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ABSTRACT

While the recent progress on automated generalisation helped National Mapping Agencies to derive
topographic maps more and more quickly, there are still practical cartographic issues that require
attention. For instance, embankments are represented with line symbols showing the slope of the
embankment. This paper proposes an automated algorithm, called ReBankment that displaces the
embankment lines from the roads and rivers that overlap the embankment symbol. ReBankment is
based on a triangulation to identify neighbourhoods, and on a least squares adjustment to displace
and distort the embankment line while preserving its shape. The paper also proposes how to handle
complex cases and scaling issues. ReBankment is tested on real data from a 1:25k scale topographic
map.
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1 Introduction

Topographic maps, particularly at the 1:25k scale, should provide a precise and salient representation of the terrain,
as they are used for trekking, surveying or by rescuing services. As a consequence, IGN France, the French National
Mapping Agency (NMA), uses shaded relief, contour lines, and height points to portray the terrain. Embankments are
a specific terrain form that can be too small to be conveyed through contour lines. But embankments are important
features because they can be complex to cross, so they are represented with a specific lines, with additional regular lines
on the side of the slope. As we can see on the right side of Figure 1, this symbol demands space on the map. And it is
particularly significant because these embankments are often located along roads or rivers, which are also portrayed
with wide symbols, as we can see on the left side of Figure 1 where the embankment lines are hidden behind these
road/river symbols. This is why we need to displace, and sometimes compress (or shrink) these lines away from roads
and rivers.

The current speed of updates at NMAs pushes for map production processes that are as automated as possible, because
up-to-date maps have to be published online more frequently.And even when only one scale is targeted, as in our use
case, it is important to generalise the map automatically if it is released too or three times a year. So our challenge
is to provide a fully automated displacement algorithm, which does not require further interactive corrections. Most
displacement algorithms are dedicated to rigid features such as buildings, which are not distorted while being displaced.
As a consequence, we need to design a new algorithm able to generate elastic displacements, where the embankment
line is sometimes compressed while moved away from the road, to preserve its initial shape. Another challenge is to
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Figure 1: Two extracts of IGN topographic maps, without embankment line displacement on the left, and with
semi-automated process on the right.

design a process that could be made quickly available in the new automated workflow to produce topographic maps at
IGN. This second challenge has constrained both the design and the implementation of the algorithm. Our proposition
is the ReBankment algorithm: a least squares based algorithm to achieve an elastic displacement of the lines. It follows
the principles of least squares based generalisation [1, 2], with constraints and pre-processes specifically designed for
embankment lines generalisation.

The paper is structured as follows. Section 2 discusses related work on displacement and least squares adjustment
in map generalisation. Then, the ReBankment algorithm is presented in Section 3, with the main principles, and the
specific processes for complex cases. Results are presented and evaluated in Section 4. Finally, Section 5 draws some
conclusions and discusses future research.

2 Related work

As map symbols quickly overlap when scale decreases for map features that are close to each other on the ground,
automating the displacement of map features has been one of the first goals of researchers on map generalisation [3]. To
displace network lines such as roads, rivers, or railways, the first proposition is to identify the overlap conflicts to derive
adapted displacement vectors to the vertices of the lines [4]. Automated displacement of cartographic lines makes a
leap forward with the proposition of geometric optimisation techniques such as the Snakes [5], and later the Elastic
Beams [6, 7].

But most of the effort made by researchers on automated displacement focused on the displacement of buildings or point
symbols inside a block [8], as buildings usually attract more attention in map generalisation research. The first methods
were sequential: finding the best building to displace, or the worst conflict to solve, then displacing this building, and
then iteratively displacing other buildings until all conflicts are solved [9]. Several algorithms were proposed in recent
years following this iterative or sequential approach [10, 11, 12]. There were more global approaches proposed such as
the computation of a vector field taking all conflicts and relations to preserve in a block into account [13]. And similarly
to line displacement, optimisation approaches were proposed, following the same principles as the Snakes [14], or as
the Elastic Beams [15], or using well known meta-heuristic with genetic algorithms [16].

Regarding the generalisation of natural terrain lines, there are very few specific algorithms proposed. Elastic displace-
ments could be achieved using the GAEL model [17, 18]. Previously at IGN, an adaptation of the Elastic Beams [7]
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was proposed to displace embankment lines in 1:25k topographic maps, but the algorithm required a significant amount
of manual corrections [19].

