
HAL Id: hal-03411870
https://hal.science/hal-03411870

Submitted on 2 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Caching Heterogeneous Size Content in Small Cell
Networks with CoMP Joint Transmissions

Guilherme Iecker Ricardo, Giovanni Neglia, Thrasyvoulos Spyropoulos

To cite this version:
Guilherme Iecker Ricardo, Giovanni Neglia, Thrasyvoulos Spyropoulos. Caching Heterogeneous Size
Content in Small Cell Networks with CoMP Joint Transmissions. GLOBECOM 2021 - IEEE Global
Communications Conference, Dec 2021, Madrid, Spain. �hal-03411870�

https://hal.science/hal-03411870
https://hal.archives-ouvertes.fr

Caching Heterogeneous Size Content in Small Cell
Networks with CoMP Joint Transmissions

Guilherme Iecker Ricardo1,2, Giovanni Neglia2, and Thrasyvoulos Spyropoulos1

1EURECOM, France, guilherme.ricardo@eurecom.fr, thrasyvoulos.spyropoulos@eurecom.fr
2Inria, Université Côte d’Azur, France, giovanni.neglia@inria.fr

Abstract—In 5G and beyond network architectures, operators
and content providers base their content distribution strategies
on small cell networks. On top of such networks, edge caching
and Coordinated Multi-Point (CoMP) Joint Transmissions are
used to improve performance. Online solutions for average
delay minimization problem have been studied in the related
literature, although only under the strong assumption that files
have equal sizes. In this paper we aim to fill this gap and propose
an online caching policy, qLRU-HS, that takes into account
heterogeneous sizes and asymptotically converges to the optimal
cache allocation under the Independent Reference Model. Our
experiments confirm such convergence in practice and reveal that
qLRU-HS outperforms other state-of-the-art solutions.

Index Terms—Edge caching, CoMP, joint transmission, hetero-
geneous cellular networks, optimization, distributed algorithms.

I. INTRODUCTION

Cellular data consumption has experienced an unprece-
dented increase. According to recent CISCO’s forecast [1],
by 2023 there will be 13 billion mobile connections, showing
an increase of nearly 50% over 2018. Network densification
is considered a key strategy to cope with traffic increase [2].
Specifically, 3G/4G macro-cell architecture will be incre-
mented with a large number of overlapping small cells (e.g.,
femto, pico), in order to improve both coverage and capacity.
In a dense cellular network, each user is in general in the
transmission range of many BSs and has access to the content
of their caches. Cellular networks with this architecture are
often call small cell networks.

On top of such a densified network, two additional tech-
niques have been proposed to provide higher Quality of
Experience (QoE). Assuming that every small base station
(BS) has limited data storage capacity, the first technique is
caching relevant content, e.g., the most popular content (with
a higher probability of being requested). It allows users to
directly access their desired content from the nearby BSs. As
a consequence, the access latency as well as the backhaul
congestion and servers’ load can be drastically reduced. The
second technique is Coordinated Multi-Point (CoMP) joint
transmissions [3]. The idea is that two or more BSs jointly
transmit the requested file to the user. By doing so, users

This work has been supported by the French government, through the EUR
DS4H Investments in the Future project managed by the National Research
Agency (ANR) with the reference number ANR-17-EURE-0004 as well as the
“5C-for-5G” JCJC project with the reference number ANR-17-CE25-0001.

experience higher rates and, consequently, smaller delays
to obtain the content. The problem is to define a caching
management strategy that is able to optimize the QoE taking
CoMP joint transmissions into consideration.

Some related work considers offline solutions, where there
is a centralized entity aware of the files popularities (assumed
to be constant over time) and of the whole network topol-
ogy [4]–[6]. With this information, it is possible to decide
which files should be cached at each BS to optimize a given
performance metric, e.g., the probability of finding requested
files in the cache, bandwidth usage, etc. However, having all
this information available is a very strong assumption and
is hardly satisfied in real systems. Moreover, if files have
different sizes, the problem complexity increases. Although
some works propose interesting solutions to take into account
heterogeneous sizes, e.g., through dynamic programming [7],
bound-and-bound enumerate search [8], or greedy-based poli-
cies [9], the solution is often costly and most of the related
literature lacks theoretical bounds and guarantees.

