𝛼 𝑑 = 𝛽 𝑑 𝑐 𝑐𝑔,𝑑 is the synthesis rate in darkness that balances cGMP hydrolysis, and 𝛽 𝑑 is the rate constant of cGMP hydrolysis in darkness (dark cGMP turnover rate).

For the PDE activation cascade, we assumed that light-activated visual pigment activates the G-protein transducin, which activates cGMP phosphodiesterase-6 (PDE). We let 𝑅 * be the number of pigment molecules activated by the flash, 𝑇 * the number of activated transducins, and [START_REF] Lamb | A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors[END_REF][START_REF] Pugh | Amplification and kinetics of the activation steps in phototransduction[END_REF]. We decided to keep this step as a representative reaction to study the effect of intermediate processes that delay the response without amplifying it. The value of where 𝜙(𝑡) is the light intensity and 𝜅 is the collecting area.

𝜇 𝑡𝑟 in
It remains to provide an equation for the Ca 2+ concentration 𝑐̂𝑐 𝑎 (𝑡). As shown in [START_REF] Reingruber | Detection of single photons by toad and mouse rods[END_REF], the Ca 2+ dynamics can be modelled as

𝑑 𝑑𝑡 𝑐̂𝑐 𝑎 = 𝜇 𝑐𝑎 (𝐼 ̂-𝑐̂𝑐 𝑎 )
, where the rate constant 𝜇 𝑐𝑎 depends on the dark current, the outer segment volume, the buffering capacity 𝐵 𝑐𝑎 , and the fraction of the CNG current that is carried by Ca 2+ (see Eq. 33 in the SI of [START_REF] Reingruber | Detection of single photons by toad and mouse rods[END_REF]. This equation further assumes that the half-saturating Ca 2+ concentration Kex of the exchanger is large compared to the dark Ca 2+ concentration 𝑐 𝑐𝑎,𝑑 (Pugh & Lamb, 2000). With 𝐵 𝑐𝑎 = 80 we computed 𝜇 𝑐𝑎 ≈ 23𝑠 -1 for a mouse rod [START_REF] Reingruber | Detection of single photons by toad and mouse rods[END_REF], and with a smaller buffering capacity 𝐵 𝑐𝑎 ~50 (Gross et al., 2012a), we would get 𝜇 𝑐𝑎 ≈ 37𝑠 -1 . For a mouse cone, due to the smaller volume, the value of 𝜇 𝑐𝑎 would be much higher.

Because 𝜇 𝑐𝑎 is large and not rate limiting, we simplify and use the approximation 𝑐̂𝑐 𝑎 (𝑡) ≈ 𝐼 ̂(𝑡), such that the Ca 2+ concentration changes proportional to the current. This approximation becomes exact in the limit 𝜇 𝑐𝑎 → ∞.

With (3)

Eq. 1 shows that the activation rates affect the response only from the gain 𝜉 by means of the product 𝑘 𝑎𝑐𝑡 𝛽 𝑠𝑢𝑏 , which effectively modulates the flash intensity 𝜙. In this respect, 𝑘 𝑎𝑐𝑡 𝛽 𝑠𝑢𝑏 behaves similarly to the collecting area 𝜅 and could as well be incorporated into a modified collecting area 𝜅̃= 𝜅𝑘 𝑎𝑐𝑡 𝛽 𝑠𝑢𝑏 . We have, however, elected to keep these variables separate for conceptional clarity. The parameter nch cannot be treated in this way, because it further affects the value of the function H(y) in Eq. 3.

Analytic results for PDE activation

The equations for PDE activation are linear and can be solved analytically,

𝑃 ̃ * (𝑡) = 𝜅𝜉 ∫ 𝜙 𝑡 0 (𝑠)𝑔 𝑝 (𝑡 -𝑠)𝑑𝑠 (4) 
with Green's function (also known as the impulse-response function) given by 𝑔 𝑝 (𝑡) = 𝜇 𝑟ℎ 𝜇 𝑝𝑑𝑒 𝜇 𝑡𝑟 ( 𝑒 -𝜇 𝑟ℎ 𝑡 (𝜇 𝑟ℎ -𝜇 𝑡𝑟 )(𝜇 𝑟ℎ -𝜇 𝑝𝑑𝑒 ) + 𝑒 -𝜇 𝑡𝑟 𝑡 (𝜇 𝑡𝑟 -𝜇 𝑟ℎ )(𝜇 𝑡𝑟 -𝜇 𝑝𝑑𝑒 ) + + 𝑒 -𝜇 𝑝𝑑𝑒 𝑡 (𝜇 𝑝𝑑𝑒 -𝜇 𝑡𝑟 )(𝜇 𝑝𝑑𝑒 -𝜇 𝑟ℎ ) )

(5)

The function 𝑔 𝑝 (𝑡) is symmetric in 𝜇 𝑟ℎ , 𝜇 𝑡𝑟 and 𝜇 𝑝𝑑𝑒 . For a flash at time 𝑡 = 0 with intensity 𝜙 and duration 𝛥𝑡, we have 𝜙(𝑡) = 𝜙(𝜃(𝑡) -𝜃(𝑡 -𝛥𝑡)), where 𝜃 is the Heaviside (or unit step)

function. If the flash duration 𝛥𝑡 is short and the flash produces 𝑅 0 * = 𝜅𝜙𝛥𝑡 photoisomerizations, we get from Eq. 4 the approximation 𝑃 ̃ * (𝑡) ≈ 𝑅 0 * 𝜉𝑔 𝑝 (𝑡).

Analytic results for dim-flash responses

It is not possible to solve Eq. 1 analytically with the non-linear function 𝐻(𝑦) from Eq. 3. For dim flashes where 𝑦 ≪ 1, however, we can approximate 𝐻(𝑦) by the leading-order term of its Taylor expansion. Because 𝐻(𝑦) = 0 for y = 0, the leading order term is the linear expression

𝐻(𝑦) = 𝑦(1 -𝑛 𝑐ℎ 𝛼 ̂′),
where

𝛼 ̂′ = 𝑑 𝑑𝑐̂𝑐 𝑎 𝛼 ̂(𝑐̂𝑐 𝑎 )| 𝑐̂𝑐 𝑎 =1 = - 2 1 + 𝐾 ̂𝛼 2 (6)
The parameter 𝛼′ describes how strongly the dark cyclase activity is modulated by Ca 2+ . For GCAPs -/-mutants we have 𝛼′ = 0. With the parameters in Table 2, we compute for a WT rod 𝛼′ ≈ -1.14, and for a WT (Gnat1 -/-) cone 𝛼′ ≈ -1.17, such that 1 -𝑛 𝑐ℎ 𝛼 ̂′ ≈ 3.8 for rod or cone photoreceptors. In the leading order approximation, we have 

We note that 𝑑 𝑑𝑡 𝑦 = 𝑃 ̃ * -𝛽 ̃𝑑𝑦 also corresponds to the first order approximation of a GCAPs -/-photoreceptor with dark turnover rate 𝛽 ̃𝑑 and cyclase activity 𝛼 ̃= 𝛽 ̃𝑑𝑐 𝑐𝑔,𝑑 (we assume that the dark cGMP concentration is unchanged). Because 𝑃 ̃ * (𝑡) is the same for WT and GCAPs -/-photoreceptors, we thus find that as a first approximation that a WT photoreceptor is described by the equations for a GCAPs -/-photoreceptor with increased dark turnover rate 𝛽 ̃𝑑 = 𝛽 𝑑 (1 -𝑛 𝑐ℎ 𝛼 ̂′) and increased cyclase activity 𝛼 ̃= 𝛽 ̃𝑑𝑐 𝑐𝑔,𝑑 . This finding reveals a profound connection between the dim-flash responses of WT and GCAPs -/-photoreceptors: the dim flash response (and also single-photon response) of a WT photoreceptor with dark turnover rate 𝛽 𝑑 is identical to the dim-flash response of a GCAPs -/-photoreceptor with increased dark turnover rate 𝛽 ̃𝑑 given by Eq. 7, thus confirming the importance of the dark GMP turnover rate for the kinetics of the flash response [START_REF] Nikonov | The role of steady phosphodiesterase activity in the kinetics and sensitivity of the light-adapted salamander rod photoresponse[END_REF].

With the linear approximation 𝛽 𝑑 𝐻(𝑦) = 𝛽 ̃𝑑𝑦, we obtain the solution .

𝑦(𝑡) = 𝜅𝜉 ∫ 𝜙 𝑡 0 (𝑠)𝑔 𝑦 (𝑡 -𝑠)𝑑𝑠, (8) 
If 𝜇 𝑟ℎ and 𝜇 𝑡𝑟 are large compared to 𝜇 𝑝𝑑𝑒 and 𝛽 ̃𝑑, the response at its maximum amplitude is governed by

𝑔 𝑦 (𝑡) ≈ 𝜇 𝑟ℎ 𝜇 𝑝𝑑𝑒 𝜇 𝑡𝑟 (- 𝑒 -𝜇 𝑝𝑑𝑒 𝑡 (𝜇 𝑝𝑑𝑒 -𝜇 𝑟ℎ )(𝜇 𝑝𝑑𝑒 -𝜇 𝑡𝑟 )(𝜇 𝑝𝑑𝑒 -𝛽 ̃𝑑) - 𝑒 -𝛽 ̃𝑑𝑡 (𝛽 ̃𝑑 -𝜇 𝑟ℎ )(𝛽 ̃𝑑 -𝜇 𝑡𝑟 )(𝛽 ̃𝑑 -𝜇 𝑝𝑑𝑒 ) ) .
From the condition for the derivative 𝑔 𝑦 ′(𝑡 𝑝𝑒𝑎𝑘 ) = 0, we get for the time to peak

𝑡 𝑝𝑒𝑎𝑘 ≈ 1 𝜇 𝑝𝑑𝑒 -𝛽 ̃𝑑 ln ( 𝜇 𝑝𝑑𝑒 𝛽 ̃𝑑 (𝜇 𝑟ℎ -𝛽 ̃𝑑)(𝜇 𝑡𝑟 -𝛽 ̃𝑑) (𝜇 𝑟ℎ -𝜇 𝑝𝑑𝑒 )(𝜇 𝑡𝑟 -𝜇 𝑝𝑑𝑒 ) ) . (10) 
The peak amplitude 𝑔 𝑦,𝑝𝑒𝑎𝑘 = 𝑔 𝑦 (𝑡 𝑝𝑒𝑎𝑘 ) is

𝑔 𝑦,𝑝𝑒𝑎𝑘 ≈ 𝜇 𝑝𝑑𝑒 𝛽 ̃𝑑 -𝜇 𝑝𝑑𝑒 (( 𝜇 𝑝𝑑𝑒 𝛽 ̃𝑑 ) 𝜇 𝑝𝑑𝑒 𝛽 ̃𝑑-𝜇 𝑝𝑑𝑒 -( 𝛽 ̃𝑑 𝜇 𝑝𝑑𝑒 ) 𝛽 ̃𝑑 𝜇 𝑝𝑑𝑒 -𝛽 ̃𝑑 ) . (11) 
Contrary to the time to peak, to compute the peak amplitude we can neglect the contributions from 𝜇 𝑟ℎ and 𝜇 𝑡𝑟 . 