Least squares based map generalisation has proved to be flexible enough to optimise the elastic displacement of line
features such as embankment lines. The principles of least squares based map generalisation have been simultaneously
proposed by Lars Harrie and Monika Sester 20 years ago [1, 2], and then improved to provide flexible models able to
generalise different types of map features [20, 21, 22]. Then, similar least squares based techniques were adapted to
other of geometrical distortions controlled by constraints: data conflation [23, 24, 25], line morphing [26], interactive
focus maps [27], or polygon squaring [28]. This past success and the maturity of the approach convinced us to reuse it
for our problem of elastic displacement of embankment lines.

3 ReBankment Algorithm

The ReBankment algorithm that reshapes the embankment lines with a least squares adjustment, is presented in this
section. The principles of least squares based generalisation are presented in the first subsection. Then, the constraints
proposed for embankment line displacement are described in Section 3.2.

3.1 Principles of Least Squares Based Displacement

As explained in the previous section, the principles of Least Squares generalisation were simultaneously proposed by
Lars Harrie [1, 20], and Monika Sester [2, 22] twenty years ago. The idea is to translate the contradictory constraints of
map generalisation into an overconstrained system of linear equations, and then an optimal solution for this system is
found using a least squares adjustment. Equation 1 shows how the constraints of generalisation are translated into a
linear function f whose unknowns are the differences between the coordinates (xi, yi) of vertex i of a geometry being
generalised, before and after generalisation.

f(x1, y1, ..., xn, yn) = c1,1 ·∆x1 + c1,2 ·∆y1 + ...+ cn,1 ·∆xn + cn,2 ·∆yn + c (1)

where ∆xi = xi − x0
i , xi is the abscissa of the ith vertex of the generalised line, and x0

i is the abscissa of the ith vertex
of the initial line.

Some constraints of map generalisation, e.g. constraints on distances, or angles between map features, cannot be
translated into linear f functions, and in this case, we simply approximate the function using the first-order Taylor
polynomial of the function f :

∂f

∂x1
·∆x1 +

∂f

∂y1
·∆y1 +
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∂x2
·∆x2 +

∂f

∂y2
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∂f

∂xn
·∆xn +

∂f

∂yn
·∆yn = c− f(x⃗0) (2)

where x⃗0 is the vector of the initial coordinates of vertices 1..n. When we merge all the small system of equations from
all constraints on all vertices of a map portion, we just have to solve the following equation (with a matrix notation):

A⃗ · x⃗ = l⃗ + v⃗ (3)

where A⃗ is the Jacobian Matrix of the system containing the ci,j values from Equation 1, x⃗ is the unknown vector, l⃗ is
the vector of constant values c from Equation 1, and v⃗ is the residual vector that contains the errors for each constraint.
Then, the least squares solution of Equation 3 is given in Equation 4:

x⃗ = (A⃗T⃗ · P⃗ · A⃗)−1 · A⃗T⃗ · P⃗ · l⃗ (4)

where P⃗ is the matrix that contains the relative weights of the constraints. As many constraints are not linear, the
first-order Taylor polynomial is not always a good approximation, and this equation does not give an optimal solution.
This is why we choose an iterative approach and several iterations of solving Equation 4 are necessary. After each
iteration x⃗0 becomes the vector of coordinates from last iteration, instead of the vector of the initial coordinates. The
algorithm converges either when we reach a maximum number of iterations, or when the norm of x⃗ is negligible, i.e.
the line did not moved so much during the last iteration.
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Figure 2: A polyline to displace on top, and the displaced version below. The curvature constraint forces angles α and
β to stay equal, as well the norms of vectors u⃗ and U⃗ .

3.2 Constraints for Embankment Lines

There are four constraints that are introduced to displace embankment lines while preserving their shape and their
relative positions:

• (C1) position preservation constraint,
• (C2) curvature preservation constraint,
• (C3) symbol overlap constraint,
• (C4) relative position constraint [29] between two embankment lines.

These four constraints, and their translation into linear equations following equation 1, or into f functions linearized
following equation 2, are presented in the next four sub-sections.

3.2.1 Position Preservation Constraint

Constraint (C1) is classical in map generalisation: generalisation transformations should not move map features far
from their initial position, which represent their exact position on the ground. This constraint is translated into a system
of linear equations as previously proposed by [1] and [2]: the displacement of all vertices should be equal to zero
(Equation 5).

{∆ xi = 0∆yi = 0 (5)

3.2.2 Curvature Preservation Constraint

Constraint (C2) intends to preserve the curvy or straight shapes of embankment lines. It derives from a similar
constraints previously proposed by [1]. This constraint applies to two consecutive segments of polylines, and constrains
both segment length and the angle between the segments (Figure 2). We use the vector product of vectors u⃗ and v⃗ from
Figure 2 (and their counterpart in the displaced polyline) to constrain the angle (Equation 6). These two equations are
not linear, so they are linearized using the first-order Taylor polynomial.