Alternatively, in the online caching framework, every BS
employs a local caching policy that dynamically updates the
local set of files reacting to the request process. Since the BSs
take decisions on-the-fly, online policies are more reactive to
files’ popularity short-term variability [10] and, in comparison
to offline solutions, each BS needs to know and exchange
much less information. For these reasons, online caching
policies are more appropriate to be deployed in real systems.
Some related work proposes online caching policies for small
cell networks, e.g., to maximize the hit ratio [11]–[13], or
minimize the average delay [14], etc. However, these studies
are all based on the strong assumption that files have equal
size. To the best of our knowledge, online caching policies
for different file sizes have been considered only in the single
cache setup [15]–[17].

In this paper, we propose an online caching policy that is
able to minimize the average delay in a small cell network
considering heterogeneous file sizes. In our proposed policy,
BSs estimate the marginal gain per byte for keeping a copy
of a cached content, calculated as the delay reduction due to
the copy divided by the file size. The marginal gain per byte
is used to drive the (probabilistic) caching decisions towards
the optimal performance.

The main contributions of this paper are summarized as
follows:

• In Section II, we present a model that captures file
retrieval delay under CoMP joint transmissions oppor-
tunities and heterogeneous files sizes.

• We define the offline optimization problem that we use as
a baseline for our proposed solution in Section III. To this
purpose we consider a greedy algorithm that computes a
possibly infeasible caching allocation but with desirable
approximation guarantees.

• We introduce our caching policy qLRU-HS in Sec-
tion IV. qLRU-HS is designed for delay minimization
with heterogeneous file sizes and is asymptotically opti-
mal as its parameter q converges to 0.

• In Section V, we provide numerical results based on
simulations that show our policy’s convergence to the
optimum when q vanishes. Then, we evaluate its perfor-
mance against other policies from the related literature.

II. SYSTEM MODEL AND OPERATION

We consider a set [B] of base stations (BSs) arbitrarily
located in a given area A ⊆ R2, where [n] denotes the set
{1, . . . , n}, for n ∈ Z+. There is a set [U] of user equipments
(UEs) spread across area A. Because of the high density of
BSs, each UE u will, in general, be within communication
range of multiple BSs. We denote by Iu the set of UE u’s
neighboring BSs, i.e., all BSs that have UE u within their cov-
erage area and are able to receive requests and transmit content
back to u. In order to simplify our analysis, we consider that
the Signal-to-Noise Ratio (SNR) h(b)u of the wireless channel
between BS b and UE u is constant, i.e., h(b)u = h̄ ∈ R+, if u
and b are connected (b ∈ Iu), and h(b)u = 0, otherwise.

Each BS b is equipped with a cache that can store up
to C(b) bytes. We consider a catalog of files [F], where
file f ∈ [F] has size equal to sf bytes and is requested with
probability λf over the area A (λf quantifies then the popu-
larity of content f). In particular we assume that the request
process follows the Independent Reference Model (IRM): each
request is for file f with probability λf , independently from
the past. Let X(b)

f ∈ {0, 1} be a variable indicating whether
BS b caches file f (X(b)

f = 1) or not (X(b)
f = 0). Then, the

vector Xf =
(
X

(b)
f

)
b∈[B]

describes the allocation of f across

the caches, and the matrix X =
(
X

(b)
f

)
b∈[B],f∈[F]

describes

the allocation of the entire catalog. Given UE u and allocation
Xf , we denote by Ju(Xf) the set of neighboring BSs of u
that are caching f , that is Ju(Xf) =

{
b ∈ Iu : X

(b)
f = 1

}
is

actually caching f .
When a UE requires a file, BSs can use CoMP techniques

to jointly transmit the file. The wireless channel access de-
lay [18], [19] for UE u to download f from k BSs is:

dWC
u,f (k) ,

sf

w·log2

(
1 + h̄ ·min(k, |Iu|)

) , (1)

where w ∈ R+ is the channel bandwidth and the denominator
is the aggregate capacity. The min operator captures the fact

that u can download from at most |Iu| neighboring BSs. We
consider dWC

u,f (0) = +∞.
The backhaul-access delay for any BS to fetch file f from

the back-end servers through the backhaul network is:

dBH
f , r +

sf
cBH , (2)

where cBH is the backhaul network capacity and r is a constant
that represents any sort of latency for accessing the back-end
servers (e.g., the round-trip time in the backhaul network),
henceforth generically referred to as backhaul latency.