Dynamics of saturating flash responses during the saturation phase

From this expression, we can obtain the GMP concentration as a function of the number of activated PDEs from:

𝑐 𝑐𝑔 (𝑡) ≈ 𝛼 𝑚𝑎𝑥 𝛽 𝑠𝑢𝑏 𝑃 * (𝑡) . ( 13 
)

RESULTS

The signal transduction cascade of the vertebrate photoreceptor consists of an activation phase governed by excitation of rhodopsin, transducin, and cGMP phosphodiesterase-6 (PDE).

Activated PDE increases the rate of hydrolysis of cGMP, which leads to a decline in the cGMP concentration, channel closure, and a reduction in Na + and Ca 2+ current entering the outer segment. Current recovery depends upon the deactivation of all of the activation steps.

We recently introduced a novel method of analysis of the photoreceptor response, where we used equations for the log transform of the cGMP concentration, 𝑦 = -𝑛 𝑐ℎ ln𝑐̂𝑐 𝑔 (Eq. 1), with the current given by 𝐼 ̂= 𝑒 -𝑦 . We further introduce the more common current 𝑖̂= 1 -𝐼 ̂= 1 -𝑒 -𝑦 which is zero in darkness. In Fig. 1, we compare the dim flash responses of rods (Figs. 1A

and 1B) and cones (Figs. 1C and1D) with and without the GCAP proteins (black) to simulations of y from Eqns. 1 -3 (red), obtained with parameters from Table 2 which were derived in [START_REF] Reingruber | A kinetic analysis of mouse rod and cone photoreceptor responses[END_REF], except for a slight modification in the values of the collecting areas to provide a better fit to the peak amplitudes. All the model parameters are defined in Table 1.

We now extend the analysis of our model and show (see Methods) that, for dim flashes, we can solve the model equations analytically to derive an expression for y(t) for the entire current response, 𝑦(𝑡) = 𝑅 0 * 𝜉𝑔 𝑦 (𝑡), where 𝑔 𝑦 (𝑡) is given by Eq. 9. The results of these calculations with parameters from Table 2 are shown as green curves in Fig. 1. In the following, we will use our analytic formulas to study in detail the kinetics of the dim flash responses in rods and cones in order to reveal how underlying biophysical processes and parameters determine the waveform and amplitude of flash responses. This analysis will help us extract biophysical parameters from experimental recordings and provide a better understanding of the transduction cascade.

Waveform of dim-flash responses

The analytical results 𝑦(𝑡) = 𝑅 0 * 𝜉𝑔 𝑦 (𝑡) provide the important demonstration that not only the initial phase, but the entire dim-flash response is linear with the flash intensity ϕ. We can then define the waveform of a dim-flash response as 𝑦 ̂(𝑡) = with Eq. 9 and parameters from Table 2 (green lines). The waveform is much faster in a cone compared to a rod due to more rapid rates of response decay. The difference in the waveform between WT and GCAPs -/-is the result of Ca 2+ feedback to the cyclase, which changes the value of 𝛽 ̃𝑑 defined in Eq. 7. The discrepancy between model and data, especially for rods, is more pronounced during the rising phase, where the computed waveform rises faster than the data.

Because the response also rises faster in GCAPs -/-rods where Ca 2+ feedback is absent, the discrepancy between model and data is unlikely to result from our assumptions about Ca 2+ .

Instead, we think that the main reason for the discrepancy is our neglect of fast and intermediate processes in our model, for example multiple steps of phosphorylation of rhodopsin, which would further slow down the initial rise (see also Discussion and the blue curve in Fig. 3B for large 𝜇 𝑡𝑟 ).

This analysis shows that the waveform depends on 𝑔 ̂𝑦(t), which in turn depends only on the dynamical parameters 𝜇 𝑟ℎ , 𝜇 𝑡𝑟 , 𝜇 𝑝𝑑𝑒 and 𝛽 ̃𝑑 (see Methods, Eq. 9). We come to the surprising conclusion that the waveform of the photoreceptor response is determined exclusively by the deactivation rates µrh, µtr and µpde, together with the effective cGMP turnover rate 𝛽 ̃𝑑, which additionally depends on Ca 2+ feedback to the cyclase (see Eq. 7). In the following we simplify the notation and we generally refer to the parameters µrh, µtr, µpde and 𝛽 ̃𝑑 as deactivation parameters or deactivation rates, although it is clear that 𝛽 ̃𝑑 is conceptually different from a deactivation rate like µrh. The activation parameters βsub and kact only scale the waveform by means of the gain ξ. We can therefore separate our analysis into two parts: (1), analysis of the rising and recovery phase of the waveform to extract information about the deactivation parameters; and (2), analysis of the peak amplitude 𝑦 𝑝𝑒𝑎𝑘 = 𝑅 0 * 𝜉𝑔 𝑦,𝑝𝑒𝑎𝑘 to additionally infer information about the gain 𝜉 and rates of activation. Whereas the peak amplitude 𝑦 𝑝𝑒𝑎𝑘 depends on activation and deactivation parameters, the peak time is a property of the waveform and depends only on deactivation parameters (see Eq. 10).

Rising phase of dim-flash responses

Our analytic result for 𝑔 𝑦 (𝑡) in Eq. 9 describes the dim-flash response as a sum of exponentials.

To examine whether a simpler polynomial approximation of the waveform exists during the rising phase, we have expanded 𝑔 ̂𝑦(𝑡) = 𝑔 𝑦 (𝑡) 𝑔 𝑦,𝑝𝑒𝑎𝑘 for small values of the time t in a Taylor series using Eq. 9. Note that the following analysis does not require us to have an explicit analytic expression for 𝑔 𝑦,𝑝𝑒𝑎𝑘 . The Taylor series expansion is alternating, 𝑔 ̂𝑦(𝑡) = 𝑎𝑡 3 -𝑏𝑡 4 + 𝑐𝑡 5 -𝑑𝑡 6 + . . . with the leading-order coefficient 𝑎 = 1 6 𝜇 𝑟ℎ 𝜇 𝑝𝑑𝑒 𝜇 𝑡𝑟 g 𝑦,𝑝𝑒𝑎𝑘

. Expressions for the higher order coefficients are lengthy, and we omit them; they can be computed with software like Maple or Mathematica.

In Fig. 3A we show the expansion for a WT rod; for GCAPS -/-rods and for the cones, the analysis is similar. The Taylor expansion reveals that the leading order term is proportional to t 3 , which reflects the three processes in Eq. 1 that contribute to PDE activation. In general, if 𝑛 firstorder processes contribute to PDE activation, the leading order asymptotic is ∼ 𝑡 𝑛 [START_REF] Baylor | The electrical response of turtle cones to flashes and steps of light[END_REF]. For example, by assuming that the intermediate step by which a T* is transformed into a P* is very fast, corresponding to the limit 𝜇 𝑡𝑟 → ∞, the leading-order asymptotic changes to the

quadratic polynomial 𝑔 ̂𝑦(𝑡) = 1 2 𝜇 𝑟ℎ 𝜇 𝑝𝑑𝑒 g 𝑦,𝑝𝑒𝑎𝑘
𝑡 2 . Since the waveform at short times depends on the number of intermediate processes that contribute to PDE activation, the larger this number, the longer the delay in the initial rise of the response. Thus, an analysis of the short-time waveform gives information about the effective number of intermediate processes that contribute to the early phase of PDE activation. That 𝑔 ̂𝑦(𝑡) for WT rod rises too fast in comparison to the data (Fig. 3B, red vs black curves) may be an indication that additional intermediate steps should be included (such as steps in rhodopsin phosphorylation) to delay the initial rise. We do not introduce such steps, because the kinetics and even number of phosphorylation steps required to extinguish R* activity are presently unknown, and the purpose of this work is to provide a comprehensive analysis by focusing on basic transduction processes rather than to obtain the best possible fit.
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We next asked whether the leading-order term of the Taylor expansion can be used to fit the rising phase of the waveform up to larger times of the order the inflection time of the waveform. Fig. 3A and Fig. 3B for the limit 𝜇 𝑡𝑟 → ∞ show that the leading-order expression is a valid approximation only during a very short initial time period and fails at later times. We therefore conclude that the leading-order expansion is not suitable to describe the rising phase up to the inflection point. Nevertheless, many studies have shown that the quadratic approximation

𝑦(𝑡) = 1 2 𝑅 0 * 𝐴(𝑡 -𝑡 𝑒𝑓𝑓 ) 2
gives a good fit to the rising phase of the light response up to this point [START_REF] Pugh | Amplification and kinetics of the activation steps in phototransduction[END_REF]. In this equation 𝑡 𝑒𝑓𝑓 is an effective time delay that accounts for fast intermediate processes, and 𝐴 is known as the amplification constant [START_REF] Pugh | Amplification and kinetics of the activation steps in phototransduction[END_REF]. We also find that the rising phase of the waveform data can be well fit by a quadratic function of the

form 𝑦 ̂(𝑡) = 1 2 𝐴 ̂(𝑡 -𝑡 𝑒𝑓𝑓 ) 2
(Fig. 3B green curves). This same equation also gives a good fit to 𝑔 ̂𝑦(𝑡) (Fig. 3B), which confirms that model and data are consistent.