{ ∥ u⃗ ∧ w⃗ ∥=∥ u⃗ ∥ · ∥ v⃗ ∥ · sinα ∥ U⃗ ∧ W⃗ ∥=∥ U⃗ ∥ · ∥ W⃗ ∥ · sinβ (6)

Equation 7 shows how the segment length is constrained to stay the same during the displacement. Once again, the
equation is not linear and is linearized using the first-order Taylor polynomial.

∥ w ∥=∥ W ∥⇔
√
(xi+1 − xi)2 − (yi+1 − yi)2 −

√
(x0

i+1 − x0
i )

2 − (y0i+1 − y0i )
2 = 0 (7)

3.2.3 Symbol Overlap Constraint

With constraint (C3), we want the embankment lines to be distant from the road or river centreline rk of a value
distmink = widthk+separation where widthk is equal to half the symbol width of the road or river, and separation

4



PREPRINT - NOVEMBER 2, 2021

Figure 3: The constrained triangulation used to constrain the relative position of several embankment lines: type 1 edges
connect two nodes of the same embankment, so are ignored; type 2 edges are the segments of the embankments, so are
ignored too; type 3 edges connect two lines with a distance above minimum threshold but below influence threshold;
type 4 edges connect two lines with a distance below the minimum threshold (the segment should be enlarged); type 5
edges connect two lines but with a distance above the influence threshold (the segment is not constrained).

is a minimum separation threshold for legibility (usually set to 0.1 mm on the map). As the symbol width varies
according to road or river importance, this distmink values varies from one road or river to another.

dist(vi, rk) = max(distmink − dist(v0i , rk), 0) (8)

where vi is ith vertex of an embankment line to be displaced, and v0i is the initial position of ith vertex. This equation
should be computed for each vertex and for each road, which would generate a very large number of unnecessary
equations. This is why we limit this constraint to the roads that lie nearby an embankment line (see Section 3.3 for
more details). With the computation of a distance between a point and a line, this constraint is clearly not linear, and
once again, it is linearized using the first-order Taylor polynomial.

3.2.4 Relative Position Constraint Between Two Embankment Lines

Constraint (C4) seeks to preserve the relative position between two embankments lines, when one or more are displaced
because of (C3). It is based on a constrained Delaunay triangulation between all the vertices of the embankment lines,
and the segments of embankments are constrained to be edges of the triangulation. Then, a distance constraint following
Equation 7 is added on some edges of the triangulation with constant values depending on the type of edge (Figure 3).
The five types of edges in this constrained triangulation are the following:

• Type 1 Edge: the edges that connect two nodes from the same embankment line. There is no need to constrain
such edges, so they are ignored.

• Type 2 Edge: the edges that are segments of one embankment line. These segments are already constrained by
the curvature constraint, so there is no need to double this effect, and the edges are ignored.

• Type 3 Edge: the edges that connect two different embankment lines with a length above the minimum distance
threshold, but below the influence threshold. These edges are constrained to preserve this distance.

• Type 4 Edge: the edges that connect two different embankment lines with a length below the minimum distance
threshold. These edges are constrainted to be enlarged to the minimum threshold.

• Type 5 Edge: the edges that connect two different embankment lines with a length above the influence threshold.
It means that the lines are too distant from each other to care if they get a little closer, and these edges are not
constrained.

Similarly to (C3), constraint (C4) can generate heavy computations if the constrained triangulation contains all the
embankment lines of the dataset. This is why the triangulation is computed on dedicated areas (Section 3.3 for more
details).

3.2.5 Weight Setting

As shown in Equation 4, a weight matrix is used to solve the system of equations, to deal with the relative importance
of each constraint. These weights are usually complex to set up [21]. Table 1 shows the weights that we empirically
defined to obtain our best results. We carried out a sensitivity analysis, making small variations of each weight, to
determine the weight values that provide the best overall results. The fact that (C3) has the highest weight shows that
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Figure 4: Three of the largest meshes in our test area, showing proving that computing the adjustment on meshes
enables the scaling of the process.

displacement remains the most important goal of the algorithm, and we prefer a displaced but slightly distorted line, to
a preserved shape but with insufficient displacement.

constraint (C1) (C2) (C3) (C4)
weight 8 8 200 15

Table 1: Optimal weights for the four constraints to displace embankment lines.