When UE u wants to retrieve file f , it broadcasts an inquiry
message, which is received by u’s neighboring BSs in Iu.
Then, BSs in Iu estimate the download delay in two cases:

(i) The set of BSs caching f , i.e., Ju(Xf), directly transmit
f to u with delay dWC

u,f (|Ju(Xf)|).
(ii) A random BS b′ ∈ Iu, not caching f , fetches f from the

backhaul. Then, BSs in set Ju(Xf) ∪ {b′} transmit f to
u with delay dBH

f + dWC
u,f (|Ju(Xf)|+1).

Once the delays are estimated, the BSs proceed to transmit f
to u according to the case resulting in the smallest delay.

Therefore, we define the total end-to-end delay experienced
by UE u to download file f under allocation Xf as:

du,f (|Ju(Xf)|) , min
(
dWC
u,f (|Ju(Xf)|),
dBH
f + dWC

u,f (|Ju(Xf)|+1)
)
.

(3)

Note that (3) also captures the delay when misses at all caches
occur (Ju(Xf) = ∅): one neighboring BS b′ will fetch the file
from the backhaul and transmit it to u.

III. OPTIMIZING STATIC CACHE ALLOCATIONS

In this section, we consider the static cache allocation
problem whose goal is to minimize the average end-to-end
delay, assuming that probabilities {λf ,∀f ∈ [F]} and UEs
positions are known. Assuming these quantities are relatively
stable over time, the operator could use historical data to
estimate them, find the optimal allocation and then prefetch
the contents to caches during low-traffic periods of the day, as
considered in related works [5], [20].

In particular, if we assume that all UEs are equally likely
to generate a request, the delay minimization problem can be
formulated as follows:

Problem 1 (Average Delay Minimization Problem).

minimize
X

d̄(X) ,
∑
f∈[F]

λf
1

U

∑
u∈[U]

du,f (|Ju(Xf)|) (4)

subject to
∑
f∈[F]

sf ·X(b)
f ≤ C(b), ∀b ∈ [B], (5)

X
(b)
f ∈ {0, 1},∀b ∈ [B],∀f ∈ [F]. (6)

The objective (4) is the average experienced delay for a re-
quest over all files and UEs and du,f (·) is given by (3). The set
of constraints (5) guarantees that any feasible solution meets
each BS’s cache capacity. Problem 1 is NP-Hard because it
is a generalization of the single-cache problem with capacity

(“knapsack”) constraints, which is NP-Hard [21]. For a general
network setting with multiple caches, the problem is NP-hard
even in the homogeneous size case [22].

A. Approximate Solution
The following greedy algorithm was introduced in [9, Al-

gorithm 1] to solve the general submodular multiple knapsack
problem (SMKP) with a (1 − 1/e) approximation guarantee.
Starting from empty caches (X(b)

f = 0,∀b, f), the algorithm
iteratively finds the placement (b∗, f∗) that maximizes the ratio
between the delay gain and the file size given the current
cache allocation X and adds a copy of f∗ to b∗, i.e., it
sets X

(b∗)
f∗ = 1. Whenever the placement (b∗, f∗) makes

b∗’s occupancy reach or exceed its caching capacity, b∗ is
considered “full” and disregarded in the upcoming iterations.
The algorithm stops when all BSs are “full.” From now on, we
will refer to it as Infeasible Greedy Algorithm (IGA), since
the resulting allocation is likely to violate constraints (5).

Symmetric instances of Problem 1, where BSs cover equiv-
alent groups of UEs, can be directly mapped to a general
instance of SMKP. Therefore, IGA can also be used as an
approximate solution in these cases. The objective function (4)
was studied in [22] as a set function and the authors proved
that it is monotone and submodular for the case where SNRs
are homogeneous.1 Although IGA’s solution is likely infea-
sible and the approximation guarantee is only valid for sym-
metric setups, it can still be used as a heuristic to approximate
the minimum achievable average delay in general instances of
Problem 1. We use this approximation as a baseline for the
techniques introduced in Section IV. We show in detail in our
technical report [23] how the general solution proposed in [9]
can be adapted to Problem 1.