Why does our leading-order expression proportional to t 3 fail to fit the rising phase, whereas a lower order quadratic polynomial is well suited? The reason is that cancellations in the Taylor series due to the alternating summands produce an effective behavior of the response at later times that is very different from the leading order term. Whereas the leading-order behavior with many intermediate steps can be proportional to 𝑡 𝑛 , where n can be large, the effective behavior at later times might well be approximated by a polynomial of much lower order, e.g. by a quadratic function. The difficulty is that we cannot derive this effective polynomial starting from Eq. 9, and the polynomial fit has therefore no clear theoretical basis and must be considered as only empirical.

Because the amplification constant 𝐴 ̂ was obtained by fitting of the waveform, its value can depend only on the deactivation parameters µrh, µtr, µpde, and 𝛽 ̃𝑑. Unfortunately, since we cannot mathematically derive the effective polynomial, we do not have an analytic formula for 𝐴 ̂. It therefore remains unclear how 𝐴 ̂ relates to the underlying deactivation parameters. Since the leading-order expansion with large 𝜇 𝑡𝑟 is also a quadratic polynomial, 𝑔 ̂𝑦(𝑡) = . We also note that the assumption that 𝜇 𝑡𝑟 is very large, corresponding to a model where R* directly activates P* [START_REF] Lamb | A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors[END_REF][START_REF] Pugh | Amplification and kinetics of the activation steps in phototransduction[END_REF], strongly increases the discrepancy between data and model during the rising phase (Fig. 3B blue vs red curve).

The amplification constant A defined by Lamb and Pugh is obtained by fitting the logtransform y(𝑡) with the quadratic fitting function 2, and with 𝑔 𝑦,𝑝𝑒𝑎𝑘 = 0.16 extracted from a numerical solution of Eq. 1, we compute for rods that 𝐴 = 𝜉𝑔 𝑦,𝑝𝑒𝑎𝑘 𝐴 ̂  7𝑠 -2 (fit of data) and 𝐴  9.7𝑠 -2 (fit of 𝑔 ̂𝑦), values that are within the wide range that can be found in the literature [START_REF] Nikonov | Physiological features of the S-and M-cone photoreceptors of wild-type mice from single-cell recordings[END_REF]Chen et al., 2010b;[START_REF] Majumder | Transducin translocation contributes to rod survival and enhances synaptic transmission from rods to rod bipolar cells[END_REF][START_REF] Woodruff | Modulation of mouse rod photoreceptor responses by Grb14 protein[END_REF][START_REF] Vinberg | A novel Ca 2+feedback mechanism extends the operating range of mammalian rods to brighter light[END_REF][START_REF] Ingram | Why are rods more sensitive than cones?[END_REF]. For a Gnat1 -/-cone we estimate 𝐴 ̂≈ 2047𝑠 -2 by fitting the waveform data in Fig 2B . With 𝜉 from Table 2 and 𝑔 𝑦,𝑝𝑒𝑎𝑘 = 0.26 (extracted from a numerical solution of Eq. 11), we compute 𝐴 = 𝜉𝑔 𝑦,𝑝𝑒𝑎𝑘 𝐴 ̂  0.95𝑠 -2 , less than for rods and similar to previous estimates [START_REF] Nikonov | Physiological features of the S-and M-cone photoreceptors of wild-type mice from single-cell recordings[END_REF][START_REF] Ingram | Voltage-clamp recordings of light responses from wild-type and mutant mouse cone photoreceptors[END_REF].

The value of A can also be computed by extracting

𝑦 𝑝𝑒𝑎𝑘 𝑅 0 *
from the data (see also Fig. 5),

and by using this value together with the fitted value for 𝐴 ̂ to compute A= In a previous analysis, [START_REF] Pugh | Amplification and kinetics of the activation steps in phototransduction[END_REF] derived the expression 𝐴 = 𝑛 𝑐ℎ 𝑘 𝑎𝑐𝑡 𝛽 𝑠𝑢𝑏 and inferred that 𝐴 depends only on activation parameters. To derive their formula, they considered that the intermediate steps of transducin activation proceed very rapidly, corresponding to the limit 𝜇 𝑡𝑟 → ∞, and they further neglected all deactivation processes, corresponding to the limits 𝜇 𝑟ℎ → 0, 𝜇 𝑝𝑑𝑒 → 0 and 𝛽 ̃𝑑 → 0. With these approximations, the rise of the waveform is given by the first order term 𝑔 ̂𝑦(𝑡) = .

The amplification constant 𝐴 = 𝑛 𝑐ℎ 𝑘 𝑎𝑐𝑡 𝛽 𝑠𝑢𝑏 faithfully characterizes the response for the case 𝜇 𝑡𝑟 → ∞ but only under two conditions. First, the deactivation rates must all be zero, in which case the response rises indefinitely as y(𝑡) = 1 2 𝑅 0 * 𝑛 𝑐ℎ 𝑘 𝑎𝑐𝑡 𝛽 𝑠𝑢𝑏 𝑡 2 . The value 𝐴 = 𝑛 𝑐ℎ 𝑘 𝑎𝑐𝑡 𝛽 𝑠𝑢𝑏 therefore corresponds to the maximal amplification that this system would achieve if all deactivation processes are switched off. In this case, A necessarily depends only on activation rates. Second, during some very early phase of the response where the waveform can be approximated by the first order term of its Taylor expansion (Fig. 3A and3B), the response rises with maximal amplification. The exact extent of this early phase depends on the deactivation rates. It is certainly not appropriate to fit the data up to the inflection point of the rising phase without considering deactivation processes, since the inflection point is a clear manifestation of the impact of the deactivation rates: without deactivation, this point would not exist and the response would rise indefinitely. If the data are fitted up to the inflection point, deactivation rates will necessarily affect the value of the amplification constant, which is quantified by our formula .

In summary, we conclude that fitting the rising phase of the waveform with a quadratic expression is empirical but provides no precise information about the underlying parameters because we do not have an analytic expression for 𝐴 ̂. To estimate precise values for the deactivation rates from a waveform analysis, we must use Eq. 9. We return to the relationship between amplification and activation/inactivation rates in the Discussion.

Recovery phase of dim-flash responses

Both the rising and recovery phase of the waveform are governed by the same sum of exponentials given in Eq. 9. During the initial rising phase when time is small, all exponentials contribute to the waveform. Around peak time, the contributions from at least two exponentials are relevant, because a single exponential cannot generate a peak in the waveform. Finally, at larger times during the recovery phase, only the exponentials with the smallest rate constants (and slowest decay) contribute significantly to the waveform. For the values of parameters from

Table 2, we have that 𝜇 𝑟ℎ and 𝜇 𝑡𝑟 are much larger than 𝜇 𝑝𝑑𝑒 and 𝛽 ̃𝑑, where we can assume 𝛽 ̃𝑑 = 𝛽 𝑑 for GCAPs -/-and 𝛽 ̃𝑑 ≈ 3.8𝛽 𝑑 for WT photoreceptors (see Eq. 7). We conclude that the recovery phase of dim-flash responses in both rods and cones is governed primarily by the decay of light-activated 𝜇 𝑝𝑑𝑒 and the rate 𝛽 ̃𝑑 (note that 𝛽 ̃𝑑 depends on the dark turnover rate and degree of the cyclase activation). Moreover, from Table 2 we can compute for a WT rod that 𝛽 ̃𝑑 ≈ 15.6𝑠 -1 , and since this value is much larger than 𝜇 𝑝𝑑𝑒 = 5𝑠 -1 , it follows that the recovery of WT rod flash response is well approximated by a single exponential with decay rate 𝜇 𝑝𝑑𝑒 , as previous experiments have indicated [START_REF] Krispel | RGS Expression Rate-Limits Recovery of Rod Photoresponses[END_REF][START_REF] Tsang | GAP-Independent termination of photoreceptor light response by excess gamma subunit of the c-GMP-phosphodiesterase[END_REF]Chen et al., 2010a). Similarly, for a GCAPs -/-cone with 𝛽 𝑑 = 11𝑠 -1 and 𝜇 𝑝𝑑𝑒 = 37.8𝑠 -1 , we conclude that the recovery is governed by a single exponential with rate 𝛽 𝑑 .

To verify these conclusions, we fitted the recovery phase of the averaged waveform derived from the WT rod and the Gnat1 -/-;GCAPs -/-cone from Fig 1 (black), with a single exponential (red) to estimate the decay rate 𝜇 𝑟𝑒𝑐 (Fig. 4A-B). From the fitting of the averaged waveform, we obtained 𝜇 𝑟𝑒𝑐 = 4.9𝑠 -1 for the WT rod and 𝜇 𝑟𝑒𝑐 = 11.9 -1 for Gnat1 -/-;GCAPs -/-cone, which are both similar to the values in Table 2 that were obtained by fitting entire responses in [START_REF] Reingruber | A kinetic analysis of mouse rod and cone photoreceptor responses[END_REF]. By fitting the recovery of the three individual traces that were used to generate the averaged waveform, we get 𝜇 𝑟𝑒𝑐 = 4.9 ± 0.8𝑠 -1 and 𝜇 𝑟𝑒𝑐 = 12.4 ± 1.2𝑠 -1 (mean ± S.E.). In contrast, for a GCAPs -/-rod the parameters 𝛽 𝑑 = 4.1𝑠 -1

and 𝜇 𝑝𝑑𝑒 = 5𝑠 -1 have very similar values, with the consequence that the recovery depends upon a sum of two exponentials. That is also true for a WT cone where 𝛽 ̃𝑑 ≈ 41.8𝑠 -1 is similar to 𝜇 𝑝𝑑𝑒 = 37.8𝑠 -1 .