3.3 Scaling the Adjustment

The least squares based generalisation techniques require the inversion of large matrices (see Equation 4), so the number
of features that can be included at once is limited [25]. More generally, map generalisation is computationnally intense,
and it is usual to partition the dataset, and avoid processing everything at once [30]. In this case, roads and rivers form
natural boundaries to partition the dataset, as embankment lines are not supposed to cross such features. So, we first
build a mesh from the roads and rivers, which are integrated in a single planar graph.

Figure 4 shows three of the largest faces of the road network (in yellow) in our test dataset (see Section 4). Although
the number of embankment lines remains small in each mesh, the number of roads and rivers can be very high, and
even too high to process these large meshes quickly. So, to generate smaller partition, we build and merge the spatial
neighbourhood of the embankment lines, as proposed previously to partition data for map generalisation [31]: (1) we
create a buffer area around each embankment line, with a width 3 · distmink; (2) we merge the intersecting buffer
areas; (3) we select the roads and rivers contained in each merged area to obtain our partition unit.

3.4 Complex Cases

Working on real datasets with countrywide production ambitions implies additional difficulties. In this case, testing
ReBankment on a large dataset highlighted four different complex cases that we had to deal with:

1. connected embankment lines;
2. embankment lines touching roads (or rivers);
3. cases without solution because of a lack of space;
4. errors in input data (embankments crossing each other, or crossing a road)

In the experimented dataset, complex cases with one of these four types occurred for 5% of the embankment lines.
Figure 5 shows several instances of connected embankment lines, or embankments represented with several connected
lines (complex case (1)). In this case, rather than processing lines independently, which can cause disconnections, we
prefer adding a pre-process that merges this lines into one.

The complex case (2) is typical of the abstraction process of the surveyors that captured these embankment lines:
embankments that lie close to a road are extended to the road centreline, and embankments that go along a road very
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Figure 5: Some embankment lines are connected in the dataset, and must be merged first to avoid their separation
during the adjustment process.

Figure 6: Examples of overlap and touch spatial relations between embankment lines and roads.

closely are also snapped to the road centreline geometry (Figure 6). This is a complex case because the symbol overlap
constraint does not handle in the equations. These two cases are identified by qualifying the topology relations of each
embankment line with the nearby roads (and rivers). The embankment lines with a touch or overlap relation [32] are
then pre-processed to moved them a little from the roads. Lines are then disjoint. Figure 7 shows how lines are moved a
little: a translation vector is computed using the orientation of the first segment of the line, and a norm of 1 meter to
keep the translation minimal. For overlap relations, the general orientation of the overlapping part is computed and the
direction of the translation is perpendicular to this orientation.

The complex case (3) is classical in map generalisation, as road and river symbol are wide, leaving sometimes no
blank space to draw the symbols of additional features (Figure 8). We use an approach similar as the one proposed in
CartACom [29] to compute free space around each embankment line. A buffer is computed around the embankment
line, and the polygons created by the symbols of roads and embankments are removed from the buffer, leaving only the
available blank space. When this blank space is too small, as in Figure 8, the ReBankment algorithm is not triggered,
the embankment line is simply eliminated.

Finally, the complex case (4) corresponds to errors in the way embankments are captured as vector lines. We identified
two types of errors in our test dataset: embankment lines that cross a road or a river (Figure 9), and embankment lines
that intersect each other (Figure 10). In both cases, the situation cannot exist on the terrain, and these cases are not
correctly handled by the symbol overlap and relative position constraints. In the case of embankment lines crossing a
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Figure 7: Example of an embankment line touching a road. On the left, the blue arrow shows the translation direction
following the direction of the first segment of the line. The right image shows the small translation used to detach the
embankment line from the road.

Figure 8: Some cases are too constrained to enable a valid displacement of the embankment line without displacing the
roads.

road (Figure 9), we cut the line in two at intersections with roads, and then process the cut lines as instances of the
touch case (2).

In the case of embankment lines intersecting each other (Figure 10), we select one of the intersecting line, and move
it from the others with the same method as the one presented in Figure 7. The other lines are then merged using the
pre-process presented for complex case (1).

Figure 9: Two examples of embankment lines crossing a road.
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Figure 10: Example of embankment line crossing (or touching) another embankment line, which cannot reflect an
existing morphology of the terrain.

4 Implementation and Results

4.1 Use Case and Implementation

Dataset: 55,000 m2 in the Alps, in France, extracted from the 1:25k base topographic map produced by IGN France.
4,258 embankment lines. Mostly a rural area, with a few towns.