IV. ONLINE CACHING POLICIES

In this section, we assume that there is no centralized
intelligence controlling the caching decisions. Instead, BSs
manage their cache content on-the-fly, as new requests arrive.
Consider that BSs’ caches are implemented as ordered queues.
Files in the cache are ordered from the most recently used one
(at the front) to the least recently used one (at the rear). The
cache can perform three operations: (i) insert a new file to the
front, (ii) evict files from the rear, and (iii) move-to-the-front
a file already present.

At every request (u, f) from UE u for file f , after u’s
neighboring BSs serve the file, the respective caches react to
that request by performing some of the operations described
above. In what follows, we define a variant of qLRU [12]
caching policy whose operation depends on the quantity:

∆du,f(k)

sf
=
du,f (k − 1)− du,f (k)

sf
, (7)

which is the delay reduction UE u experiences thanks to the
k-th copy of file f divided by file f ’s size (i.e., its delay gain
per byte occupied in the cache).

1Note that, as the guarantee holds for the maximization of a non-decreasing
submodular function, we need to transform the minimization in Problem 1 in
an equivalent maximization problem.

We call our policy qLRU-HS as it is inspired by qLRU and
takes explicitly into account files with heterogeneous sizes. We
describe qLRU-HS operation as follows:

Upon a request (u, f), given the current allocation Xf :
• All neighboring BSs caching f (∀b ∈ Ju(Xf)) indepen-

dently move f from its current position in the queue to
the front with probability:

pu,f (|Ju(Xf)|) , β · ∆du,f(|Ju(Xf)|)
sf

, (8)

where constant β ensures that pu,f(·) ∈ (0, 1], e.g.,

β = min
u′,f ′,k′>0

{
sf ′

∆du′,f ′(k′)

}
. (9)

• For the remaining BSs (∀b ∈ Iu\Ju(Xf)): (i) If there
is enough cache space, f is directly inserted at the front;
(ii) otherwise, with probability q, they evict from the rear
enough files to make room for f and insert it to the front.
We refer to the file at the rear of the queue as frear.

We formalize qLRU-HS caching policy in Algorithm 1
from the perspective of each BS b.

Algorithm 1: qLRU-HS Caching Policy (for BS b)

Input: w, cBH, r, sf , Xf , Iu, and h̄.
1 if X(b)

f = 1 then
2 with probability pu,f (|Ju(Xf)|) in (8) do
3 Move-to-the-front f
4 end
5 else
6 if C(b) −

∑
f ′∈[F] sf ′ ·X

(b)
f ′ ≥ sf then

7 Insert f to the front; X(b)
f ← 1

8 else
9 with probability q do

10 while C(b) −
∑

f ′∈[F] sf ′ ·X
(b)
f ′ < sf do

11 Evict file frear from the rear; X(b)
frear
← 0

12 end
13 Insert f to the front; X(b)

f ← 1

14 end
15 end
16 end

Remark 1. We note that probability pu,f (·) only depends on
(i) sets Ju(Xf) and Iu, (ii) the file size sf , and (iii) the
average SNR h̄. In cellular networks, UEs can measure the
SNR of neighboring BSs [24] and piggyback this information
in an uplink transmission from u to its neighboring BSs, with
negligible overhead.2

When each cache deploys qLRU-HS, the whole network’s
cache allocation probabilistically changes with time as new
requests arrive. Under the Characteristic Time Approximation

2The setting (9) would require each BS to be aware of the sizes of all
files in the catalog. To avoid this issue in practice, every BS can estimate β
on-the-fly, based on previous requests.

(CTA) [25], [26], and the Exponentialization Approximation
(EA) [11], we can represent such process, as a set of coupled
Continuous-Time Markov Chains (MCs). When q tends to 0,
these MCs admit stationary distributions, which, in turn,
correspond to the optimal solution of the continuous relaxation
of Problem 1. Therefore, although BSs run the qLRU-HS
policy individually, they implicitly coordinate to achieve the
optimal cache allocation. This result is formalized as follows:

Proposition 1. Under IRM, CTA, and EA, a network of
qLRU-HS caches asymptotically achieves an optimal caching
configuration, when q → 0, even if files have different sizes.

Proposition 1 is based on [27, Prop. IV.1], which states the
optimality of another policy for the case where all files have
the same size. Due to space limitations, we present the detailed
proof of Proposition 1 in our technical report [23]. Here, we
provide an intuitive explanation of why optimality holds.