To illustrate these findings, we compare the recovery between a WT and GCAPs -/-rod (Fig. 4C-D). We use Eq. 9 to extract the different exponential contributions to the waveform related to rhodopsin decay, transducin decay, PDE decay and the cyclase, 𝑔 ̂𝑦 = 𝑔 ̂𝑦,𝑟ℎ + 𝑔 ̂𝑦,𝑡𝑟 + 𝑔 ̂𝑦,𝑝𝑑𝑒 + 𝑔 ̂𝑦,𝛽 (Fig. 4C-D). Whereas the recovery of a WT rod (Fig. 4C, black curve) is dominated by a single exponential related to PDE decay (Fig. 4C, red curve), the recovery of a GCAPs -/-rod (Fig. 4D, black curve) is the sum of two exponentials with decay rates 𝜇 𝑝𝑑𝑒 (Fig. 4D, red curve) and 𝛽 𝑑 (Fig. 4D, blue curve).

Peak amplitude, gain and sensitivity of dim-flash responses

The waveform analysis provides information about the dynamical parameters µrh, µtr, µpde, and 𝛽 ̃𝑑. The activation parameters βsub and kact can be extracted from the gain ξ. Since 𝑦 𝑝𝑒𝑎𝑘 = 𝑅 0 * 𝜉𝑔 𝑦,𝑝𝑒𝑎𝑘 , we can learn about ξ from the peak amplitude of the responses. The values 𝑦 𝑝𝑒𝑎𝑘 can be extracted from the data, and if the collecting area 𝜅 is known, the expected number of activated rhodopsin molecules can be computed as 𝑅 0 * = 𝜅𝜙𝛥𝑡. To complete this calculation, however, we need to estimate 𝑔 𝑦,𝑝𝑒𝑎𝑘 .

Because we cannot extract 𝑔 𝑦,𝑝𝑒𝑎𝑘 directly from the data, we need additional information about the dynamical parameters in order to compute 𝑔 𝑦,𝑝𝑒𝑎𝑘 either from Eq. 9 or Eq. 11, or from a simulation obtained with Eq. 1. 2, we obtain 𝑔 𝑦,𝑝𝑒𝑎𝑘 = 0.19 (rod WT), 𝑔 𝑦,𝑝𝑒𝑎𝑘 = 0.40 (rod GCAPs -/-), 𝑔 𝑦,𝑝𝑒𝑎𝑘 = 0.34 (cone Gnat1 -/-), 𝑔 𝑦,𝑝𝑒𝑎𝑘 = 0.60 (cone Gnat1 -/-;GCAPs -/-). For comparison, from a numerical simulation of Eq. 1, we find 𝑔 𝑦,𝑝𝑒𝑎𝑘 = 0.16 (rod WT), 𝑔 𝑦,𝑝𝑒𝑎𝑘 = 0.39 (rod GCAPs -/-), 𝑔 𝑦,𝑝𝑒𝑎𝑘 = 0.26 (cone Gnat1 -/-), 𝑔 𝑦,𝑝𝑒𝑎𝑘 = 0.55 (cone Gnat1 -/-;GCAPs -/-). Because the values of 𝑔 𝑦,𝑝𝑒𝑎𝑘 are similar between rods and cones, the large difference in the response amplitude between rods and cones is primarily generated by the difference in the gain 𝜉, which is of the order 0.45/0.0018  250 (see Table 2).

In Fig. 5, we plot

𝑦 𝑝𝑒𝑎𝑘 𝑔 𝑦,𝑝𝑒𝑎𝑘
against 𝑅 0 * for rods and cones, with 𝑔 𝑦,𝑝𝑒𝑎𝑘 computed from Eq. 1 and the parameters in Table 2. Because 𝜉 is the same for WT and GCAPs -/-photoreceptors, we can combine their data to estimate 𝜉. For a rod we obtain 𝜉 = 0.42 (Fig. 5A), and for cone we get 𝜉 = 0.0019 (Fig. 5B), which are both close to the values in .

Hence to first estimation, the gain difference between rods and cones can be obtained from the ratio of the flash sensitivities, which can be extracted from the data. This conclusion is more important than it may seem, because it implies that the sensitivity of the photoreceptor is determined by the ratio

𝑛 𝑐ℎ 𝛽 𝑠𝑢𝑏 𝑘 𝑎𝑐𝑡 𝜇 𝑝𝑑𝑒 𝜇 𝑟ℎ
. Assuming that the channel cooperativity 𝑛 𝑐ℎ is the same for rods and cones, the difference in sensitivity of the two kinds of photoreceptors can then be seen to depend only on the properties of the three proteins rhodopsin, transducin and PDE, which are all present as different isoforms in rods and cones (see [START_REF] Ingram | Why are rods more sensitive than cones?[END_REF].

Dynamics of saturating flash responses

So far, we have focused on dim-flash responses where we made use of our analytic result in Eq. 9. We do not use our model to fit brighter-light and saturating flash responses, because the model does not incorporate adaptation processes. It is nevertheless insightful to discover what the model predicts for saturating flashes. To study the responses to bright flashes we start from Eq. 1. Since for saturating flashes the normalized current 𝑖̂ is close to one and almost constant during the saturation phase, the current does not reveal much information about the dynamics of PDE activity and cGMP concentration during this phase. We therefore focus on the dynamics of the log-transform y(t).

In Fig. 6 we compare the time course of y(t) computed from Eq. 1 for saturating-flash responses for WT and GCAPs -/-rods (Fig. 6A), and Gnat1 -/-(effectively WT) and Gnat1 -/-;GCAPs -/-cones (Fig. 6B). Whereas for dim flashes the responses are different between WT and GCAPs -/-photoreceptors due to the cyclase, the kinetics during the saturation period become similar because the cyclase is maximally activated and constant and therefore does not affect the time dependency of the response. From Eq. 13, we find that the cGMP dynamics during saturation are determined by the PDE dynamics such that the product of the cGMP concentration and the number of activated PDEs is approximately constant with time. The magnitude of cyclase activation modulates the level of cGMP synthesis and thereby affects the extent by which the cGMP concentration is depleted by activated PDE (cGMP becomes less depleted in a WT photoreceptor due to higher cyclase activity). The level of cyclase activation affects the maximum of y that is attained during saturation. However, the shape of the responses, which can be found by normalizing the response to the maximum, is governed by PDE dynamics which are the same in both photoreceptors. This is the reason why in Figs. 6A and6B we can adjust the flash intensity to superimpose responses for WT and GCAPs -/-photoreceptors during the saturation phase.

Eq. 13 predicts that during the saturation phase, the cGMP concentration adapts to PDE activation such that the hydrolysis rate matches the synthesis rate, 𝛽 𝑠𝑢𝑏 𝑃 * (𝑡)𝑐 𝑐𝑔 (𝑡) ≈  𝑚𝑎𝑥 .
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More generally, the ratio of the synthesis to hydrolysis rate during a flash response evolves according to

𝑟 = 𝛼 𝛽 𝑑 𝑐 𝑐𝑔 + 𝛽 𝑠𝑢𝑏 𝑃 * 𝑐 𝑐𝑔 = 𝛼 α ̂+ 𝑐̂𝑐 𝑔 𝑛 𝑐ℎ 𝛽 𝑑 𝑑𝑦 𝑑𝑡 = 𝛼 α ̂-1 𝛽 𝑑 𝑑𝑐̂𝑐 𝑔 𝑑𝑡 . ( 14 
)
At peak time we have | ≪ 1 when 𝑐̂𝑐 𝑔 is small. Finally, during the recovery phase, 𝑟 increases because the cyclase rate is greater than the PDE rate, and r returns to its equilibrium value as the response decays to baseline.

Figs. 6A and 6B show that during saturation, 𝑦(𝑡) decreases almost linearly as a function of time. To explain this quasi-linearity, we assume that PDE recovery is governed by 𝜇 𝑝𝑑𝑒 such that 𝑔 𝑝 (𝑡) ≈ 𝜂𝑒 -𝜇 𝑝𝑑𝑒 𝑡 (Eq. 5). With 𝑃 ̃ * (𝑡) ≈ 𝑅 0 * 𝜉𝜂𝑒 -𝜇 𝑝𝑑𝑒 𝑡 = 𝑃 ̃𝑚𝑎𝑥 * 𝑒 -𝜇 𝑝𝑑𝑒 𝑡 we obtain from Eq.

12 during saturation

𝑦(𝑡) 𝑛 𝑐ℎ ≈ ln ( 𝑃 ̃𝑚𝑎𝑥 * 𝛼 ̂𝑚𝑎𝑥 𝛽 𝑑 𝑛 𝑐ℎ ) -𝜇 𝑝𝑑𝑒 𝑡 = ln ( 𝑅 0 * 𝜉𝜂 𝛼 ̂𝑚𝑎𝑥 𝛽 𝑑 𝑛 𝑐ℎ ) -𝜇 𝑝𝑑𝑒 𝑡. (15) 
Eq. 15 reveals that 𝑦(𝑡)/𝑛 𝑐ℎ decreases linearly with time with a slope given by 𝜇 𝑝𝑑𝑒 .