Intuition: We observe that, as q converges to 0, the cache
exhibits two different dynamics: The insertion of new files
tends to happen more and more rarely (q converges to 0),
while the frequency of moves-to-the-front for files already in
the cache is unchanged (pu,f (·) does not depend on q). A file f
at cache b is moved to the front with a probability proportional
to the placement’s cost-benefit ∆du,f (|Ju(Xf)|)/sf , i.e., (i)
proportional to how much the file contributes to reducing the
delay of that specific request and (ii) inversely proportional
to how much cache space it takes. The expected number of
moves-to-the-front file f experiences depends on (i) how often
it is requested (λf) and (ii) how likely it is to be moved
to the front upon a request (pu,f (·)). By the law of large
numbers, the random number of moves-to-the-front will be
close to its expected value and the least valuable file in the
cache likely occupies the last position. We can then think that,
when a new file is inserted in the cache, it will replace files
that contribute the least to the decrease of the expected cost.
qLRU-HS progressively replaces the least useful files from
the cache, until it reaches a global minimum.

V. NUMERICAL RESULTS

In this section, we first study qLRU-HS convergence to
the optimal cache allocation when q tends to 0 and then we
evaluate its performance in different scenarios by comparing
it against other policies from related literature, including:
• qLRU-∆d [14], it aims to minimize the average delay

in a small-cell CoMP-aware setup, but considers that all
files have the same size.

• greedy-dual-size [16], it aims to maximize the hit ratio in
a single-cache setup, considering sizes are heterogeneous.
We consider that all BSs run an instance of greedy-dual-
size and react independently to each request in their cell.
We refer to such operation as GDSIZE-ALL in analogy
to MULTI-LRU-ALL in [13].

• IGA greedy algorithm [9], as discussed in Section III, its
average delay reduction is guaranteed to be (1−1/e) far
from the optimal. Thus, we use it as a baseline for the
other policies.

In our experiments, we consider the Berlin topology: a
cellular network consisting of B = 10 BSs located according
to the positions of T-mobile BSs in Berlin extracted from [28].
We call network density, ρ, the average number of BSs
covering a UE and we assume that UEs are homogeneously
distributed within the BSs’ coverage area. In this network, all
BSs have the same cache capacity, i.e., C(b) = C,∀b ∈ [B],
and can store up to C = 50 GB. Unless otherwise specified,
we consider that the backhaul network is able to transmit data
at cBH = 100 Mbps with backhaul latency r = 10 ms. The
wireless channel bandwidth is w = 5 MHz and all connected
pairs BS-UE have average SNR of h̄ = 10 dB. All these values
are consistent with related literature [6], [27].

In our simulations, we consider that, at every request, a
file is chosen from a catalog of F = 104 files with probability
determined by a Zipf law with exponent α = 0.8. As suggested
by [7], real file sizes may be represented by a truncated
exponential distribution. We randomly generate the file sizes
according to an exponential distribution within the interval
[smin, smin + ∆s]. Unless otherwise specified, we consider
smin = 1 GB and ∆s = 9GB. We split the simulation into
warm-up and measurement phases, each having 107 requests.
A. Convergence Analysis

According to Proposition 1, as q tends to 0, qLRU-HS
converges to an optimal allocation. In our first experiments,
our goal is to observe this convergence in practice. We
consider the Berlin topology with density of ρ = 5.9 BSs/UE.

In Fig. 1, we show the average delay (left) and the hit ratio
(right) versus the parameter q. As a reference, we include the
the result of IGA for the same setup, which is independent
of parameter q. We emphasize that, although IGA may be
unfeasible, its delay saving is not farther than (1− 1/e) from
the optimal. As we observe in Fig. 1 (left), qLRU-HS gets
closer to IGA as q decreases, suggesting its convergence to
the optimal allocation. In addition to qLRU-HS results, we
also plot the results for qLRU-∆d, that is also guaranteed
to converge to the minimum delay as q vanishes, but only
when files have all the same size [22]. However, qLRU-∆d
converges to a value of average delay larger than qLRU-
HS’s one. This is due to fact that qLRU-∆d, while trying to
minimize the delay, tends to store large files, that indeed incur
large transmission delay, ignoring that they also occupy a large
amount of space in the cache. In particular, given two files f1
and f2 with λf1 > λf2 and sf2 � sf1 , qLRU-∆d would
prefer f2, while our caching policy qLRU-HS correctly bias
its choices in favor of f1 that leads to a larger benefit for byte
occupied in the cache. From Fig. 1 (right), we see that, for
this particular scenario, better average delay is associated with
a better hit ratio, which is not always necessarily the case.