Unfortunately, it is difficult to exploit Eq. 15 to estimate 𝜇 𝑝𝑑𝑒 by fitting the decay of 𝑦(𝑡), because we cannot reliably compute 𝑦(𝑡) from the data when the current is close to 1 as a result of noise and the singularity of the logarithm at zero. Instead, to extract 𝜇 𝑝𝑑𝑒 we can use information from multiple flash responses to measure the time 𝑡 𝐷 when the recovering current crosses a fixed threshold 𝑖̂𝐷, corresponding to the fixed value 𝑦 𝐷 = -ln(1 -𝑖̂𝐷 [START_REF] Pepperberg | Light-dependent delay in the falling phase of the retinal rod photoresponse[END_REF]. This analysis shows that the dominant time constant in this model is given by the PDE deactivation rate, 𝜏 𝐷 = 𝜇 𝑝𝑑𝑒 -1 , and that a Pepperberg analysis can in principle be performed with both WT and GCAPs -/-responses.

DISCUSSION

The signal transduction pathway of the vertebrate rod and cone photoreceptor consists of a series of biochemical and biophysical processes that transform the absorption of a photon into a change in membrane current. Despite many sophisticated mathematical models, a precise conceptual understanding of how all these interconnected processes work together to generate the response remains challenging. To obtain such an understanding, we derived an analytic solution for the entire dim-flash response based on a representative model that comprises the most important transduction processes. We applied this solution to dissect the flash response and to investigate its characteristic phases: the activation phase where the current rises, the intermediate peak or saturation phase, and the recovery phase where the photoreceptor returns to its initial state. Our novel analysis provides a detailed characterization of these phases.

Our analytic result 𝑦(𝑡) = 𝑅 0 * 𝜉𝑔 𝑦 (𝑡) shows that the entire log-transform of the dim-flash response is linear with the number of photoisomerizations 𝑅 0 * generated by the flash. Since for dim flashes we have 𝑖(t) = 1 -𝑒 -y(t)  y(t), to a first approximation the current is also linear with 𝑅 0 * . The analytic function 𝑔 𝑦 (𝑡) (Eq. 9) depends entirely on the deactivation parameters 𝜇 𝑟ℎ , 𝜇 𝑡𝑟 , 𝜇 𝑝𝑑𝑒 and 𝛽 ̃𝑑, where 𝛽 ̃𝑑 can be seen as an effective dark cGMP turnover rate that also depends on Ca 2+ -feedback to the cyclase (Eq. 7). The activation parameters βsub and kact affect the response by means of the gain 𝜉 = 𝑛 𝑐ℎ 𝑘 𝑎𝑐𝑡 𝛽 𝑠𝑢𝑏 𝜇 𝑟ℎ 𝜇 𝑝𝑑𝑒 (Eq. 2). We used this analytic result to separate the response into the waveform 𝑦 ̂(𝑡) = g 𝑦 (𝑡)/𝑔 𝑦,𝑝𝑒𝑎𝑘 , which is independent of the flash intensity and is normalized to amplitude one (Fig. 2); and the amplitude 𝑦 𝑝𝑒𝑎𝑘 = 𝑅 0 * 𝜉𝑔 𝑦,𝑝𝑒𝑎𝑘 , such that 𝑦(𝑡) = 𝑦 𝑝𝑒𝑎𝑘 𝑦 ̂(𝑡). It follows that the dim-flash waveform 𝑦 ̂(𝑡) depends entirely on the deactivation parameters 𝜇 𝑟ℎ , 𝜇 𝑡𝑟 , 𝜇 𝑝𝑑𝑒 and 𝛽 ̃𝑑, whereas the activation parameters βsub and kact only affect the response amplitude 𝑦 𝑝𝑒𝑎𝑘 .

In a previous attempt to analyze the rising phase of dim flashes, [START_REF] Pugh | Amplification and kinetics of the activation steps in phototransduction[END_REF] found that the quadratic expression 𝑦(𝑡) = 1 2 𝑅 0 * 𝐴(𝑡 -𝑡 𝑒𝑓𝑓 ) 2 gives a reasonable fit to the rising phase of the log-transform of the current. They called the parameter A the amplification constant.

By neglecting deactivation processes, Pugh and Lamb derived the formula 𝐴 = 𝑛 𝑐ℎ 𝛽 𝑠𝑢𝑏 𝑘 𝑎𝑐𝑡 .

This formula relates the fitted value of A entirely to the activation rates and the channel cooperativity. This equation for A has since been widely used to evaluate the initial activation process and to extract values for the rates βsub and kact (see for example Pugh & Lamb, 2000;[START_REF] Kawamura | Rod and cone photoreceptors: molecular basis of the difference in their physiology[END_REF][START_REF] Invergo | A comprehensive model of the phototransduction cascade in mouse rod cells[END_REF][START_REF] Astakhova | Activation and quenching of the phototransduction cascade in retinal cones as inferred from electrophysiology and mathematical modeling[END_REF][START_REF] Lamb | Implications of dimeric activation of PDE6 for rod phototransduction[END_REF].

From our analysis of the rising phase, we have derived the new formula 𝐴 = for a carp cone and a frog rod from simulations where the deactivation processes have been switched off [START_REF] Astakhova | Activation and quenching of the phototransduction cascade in retinal cones as inferred from electrophysiology and mathematical modeling[END_REF].

The results of [START_REF] Pugh | Amplification and kinetics of the activation steps in phototransduction[END_REF] were derived from a first-order analysis of model equations, which is unaffected by deactivation processes. As suggested by the frog result from [START_REF] Astakhova | Activation and quenching of the phototransduction cascade in retinal cones as inferred from electrophysiology and mathematical modeling[END_REF], deactivation processes might have only a reduced impact in amphibian rods, which were used for the initial analysis of [START_REF] Pugh | Amplification and kinetics of the activation steps in phototransduction[END_REF]. Nevertheless, based on the observation that the rising phase of many rod and cone photoreceptors can be well approximated by the quadratic fitting function 𝑦(𝑡) = 1 2 𝑅 0 * 𝐴(𝑡 -𝑡 𝑒𝑓𝑓 ) 2 , Pugh and Lamb generalized their result without performing a mathematical validation [START_REF] Pugh | Amplification and kinetics of the activation steps in phototransduction[END_REF], 2000).

We derived an analytic solution for the dim-flash response that provided the basis for our analysis, and which revealed that the contribution of deactivation processes to the rising phase cannot be neglected. Moreover, we find that the fitting function 𝑦(𝑡) = To estimate such values, one has to use Eq. 9 for a fitting procedure. Alternatively, in more complex models where no such analytic result is available, deactivation rates have to be estimated from the underlying model equations with numerical fitting procedures (see e.g. [START_REF] Hamer | Toward a unified model of vertebrate rod phototransduction[END_REF][START_REF] Invergo | A comprehensive model of the phototransduction cascade in mouse rod cells[END_REF].

The formula 𝐴 = 𝑛 𝑐ℎ 𝑘 𝑎𝑐𝑡 𝛽 𝑠𝑢𝑏 predicts that Ca 2+ -feedback does not affect the rising phase of dim-flash responses, which seems to be consistent with experimental data showing that the initial rise of the response is not much different between WT and GCAP -/-photoreceptors [START_REF] Burns | Dynamics of cyclic GMP synthesis in retinal rods[END_REF]. In contrast, in our model Ca 2+ -feedback to the cyclase affects the rising phase of the waveform via the effective parameter 𝛽 ̃𝑑 (Eq. 7), and also affects the fitted value of the amplification constant 𝐴 ̂. Since the time to peak is larger in a GCAPs -/-photoreceptors, the amplification constant 𝐴 ̂ is necessarily smaller in a GCAP -/-photoreceptor. For example, by fitting the rod GCAPs -/-data from Fig. 2A, we find 𝐴 ̂≈42s -2 (not shown), contrary to 𝐴 ̂≈97s -2 for a WT rod (Fig. 3). Since however the response amplitude 𝑦 𝑝𝑒𝑎𝑘 is larger in a

GCAPs -/-photoreceptor, the value of the amplification constant 𝐴 = remains largely unchanged between WT and GCAPs -/-photoreceptors. For example, for a WT rod we have 𝐴 ̂𝑔𝑦,𝑝𝑒𝑎𝑘 ≈ 15.5𝑠 -2 , and for a GCAPs -/-rod 𝐴 ̂𝑔𝑦,𝑝𝑒𝑎𝑘 ≈ 16.4𝑠 -2 . We thus find that the experimental result that the initial rise of the response is not much different between WT and GCAP -/-photoreceptors does not imply that Ca 2+ -feedback does not affect the rising phase of dim-flash responses. We show that the initial rise of the response remains almost unchanged because Ca 2+ -feedback affects both response amplitude and response dynamics. Lamb and Pugh derived their formula 𝐴 = 𝑛 𝑐ℎ 𝑘 𝑎𝑐𝑡 𝛽 𝑠𝑢𝑏 by arguing that the Ca 2+ dynamics is slow and therefore does not affect the initial rising phase. In contrast, we assume that Ca 2+ -dynamics is determined by the current dynamics, in which case Ca 2+ feedback gradually modulates the response. By performing simulations with an additional equation for the Ca 2+ concentration, we checked that our assumption is justified to model the rising phase of dimflash responses where the rise of the current is sufficiently slow. For strong flashes, where the current rises very fast, the initial Ca 2+ dynamics is slightly delayed with respect to the current.

Because activation rates affect the gain 𝜉 (Eq. 2), analysis of the gain is a more effective way to extract information about activation parameters. We show that the gain can be estimated either from an analysis of the rising phase with the formula 𝜉 = A/(𝐴 ̂𝑔𝑦,𝑝𝑒𝑎𝑘 ), or by fitting entire flash responses as shown in [START_REF] Reingruber | A kinetic analysis of mouse rod and cone photoreceptor responses[END_REF], or from an analysis of the response amplitude (Fig. 5). For example, for a WT rod, with the gain and deactivation parameters from [START_REF] Lamb | A quantitative account of mammalian rod phototransduction with PDE6 dimeric activation: responses to bright flashes[END_REF].