In Fig. 2, we show the average delay (left) and the hit ratio
(right) versus the number of requests in the simulation. For this
plot, we simulate qLRU-HS and qLRU-∆d for q = 10−3 and
q = 10−4, and we indicate the results of IGA as reference.
As we observe in Fig. 2 (left), the average delay achieved
by each policy decreases over time, and reaches its minimum
value after about 106 requests (105 requests per BS).

Fig. 1. Average delay d̄ (left) and hit ratio (right) versus q. C = 50.0 GB,
ρ = 5.9 BSs/UE, r = 10.0 ms, smin = 1.0 GB, and ∆s = 9.0 GB.

Fig. 2. Average delay d̄ (left) and hit ratio (right) versus number of requests.
Results of qLRU-HS and qLRU-∆d are shown for q = 10−3 and q = 10−4.

B. Performance Evaluation
Now, we compare the performance of qLRU-HS with other

caching solutions in different scenarios. From now on, we
consider q = 10−3 for qLRU-HS and qLRU-∆d.

In Fig. 3, we show the performance for different values of
caching capacity, ranging from C = 10 GB to C = 100 TB.
We present the average delay (left) and the hit ratio (right)
versus the cache capacity size C. qLRU-HS provides a more
efficient management of the cache, outperforming all other
policies and presenting results close to the IGA ones. The
difference of performance across policies is maximal for
smaller values of C, in particular. for C = 10 GB. qLRU-
HS achieves a delay about 20% smaller than GDSIZE-ALL.
As expected, when the capacity increases, all policies perform
better because they can store more files and also differences
reduce until all policies perform equally when the cache is so
large to be able to store the whole catalog.

Fig. 3. Average delay d̄ (left) and hit ratio (right) versus cache capacity C.
ρ = 5.9 BSs/UE, smin = 1 GB, q = 10−3, and ∆s = 9 GB.

Fig. 4. Average delay d̄ (left) and hit ratio (right) versus network density ρ.
C = 30GB, smin = 1 GB, ∆s = 9 GB, and q = 10−3.

In Fig. 4, we fix the cache capacity to C = 30 GB
and observe the policies’ performances for different levels
of density, from ρ = 1.4 BSs/UE to ρ = 9.1 BSs/UE. We
control the network density by simply increasing the BSs’
transmission range, although we keep constant the SNR to
h = 10 dB. In this scenario, qLRU-HS again outperforms all
other policies and has results close to the IGA ones.

We observe in Fig. 4 (left) that all policies experience a
delay reduction as ρ increases. The reason is that the aggregate
cache available to each UE gets larger with ρ, then more files
are found in the neighboring caches. Because of the larger
aggregate cache, also the difference between qLRU-HS and
qLRU-∆d becomes slightly smaller as ρ increases (similarly
to what observed in Fig. 3). On the contrary the performance
gap with GDSIZE-ALL increases: the fact that all BSs in Iu
react to a request from u leads to poor coordination.

Fig. 5 shows the average delay d̄P achieved by policy P
normalized by the average delay d̄IGA achieved by IGA.
Results are presented for different size variability (captured
by the parameter ∆s), on the left, and backhaul latency r, on
the right. For these experiments, we fix the network density to
ρ = 5.9 BSs/UE. We chose to show the results in a normalized
fashion due to the large excursion of d̄P values when both ∆s
and r change.

In Fig. 5 (left) we evaluate d̄P/d̄IGA for fixed smin = 1 GB
and change the ∆s from ∆s = 0 (homogeneous file sizes) to
∆s = 49 GB. We first observe that qLRU-HS and qLRU-
∆d both have results close to IGA in the homogeneous
size case. The more heterogeneous is the catalog, in terms
of size, the more noisy is the convergence process, as the
insertion of a single large file can lead to the eviction of many
other files and significantly change the quality of the current
allocation. This fact explains why the relative performance of
all dynamic policies worsens when size variability increases.
Despite the increasing trend shared by all policies, we observe
that qLRU-HS is always the closest to IGA. Interestingly,
although GDSIZE-ALL has the worst performance, it is less
sensitive to the variability of file sizes.