The recovery phase of the current is frequently fitted with a single exponential to extract the recovery rate constant 𝜇 𝑟𝑒𝑐 (or its inverse 𝜏rec) In WT rods this value is usually identified with the PDE deactivation rate µpde [START_REF] Krispel | RGS Expression Rate-Limits Recovery of Rod Photoresponses[END_REF][START_REF] Tsang | GAP-Independent termination of photoreceptor light response by excess gamma subunit of the c-GMP-phosphodiesterase[END_REF]Chen et al., 2010a).

We have shown, however, that a more accurate procedure is to fit the recovery of the logtransform of the current, which is more directly governed by exponential decays (Eq. 9).

Moreover, because the recovery of the response depends on a sum of exponentials (Eq. 9), careful analysis is needed to interpret the fitted value for the recovery rate correctly. We show that fitting the recovery phase with a single exponential is justified only for WT rod and

GCAPs -/-cone responses, where the fitted recovery rates correspond to 𝜇 𝑝𝑑𝑒 (rod) and 𝛽 𝑑 (cone).

In contrast, for WT cone and GCAPs -/-rod responses (Fig. 4C-D), the recovery phase is governed by a sum of two exponentials, and in this circumstance it is not appropriate to extract parameters by fitting the recovery phase with a single exponential decay function. For example, when Gross et al. (2012b) determined the widely accepted value 𝛽 𝑑 = 4.1𝑠 -1 , they claimed that PDE decay does not affect the recovery of GCAPs -/-rod responses. Although the latter is not correct, their estimation for 𝛽 𝑑 seems still to be justified because it was apparently derived from GCAPs -/-RGS9-ox rod responses with overexpressed GAP proteins, where PDE decay is accelerated to a value 𝜇 𝑝𝑑𝑒  12.5𝑠 -1 .

Finally, we used the log-transform of the current to analyze response dynamics during saturation. Whereas the current reaches a maximal value and is almost constant during the saturation period, the log-transform of the current is not constant and can be used to study dynamics during saturation (Fig. 6). Although our model does not include mechanisms of adaptation and cannot be used to fit responses to brighter light intensities, the model predictions for saturating flashes are nevertheless interesting because they provide insight into the dynamics during the saturation period when cyclase is maximally activated.

We find that during saturation, response dynamics are determined by a close interplay between PDE activation and cGMP depletion, such that the product of GMP concentration and the number of activated PDEs is approximately constant with time (Eq. 13). The extent of cyclase activation modulates the minimal level of the cGMP concentration that is attained, as a result of hydrolysis by activated PDE; but cyclase activity does not otherwise affect the dynamics of the response. This finding might have important implications for adaptation, because it suggests that modulation of PDE deactivation is a powerful means to control the cGMP concentration at high light intensities when the cyclase rate is at a maximal value.

Our results for saturating flashes further provide a mathematical explanation for Pepperberg plots [START_REF] Pepperberg | Light-dependent delay in the falling phase of the retinal rod photoresponse[END_REF]. Eq. 15 predicts that the dominant time constant for a WT rod will be determined by the PDE deactivation rate, 𝜏 𝐷 = 𝜇 𝑝𝑑𝑒 -1 , which agrees with experimental observations [START_REF] Krispel | RGS Expression Rate-Limits Recovery of Rod Photoresponses[END_REF][START_REF] Tsang | GAP-Independent termination of photoreceptor light response by excess gamma subunit of the c-GMP-phosphodiesterase[END_REF]Chen et al., 2010a) , which agrees with the formula from [START_REF] Lamb | A quantitative account of mammalian rod phototransduction with PDE6 dimeric activation: responses to bright flashes[END_REF]. However, more precise analysis of a model that additionally incorporates adaptation processes is needed to clarify whether the observed increases of the dominant time constant with brighter flash intensity are a sign of dimeric PDE activation [START_REF] Lamb | A quantitative account of mammalian rod phototransduction with PDE6 dimeric activation: responses to bright flashes[END_REF], or of some other process [START_REF] Martemyanov | Functional comparison of RGS9 splice isoforms in a living cell[END_REF][START_REF] Burns | Lessons from photoreceptors: turning off G-protein signaling in living cells[END_REF].

Whereas our model faithfully reproduces cone data, the discrepancy between model and data is larger for rods, especially during the initial phase where the simulations rise faster than the data (Fig. 2A and Fig. 3B). Fig. 2A shows that the initial rise of the simulated waveform is faster Eq. 9 and parameters from Table 2 (green lines). (A) Waveforms for rod WT (black curves) and

GCAPs -/-data (red curves) together with the corresponding analytic results (green curves). (B)

Waveforms for cone WT (black curves) and GCAPs -/-data (red curves) together with the corresponding analytic results (green curves). the Taylor series expansion of 𝑔 ̂𝑦(𝑡) computed with Eq. 9 and WT rod parameters from Table 2.

The leading-order term is (40,140,600,1200,10000), GCAPs -/-rod (15,50,250,500,4500); (B) Gnat1 -/-cone 10 3 x(4. 55,1.95,45.5,19.5,455), Gnat1 -/-;GCAPs -/-cone 10 3 x(1. 95,9.75,19.5,78,195). (A)

Comparison of the dynamics of the log-normal y(t) computed with Eq. 1 for saturating flashes for WT (black) and GCAPs -/-rods (red). Flash intensities for WT and GCAPs -/-rods are not the same but were chosen to obtain similar peak amplitudes in order to facilitate the comparison of the kinetics. Parameters are from Table 2. 

  ̃ * -𝛽 ̃𝑑𝑦, where we have introduced the effective dark turnover rate 𝛽 ̃𝑑 = 𝛽 𝑑 (1 -𝑛 𝑐ℎ 𝛼 ̂′) .

For

  maximum-amplitude (saturating) responses with 𝑦 ≫ 1 and 𝑃 ̃ * ≫ 1, we have 𝐻(With maximal cyclase activation, 𝛼 𝑚𝑎𝑥 = 𝛼 ̂𝑚𝑎𝑥 𝛽 𝑑 𝑐 𝑐𝑔,𝑑 , we find from Eq. 1 that during saturation 𝑦(𝑡) ≈ 𝑛 𝑐ℎ ln ( 𝑃 ̃ * (𝑡) 𝛼 ̂𝑚𝑎𝑥 𝛽 𝑑 𝑛 𝑐ℎ).

  independent of the flash intensity. With the analytic result 𝑔 ̂𝑦(𝑡) = 𝑔 𝑦 (𝑡) 𝑔 𝑦,𝑝𝑒𝑎𝑘 , we have 𝑦(𝑡) = 𝑦 𝑝𝑒𝑎𝑘 𝑔 ̂(𝑡), where 𝑦 𝑝𝑒𝑎𝑘 = 𝑅 0 * 𝜉𝑔 𝑦,𝑝𝑒𝑎𝑘 is the amplitude of the response. Because the waveform is independent of the flash intensity, we can average over multiple waveforms to reduce experimental noise. In Fig. 2 we use the normalized rod and cone data from Fig. 1 (thin continuous lines) to compute the averaged waveform (thick continuous lines), which we compare with the analytic results 𝑔 ̂𝑦(𝑡) computed

  amplification constant 𝐴 ̂ is obtained by fitting the waveform 𝑦 ̂(𝑡) with this fitting function. With 𝑦(𝑡) = 𝑦 𝑝𝑒𝑎𝑘 𝑦 ̂(𝑡) 𝐴 ̂, which relates the value of A to that of 𝐴 ̂. With the dim-flash expression 𝑦 𝑝𝑒𝑎𝑘 = 𝑅 0 * 𝜉𝑔 𝑦,𝑝𝑒𝑎𝑘 we further get 𝐴 = 𝜉𝑔 𝑦,𝑝𝑒𝑎𝑘 𝐴 ̂= 𝑛 𝑐ℎ 𝑘 𝑎𝑐𝑡 𝛽 𝑠𝑢𝑏 𝐴 ̂𝑔𝑦,𝑝𝑒𝑎𝑘 𝜇 𝑟ℎ 𝜇 𝑝𝑑𝑒 . With the fitted values for 𝐴 ̂ from Fig 3, with 𝜉 from Table

  𝐴 ̂; or, alternatively, from the frequently used procedure of fitting individual dim-flash responses y(𝑡) (as in[START_REF] Pugh | Amplification and kinetics of the activation steps in phototransduction[END_REF]. All of these methods are equivalent and necessarily give similar results for A (not shown) because, for dim flashes, 𝑦(𝑡) = 𝑦 𝑝𝑒𝑎𝑘 𝑦 ̂(𝑡) and 𝑦 𝑝𝑒𝑎𝑘 = 𝑅 0 * 𝜉𝑔 𝑦,𝑝𝑒𝑎𝑘 .It is however advantageous to use 𝐴 ̂ for the computation of A, because the recording noise can be reduced by averaging over multiple waveforms of individual responses.

  𝑟 = 1. In Figs.6C and 6D, we show 𝑟 from Eq. 14 for the two strongest flashes from Figs. 6A and 6B. At the beginning, 𝑟 quickly decreases due an increase in cGMP hydrolysis rate driven by PDE activation. This decrease in r produces rapid cGMP depletion, which in turn decreases the hydrolysis rate so that 𝑟 starts to increase again even for GCAPs -/-photoreceptors in the absence of cyclase feedback. At the time-to-peak of the response, the synthesis and hydrolysis of cGMP are the same, and 𝑟 = 1. The value of 𝑟 stays close to one during the saturation phase (Figs.6C and 6D), which can be inferred from Eq. 14 because

  constant 𝐴 ̂ can be obtained by fitting the rising phase of the waveform 𝑦 ̂(𝑡) with the quadratic fitting function ). With our analytic result 𝑦 𝑝𝑒𝑎𝑘 = 𝑅 0 * 𝜉𝑔 𝑦,𝑝𝑒𝑎𝑘 , we obtain 𝐴 = 𝜉𝑔 𝑦,𝑝𝑒𝑎𝑘 𝐴 ̂= 𝑛 𝑐ℎ 𝑘 𝑎𝑐𝑡 𝛽 𝑠𝑢𝑏 𝐴 ̂𝑔𝑦,𝑝𝑒𝑎𝑘 𝜇 𝑟ℎ 𝜇 𝑝𝑑𝑒 , where 𝐴 ̂𝑔𝑦,𝑝𝑒𝑎𝑘 𝜇 𝑟ℎ 𝜇 𝑝𝑑𝑒 depends only on the deactivation parameters. Our analysis thus reveals that the amplification constant A of Pugh and Lamb depends on both activation and deactivation parameters, and the impact of the deactivation parameters is quantified by 𝐴 ̂𝑔𝑦,𝑝𝑒𝑎𝑘 𝜇 𝑟ℎ 𝜇 𝑝𝑑𝑒 . For example, for a WT mouse rod with the fitted value 𝐴 ̂= 97s -2 (Fig 3B), 𝑔 𝑦,𝑝𝑒𝑎𝑘 = 0.16 (from a numerical solution of Eq. 11), 𝜇 𝑟ℎ = 28𝑠 -1 and 𝜇 𝑝𝑑𝑒 = 5𝑠 -1 (from

  empirical because it is not derived from an analysis of the underlying model equations. Although our formula 𝐴 = 𝑦 𝑝𝑒𝑎𝑘 𝑅 0 * 𝐴 ̂ shows that the amplification constant defined by Pugh and Lamb depends on activation and deactivation parameters, we do not have an analytic expression for 𝐴 ̂. It is therefore unclear how to extract deactivation rates from the fitted value of 𝐴 ̂.
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 1 Figure 1. Log-transform of dim-flash responses. Experimental current recordings from mouse
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 2 Figure 2. Waveform of dim-flash responses. The rod and cone waveforms 𝑦 ̂(t) = 𝑦(𝑡) 𝑦 𝑝𝑒𝑎𝑘 from

Figure 3 .

 3 Figure 3. Rising phase of the waveform of a WT rod. (A) The curves show the first four terms of

  The red curve shows the data for the averaged WT rod waveform from Fig.2A. The green curves show quadratic fits to data and 𝑔 ̂𝑦(𝑡) fitted values for the waveform amplification constant are 𝐴 ̂≈ 97𝑠 -2 (data) and 𝐴 ̂≈ 135𝑠 -2 (𝑔 ̂𝑦). The blue continuous curve displays 𝑔 ̂𝑦(𝑡) when the parameter 𝜇 𝑡𝑟 is assumed to be very large. The leading order term of the Taylor expansion of 𝑔 ̂𝑦(𝑡) for large 𝜇 𝑡𝑟 is

Figure 4 .

 4 Figure 4. Recovery phase of the waveform. (A-B) The recovery phase of the averaged waveform

Figure 5 .

 5 Figure 5. Estimation of the gain 𝜉 from the peak amplitudes of dim-flash responses. (A) The

Figure 6 .

 6 Figure 6. Simulations of saturating flash responses for rods and cones. The number of isomerizations 𝑅 0 * = 𝜅𝜙𝛥𝑡 that were used for the simulations are: (A) WT rod

  FIGURES

  . The cGMP synthesis rate as a function of the Ca 2+ concentration is 𝛼(𝑐 𝑐𝑎 ) =

	𝛼 𝑚𝑎𝑥 𝑐 𝑐𝑎 2 +𝐾 𝛼 2 = 𝛼 𝑑	𝑐 𝑐𝑎,𝑑 2 +𝐾 𝛼 2 𝑐 𝑐𝑎 2 +𝐾 𝛼

2 , where 𝑐 𝑐𝑎,𝑑 is the calcium concentration in darkness, 𝐾 𝛼 determines the sensitivity of the rate to Ca 2+

  𝑘 𝑡𝑟 is the rate by which 𝑇 * generates 𝑃 * , and 𝜇 𝑡𝑟 is the deactivation rate of 𝑇 * (the rate of decrease of T * concentration). Because the generation of a P* is accomplished by binding of T*, we have 𝑘 𝑡𝑟 = 𝜇 𝑡𝑟 , such that a single 𝑇 * generates a single light-activated PDE. The intermediate step by which 𝑇 * activates PDE is often assumed to be fast and therefore omitted

𝑃 * the number of light-activated PDEs. The parameter 𝑘 𝑎𝑐𝑡 is the rate of activation of transducin by a single activated visual pigment, 𝜇 𝑟ℎ is the deactivation rate of a light-activated visual pigment molecule, and 𝜇 𝑝𝑑𝑒 is the deactivation rate of a light-activated PDE. The activation rate

  Table 2 has been estimated in Reingruber et al. (2020) by fitting the model to the data. It

	𝑐̂𝑐 𝑔 =	𝑐 𝑐𝑔 𝑐 𝑐𝑔,𝑑	, 𝑐̂𝑐 𝑎 =	𝑐 𝑐𝑎 𝑐 𝑐𝑎,𝑑	, 𝐾 ̂𝛼 =	𝐾 𝛼 𝑐 𝑐𝑎,𝑑	, 𝛼 ̂= 𝛼 𝛼 𝑑	=	1+ 𝐾 ̂𝛼 2 𝑐̂𝑐 𝑎 2 + 𝐾 ̂𝛼 2 , and 𝐼 ̂= 𝐼 𝐼 𝑑	= 𝑐̂𝑐 𝑔	𝑛 𝑐ℎ , the transduction
	equations are								
						𝑑 𝑑𝑡	𝑅			

therefore has to be considered as an effective value, which does not necessarily reflect the biological time scale by which T* activates PDE. With dimensionless quantities that are normalized with steady-state values in darkness, * = 𝜙(𝑡) -𝜇 𝑟ℎ 𝑅 * 𝑑 𝑑𝑡 𝑇 * = 𝑘 𝑎𝑐𝑡 𝑅 * -𝜇 𝑡𝑟 𝑇 * 𝑑 𝑑𝑡 𝑃 * = 𝑘 𝑡𝑟 𝑇 * -𝜇 𝑝𝑑𝑒 𝑃 * 𝑑 𝑑𝑡 𝑐̂𝑐 𝑔 = 𝛽 𝑑 𝛼 ̂(𝑐̂𝑐 𝑎 ) -(𝛽 𝑑 + 𝛽 𝑠𝑢𝑏 𝑃 * )𝑐̂𝑐 𝑔

  the new variables 𝑃 ̃ * = 𝑛 𝑐ℎ 𝛽 𝑠𝑢𝑏 𝑃 * , 𝑇 ̃ * =

		𝜉 =	𝑛 𝑐ℎ 𝑘 𝑎𝑐𝑡 𝛽 𝑠𝑢𝑏 𝑘 𝑡𝑟 𝜇 𝑟ℎ 𝜇 𝑝𝑑𝑒 𝜇 𝑡𝑟	=	𝑛 𝑐ℎ 𝑘 𝑎𝑐𝑡 𝛽 𝑠𝑢𝑏 𝜇 𝑟ℎ 𝜇 𝑝𝑑𝑒	,	(2)
	and					
	𝐻(𝑦) = 𝑛 𝑐ℎ (𝑒	𝑦 𝑛 𝑐ℎ 𝛼 ̂(𝑒 -𝑦 ) -1) = 𝑛 𝑐ℎ (𝑒	𝑦 𝑛 𝑐ℎ	1 + 𝐾 ̂𝛼 2 𝑒 -2𝑦 + 𝐾 ̂𝛼 2 -1) .
							𝑛 𝑐ℎ 𝛽 𝑠𝑢𝑏 𝑘 𝑡𝑟 𝜇 𝑝𝑑𝑒	𝑇 * , 𝑅 ̃ * =	𝑛 𝑐ℎ 𝛽 𝑠𝑢𝑏 𝑘 𝑡𝑟 𝑘 𝑎𝑐𝑡 𝜇 𝑝𝑑𝑒 𝜇 𝑡𝑟	𝑅 * , 𝑦 =
	-𝑛 𝑐ℎ ln𝑐̂𝑐 𝑔 = -ln𝐼 ̂ and 𝑐̂𝑐 𝑎 = 𝑒 -𝑦 , the previous system of equations becomes
	𝑑 𝑑𝑡	𝑅 ̃ * = 𝜇 𝑟ℎ (𝜙(𝑡) 𝜉 -𝑅 ̃ * )
		𝑑 𝑑𝑡	𝑇 ̃ * = 𝜇 𝑡𝑟 (𝑅 ̃ * -𝑇 ̃ * )
							(1)
	𝑑 𝑑𝑡	𝑃 ̃ * = 𝜇 𝑝𝑑𝑒 (𝑇 ̃ * -𝑃 ̃ * )
		𝑑 𝑑𝑡	𝑦 = 𝑃 ̃ * -𝛽 𝑑 𝐻(𝑦) ,
	where the gain 𝜉 is defined as					