Finally, one interesting aspect in our model is how the
backhaul latency constant affects the policies operation and
results. In Fig. 5 (right), we show d̄P/d̄IGA when the backhaul
latency increases from r = 30 ms to r = 1 s. In this case, we
fixed smin = 1 MB and the size variability to ∆s = 9.0 MB.

Fig. 5. d̄P/d̄IGA by size variability ∆s (left) and backhaul latency r (right).
C = 30.0 GB, q = 10−3, and ρ = 5.9 BSs/UE.

In this experiment, we also observe dynamic policies perform
worse in comparison to IGA as the backhaul latency r
increases. When r becomes larger, the optimal caching strategy
changes from a scenario where it is convenient to store more
copies of the same files across the BSs’ caches (to create
CoMP opportunities) to a scenario where file diversity across
caches is preferred because it minimizes cache misses that
cause the largest delay. This means that, for large enough
values of backhaul latency, qLRU-∆d and qLRU-HS take an
equivalent strategy, to diversify files throughout the network
of caches. However, qLRU-∆d still erroneously prefer to
store large files. This leads to qLRU-∆d storing on average
less files, which decreases the hit probability and, in turn,
worsens qLRU-∆d’s performance. On the contrary, GDSIZE-
ALL correctly prefer the smallest files, but, as all caches react
at the same time, BSs tend to have similar cache content. This
replication of files throughout the BSs is suboptimal for high
latency, which explains GDSIZE-ALL’s worse performance.

VI. CONCLUSION

In this paper we proposed an online caching policy for
average delay minimization in a small cell architecture with
CoMP joint transmissions and heterogeneous file sizes. We
formulated the static optimization problem for which an in-
feasible greedy algorithm provides approximation guarantees
in the homogeneous SNR regime. Then, we introduced a
novel online caching policy able to converge to the optimal
caching allocation that minimizes the delay under IRM. In
our experiments, we observed qLRU-HS’s convergence and
evaluated its performance under different request processes
and SNR regimes. We conclude that qLRU-HS achieves
considerable performance gains with negligible additional de-
ployment complexity.

REFERENCES

[1] CISCO, “Cisco annual internet report (2018–2023),” CISCO, Tech. Rep.,
March 2020.

[2] N. Bhushan et al., “Network densification: the dominant theme for
wireless evolution into 5g,” IEEE Communications Magazine, vol. 52,
no. 2, pp. 82–89, Feb. 2014.

[3] D. Lee, H. Seo, B. Clerckx, E. Hardouin, D. Mazzarese, S. Nagata,
and K. Sayana, “Coordinated multipoint transmission and reception in
LTE-advanced: deployment scenarios and operational challenges,” IEEE
Communications Magazine, vol. 50, no. 2, pp. 148–155, Feb. 2012.

[4] N. Golrezaei, K. Shanmugam, A. G. Dimakis, A. F. Molisch, and
G. Caire, “Femtocaching: Wireless video content delivery through
distributed caching helpers,” in 2012 Proceedings IEEE INFOCOM,
March 2012, pp. 1107–1115.

[5] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, “Femtocaching: Wireless content delivery through distributed
caching helpers,” IEEE Transactions on Information Theory, vol. 59,
no. 12, pp. 8402–8413, Dec 2013.

[6] A. Tuholukova, G. Neglia, and T. Spyropoulos, “Optimal cache allo-
cation for Femto helpers with joint transmission capabilities,” in IEEE
ICC 2017, 21-25 May 2017, Paris, France, Paris, France, 05 2017.

[7] T. Mihretu Ayenew, D. Xenakis, N. Passas, and L. Merakos, “A novel
content placement strategy for heterogeneous cellular networks with
small cells,” IEEE Networking Letters, vol. 2, no. 1, pp. 10–13, 2020.

[8] T. M. Ayenew, D. Xenakis, N. Passas, and L. Merakos, “Cooperative
content caching in mec-enabled heterogeneous cellular networks,” IEEE
Access, vol. 9, pp. 98 883–98 903, 2021.