  Note that 𝛽 ̃𝑑𝑔 𝑦 (𝑡) is symmetric in 𝜇 𝑟ℎ , 𝜇 𝑝𝑑𝑒 , 𝜇 𝑡𝑟 and 𝛽 ̃𝑑. For a short flash we have 𝑦(𝑡) ≈ 𝑅 0 * 𝜉𝑔 𝑦 (𝑡). The time course of the normalized cGMP concentration is 𝑐̂𝑐 𝑔 (𝑡) = 𝑒

	with Green's function	
	𝑔 𝑦 (𝑡) = 𝜇 𝑟ℎ 𝜇 𝑝𝑑𝑒 𝜇 𝑡𝑟 (-	𝑒 -𝜇 𝑟ℎ 𝑡 (𝜇 𝑟ℎ -𝜇 𝑡𝑟 )(𝜇 𝑟ℎ -𝜇 𝑝𝑑𝑒 )(𝜇 𝑟ℎ -𝛽 ̃𝑑 )	-	𝑒 -𝜇 𝑡𝑟 𝑡 (𝜇 𝑡𝑟 -𝜇 𝑟ℎ )(𝜇 𝑡𝑟 -𝜇 𝑝𝑑𝑒 )(𝜇 𝑡𝑟 -𝛽 ̃𝑑)
				-	𝑒 -𝜇 𝑝𝑑𝑒 𝑡 (𝜇 𝑝𝑑𝑒 -𝜇 𝑟ℎ )(𝜇 𝑝𝑑𝑒 -𝜇 𝑡𝑟 )(𝜇 𝑝𝑑𝑒 -𝛽 ̃𝑑 )	-	𝑒 -𝛽 ̃𝑑𝑡 (𝛽 ̃𝑑 -𝜇 𝑟ℎ )(𝛽 ̃𝑑 -𝜇 𝑡𝑟 )(𝛽 ̃𝑑 -𝜇 𝑝𝑑𝑒 )	).	(9)
							-	𝑦(𝑡) 𝑛 𝑐ℎ =
	𝑒	-	𝑅 0 * 𝜉 𝑛 𝑐ℎ	𝑔 𝑦 (𝑡)		

  𝑛 𝑐ℎ 𝑘 𝑎𝑐𝑡 𝛽 𝑠𝑢𝑏 𝑡 2 . Hence, in the limit 𝜇 𝑡𝑟 → ∞ with vanishing deactivation rates, the rise of the response is described by a quadratic function with amplification constant 𝐴 = 𝑛 𝑐ℎ 𝑘 𝑎𝑐𝑡 𝛽 𝑠𝑢𝑏 , just as Pugh and Lamb obtained. This result for A is a special case of our general formula 𝐴 = 𝑛 𝑐ℎ 𝑘 𝑎𝑐𝑡 𝛽 𝑠𝑢𝑏

	1 2 . The corresponding expression for the log-normal response is y(𝑡) = 𝜇 𝑟ℎ 𝜇 𝑝𝑑𝑒 g 𝑦,𝑝𝑒𝑎𝑘 𝑡 2 (blue dashed curve in Fig 𝜇 𝑟ℎ 𝜇 𝑝𝑑𝑒 for 𝐴 ̂𝑔𝑦,𝑝𝑒𝑎𝑘 𝜇 𝑟ℎ 𝜇 𝑝𝑑𝑒 = 1, which results from the first 𝐴 ̂𝑔𝑦,𝑝𝑒𝑎𝑘 ̂= 𝜇 𝑟ℎ 𝜇 𝑝𝑑𝑒 3B) such that 𝐴 g 𝑦,𝑝𝑒𝑎𝑘 𝑅 0 * 𝜉𝑔 𝑦,𝑝𝑒𝑎𝑘 𝑔 ̂𝑦(𝑡) = 1 2 𝑅 0 order expression 𝐴 ̂= 𝜇 𝑟ℎ 𝜇 𝑝𝑑𝑒 g 𝑦,𝑝𝑒𝑎𝑘

* 

  Table 2 obtained by collective fitting of all of the responses. The gain is closely connected to the flash sensitivity. If we define the flash sensitivity 𝑆 𝑓 of a dark-adapted photoreceptor as the derivative of normalized peakresponse amplitude with respect to the number of photoisomerizations 𝑅 0 * , then for dim flashes with 𝑖̂𝑝 𝑒𝑎𝑘 ≈ 𝑦 𝑝𝑒𝑎𝑘 we have 𝑆 𝑓 ≈ 𝜉𝑔 𝑦,𝑝𝑒𝑎𝑘 . With the approximation 𝑔 𝑦,𝑝𝑒𝑎𝑘,𝑟𝑜𝑑 ≈ 𝑔 𝑦,𝑝𝑒𝑎𝑘,𝑐𝑜𝑛𝑒 , the sensitivity ratio between rods and cones is given simply the ratio of the gain,

	𝑆 𝑓,𝑟𝑜𝑑 𝑆 𝑓,𝑐𝑜𝑛𝑒	≈	𝜉 𝑟𝑜𝑑 𝜉 𝑐𝑜𝑛𝑒

  ). With Eq. 15 we find that 𝑡 𝐷 satisfies --𝜇 𝑝𝑑𝑒 𝑡 𝐷 ≈ 0. Since the first two terms in this expression are constants, one can extract 𝜇 𝑝𝑑𝑒 by fitting the slope of 𝑡 𝐷 as a function of ln𝑅 0

	𝑦 𝐷 𝑛 𝑐ℎ	+ ln (	𝜉𝜂 𝛼 ̂𝑚𝑎𝑥 𝛽 𝑑 𝑛 𝑐ℎ	) + ln𝑅 0

* * , which is called a Pepperberg plot after the late David Pepperberg

Table 2

 2 𝐴 ̂=2047s -2 (by fitting the data in Fig.2B, not shown) and 𝑔 𝑦,𝑝𝑒𝑎𝑘 = 0.26, we find Hence, by assuming that 𝑛 𝑐ℎ  2.5, we conclude that the incorrect formula 𝐴 = 𝑛 𝑐ℎ 𝑘 𝑎𝑐𝑡 𝛽 𝑠𝑢𝑏 would underestimate 𝑘 𝑎𝑐𝑡 𝛽 𝑠𝑢𝑏 in a mouse rod by a factor of around 9, and in a mouse cone by a factor of around 5. A similar underestimation by factors of around 4 and 1.6 have been inferred

	), we estimate	𝐴 ̂𝑔𝑦,𝑝𝑒𝑎𝑘 𝜇 𝑟ℎ 𝜇 𝑝𝑑𝑒	 0.11. For the Gnat1 -/-cone with

Table 2

 2 together with the assumption 𝛽 𝑠𝑢𝑏 ~0.02𝑠 -1 , we find 𝑘 𝑎𝑐𝑡 = 𝜉

	𝜇 𝑟ℎ 𝜇 𝑝𝑑𝑒 𝑛 𝑐ℎ 𝛽 𝑠𝑢𝑏	≈ 1260𝑠 -1 .

Table 1 . Parameter definitions and descriptions.

 1 

	Parameter		Description
	 (m 2 )	Collecting area
	nch	CNG channel cooperativity
	βd (s -1 )	Rate constant of cGMP hydrolysis in darkness
	rh (s -1 )	Rate of deactivation of an activated visual pigment
	pde (s -1 )	Rate of deactivation of a light-activated PDE
	tr (s -1 )	Rate of deactivation of activated transducin
	𝐾 ̂𝛼	Sensitivity of the cyclase activity on the Ca 2+ concentration
		scaled by the dark Ca 2+ concentration
		Gain 𝜉 =	𝑛 𝑐ℎ 𝛽 𝑠𝑢𝑏 𝑘 𝑎𝑐𝑡 𝜇 𝑝𝑑𝑒 𝜇 𝑟ℎ
	kact (s -1 )	Rate of transducin activation by an activated visual pigment
	βsub (s -1 )	Rate constant of cGMP hydrolysis by a light-activated PDE

Table 2 . Parameter values for the rod and cone models.

 2 

	Parameter	Rod	Cone
	 (m 2 )	0.28 (WT)	0.013
		0.42 (GCAPs -/-)	
	nch	2.5	2.5
		0.45	0.0018
	βd (s -1 )	4.1	11.0
	pde (s -1 )	5	37.8
	rh (s -1 )	28	70.7
	tr (s -1 )	23.8	70.7
	𝐾 ̂𝛼	0.87	0.84
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in a GCAPs -/-rod where Ca 2+ feedback is absent, which suggests that the main reason for the discrepancy between data and simulations is not related to our assumptions about Ca 2+ feedback.

A possible reason for this difference could be due to the neglect of multiple phosphorylation steps, which are likely to have a larger impact on rods than cones. Multiple phosphorylations are known to be important for the rod single-photon response [START_REF] Field | Mechanisms regulating variability of the single photon responses of mammalian rod photoreceptors[END_REF][START_REF] Hamer | Multiple steps of phosphorylation of activated rhodopsin can account for the reproducibility of vertebrate rod single-photon responses[END_REF]Reingruber & Holcman, 2008a) and are therefore likely also relevant for dim-flash responses. On the assumption that the intermediate step involving transducin activation proceeds very rapidly, corresponding to a high rate 𝜇 𝑡𝑟 , the discrepancy between data and model increases because a faster intermediate step accelerates the initial rise of the simulated response (see Fig. 3B). The inclusion of multiple phosphorylation steps would have the opposite effect and would slow down the initial rise of the response, which would lead to a better agreement between data and model.

With our parsimonious model, we are the first to provide a comprehensive mathematical analysis for the whole of the dim-flash response. Our analysis dissects the response dynamics to identify how parameters or parameter combinations govern various phases of the response. This analysis provides a more precise conceptual understanding of how transduction processes determine the dynamics of the photocurrent. We hope that this new insight will lead to the design of new experiments to test these findings in more detail. We hope that this work will serve as a template to derive more refined analytic expressions with more complex models and will help to revitalize the analytic analysis of phototransduction models that was pioneered by Lamb and Pugh [START_REF] Lamb | A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors[END_REF][START_REF] Pugh | Amplification and kinetics of the activation steps in phototransduction[END_REF]. In addition, our approach may also be useful in understanding other G-protein signaling cascades, for example in olfaction (see for example [START_REF] Reisert | Ca 2+ -activated Clcurrent ensures robust and reliable signal amplification in vertebrate olfactory receptor neurons[END_REF].