[9] X. Sun, J. Zhang, and Z. Zhang, “Deterministic algorithms for the
submodular multiple knapsack problem,” 2020, arXiv:2003.11450.

[10] S. Traverso et al., “Temporal Locality in Today’s Content Caching: Why
It Matters and How to Model It,” SIGCOMM Comput. Commun. Rev.,
vol. 43, no. 5, pp. 5–12, Nov. 2013.

[11] E. Leonardi and G. Neglia, “Implicit coordination of caches in small cell
networks under unknown popularity profiles,” IEEE Journal on Selected
Areas in Communications, vol. 36, no. 6, pp. 1276–1285, June 2018.

[12] M. Garetto, E. Leonardi, and V. Martina, “A unified approach to the
performance analysis of caching systems,” ACM Trans. Model. Perform.
Eval. Comput. Syst., vol. 1, no. 3, pp. 12:1–12:28, May 2016.

[13] A. Giovanidis and A. Avranas, “Spatial multi-lru caching for wireless
networks with coverage overlaps,” SIGMETRICS Perform. Eval. Rev.,
vol. 44, no. 1, pp. 403–405, Jun. 2016.

[14] G. Ricardo, G. Neglia, and T. Spyropoulos, “Caching policies for delay
minimization in small cell networks with joint transmissions,” in IEEE
ICC 2020, Dublin, Ireland, 06 2020.

[15] G. Neglia, D. Carra, M. Feng, V. Janardhan, P. Michiardi, and
D. Tsigkari, “Access-time-aware cache algorithms,” ACM Trans. Model.
Perform. Eval. Comput. Syst., vol. 2, no. 4, pp. 21:1–21:29, Nov. 2017.

[16] Shudong Jin and A. Bestavros, “Popularity-aware greedy dual-size web
proxy caching algorithms,” in Proceedings 20th IEEE International
Conference on Distributed Computing Systems, 2000, pp. 254–261.

[17] D. S. Berger, R. K. Sitaraman, and M. Harchol-Balter, “Adaptsize:
Orchestrating the hot object memory cache in a content delivery net-
work,” in 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI) 17), 2017, pp. 483–498.

[18] D. Tse and P. Viswanath, Fundamentals of wireless communication.
Cambridge university press, 2005.

[19] W. C. Ao and K. Psounis, “Distributed caching and small cell coopera-
tion for fast content delivery,” in MobiHoc. ACM, 2015, pp. 127–136.

[20] K. Poularakis, G. Iosifidis, and L. Tassiulas, “Approximation algorithms
for mobile data caching in small cell networks,” IEEE Transactions on
Communications, vol. 62, no. 10, pp. 3665–3677, Oct 2014.

[21] M. Chrobak, G. J. Woeginger, K. Makino, and H. Xu, “Caching is
hard—even in the fault model,” Algorithmica, vol. 63, no. 4, pp. 781–
794, 2012.

[22] G. I. Ricardo, A. Tuholukova, G. Neglia, and T. Spyropoulos, “Caching
policies for delay minimization in small cell networks with coordinated
multi-point joint transmissions,” IEEE/ACM Transactions on Network-
ing, to appear.

[23] G. I. Ricardo, G. Neglia, and T. Spyropoulos, “Caching
heterogeneous size content in small cell networks with comp
joint transmissions,” Tech. Rep., 2021. [Online]. Available:
https://guilhermeir.github.io/papers/qlruhs.pdf

[24] S. Sesia, I. Toufik, and M. Baker, LTE - The UMTS Long Term Evolution:
From Theory to Practice. Wiley, 2011.

[25] H. Che, Y. Tung, and Z. Wang, “Hierarchical Web caching systems:
modeling, design and experimental results,” Selected Areas in Commu-
nications, IEEE Journal on, vol. 20, no. 7, pp. 1305–1314, Sep 2002.

[26] R. Fagin, “Asymptotic miss ratios over independent references,” Journal
of Computer and System Sciences, vol. 14, no. 2, pp. 222 – 250, 1977.

[27] G. Neglia, E. Leonardi, G. I. Ricardo, and T. Spyropoulos, “A swiss
army knife for online caching in small cell networks,” IEEE/ACM
Transactions on Networking, pp. 1–12, 2021.

[28] “Openmobilenetwork.” [Online]. Available: openmobilenetwork.org/