The ReBankment algorithm was first implemented in, the open map generalisation research platform, on top of the
least squares mechanisms already available in the platform [33]. Then, to make the algorithm usable in the production
process of IGN France, based on ArcGIS Pro and PostGIS, the algorithm was ported in Python with the open source
libraries Numpy1 and Shapely2.

4.2 Results

Processing all the lines contained in our test dataset took us approximately 45 minutes.

Some results are presented in Figure 11. We can see that the lines are correctly moved from roads, while preserving the
shape of the embankment line, even when it requires compressing a bend, such as the bottom embankment line in the
top right corner of Figure 11. The bottom right image of Figure 11 shows that ReBankment is also capable of solving
proximity conflicts between embankment lines that are too close to each other.

4.3 Evaluation

Our generalisation is specified by four constraints, and we basically evaluate the algorithms using monitors for these
constraints [34, 35], i.e. checking for each map feature if all the constraints are satisfied.

To verify if (C2) is satisfied, we need to measure the similarity between the embankment lines before and after
generalisation. In this case, usual line distances do not apply: they would measure displacement more than distortions.
So, to compare the shape similarity only, we first translate the initial line, using a vector from the middle of the initial
line, to the middle of the generalised line. Then, we compute the following line similarity measures:

• Hausdorff distance (m1);
• discrete Fréchet distance [36] (m2);
• dynamic time-warping similarity [37] (m3);
• average distance [38] (m4).

We use these four measures because they may highlight different kinds of dissimilarities. (m1) and (m2) measure
maximum gaps between both lines, but (m2) is more sensitive to length differences. (m4) measures the average
separation between the lines, while (m3) measures the similarity in the distribution of vertices in the lines. All four
values are expressed in meters. The results of this evaluation are presented in Table 2. These results show that the lines
are significantly distorted, and not only translated, which was expected as distortion often gives better results in areas
constrained by road symbols. However, the distortion remain limited for most features, with a significant amount (a
third) of features having a negligible distortion, and only 10 to 15 % of the features suffering from large distortions.

The measures used for (C2) also apply for (C1) when there is no translation prior to the similarity measure. The results
show that the lines are often displaced, the constraint did not prevent displacement, it only limited it. The median

1https://numpy.org/
2https://pypi.org/project/Shapely/
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Figure 11: Three examples of displacement obtained with ReBankment. In this case, the symbols are not the ones of
the map for the sake of simplicity (the initial embankment lines are in wide red, the generalised embankment lines are
in blue, and the roads in grey).

measure (m1) (m2) (m3) (m4)
mean 31 35 370 22

median 9 9 39 14
% <5 33 32 15 23
% >50 14 15 42 10

Table 2: Line similarity measure after translation of the initial line.

value of the average distance, for instance, is 13.9 m. Only 2% of the lines are strongly displaced, but even this strong
displacement (around 100 m for the average distance value) is acceptable to avoid symbol overlap.

To verify if (C3), the most important constraint, is preserved, we searched for the number of embankment lines that are
still too close to a road or river after the displacement. 80 lines out of the 3,000 are still too close to a road or a river
after processing the complete dataset (2.5%). We tried to restart the displacement of these lines with a much larger
limit of iterations, and with this large number of iterations, the displacement is good, and the lines are not too close
to the roads anymore. We kept the maximum number of iterations small (100) to limit processing time, and because
most of the cases do not require more iterations to achieve a good result. But it appears that some cases require a larger
maximum number of iterations, and a two-pass process could be developed to improve ReBankment: (1) process all
lines with 100 as a maximum number of iterations; (2) process the few remaining lines with 500 for the maximum
number of iterations.

Regarding (C4), we found only one case of close embankment lines that are too close to each other after the displacement.
After re-processing the lines with more iterations, the problem is solved, so it is once again a problem caused by our
number of iterations kept rather small to limit processing time.

5 Conclusion and Future Work

To conclude, this paper propose the ReBankment algorithm to displace embankment lines from roads and rivers, while
preserving their shape. It is dedicated to the generalisation of 1:25k topographic maps. Although it is based on the
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classical principles of a geometrical least squares adjustment introduced in map generalisation by Harrie and Sester, the
contribution of this research is the specialization of these principles for this problem of elastic displacement. The paper
also proposes different solutions to deal with the complex cases occuring with our use case data.

To go further, we think that the iterative nature of the algorithm can be beneficial to adapt it to a multi-scale displacement
for multi-scale target maps, instead of just the 1:25k topographic map targeted in this paper. We also plan to compare our
algorithm to the Elastic Beams that were previously used at IGN to displace embankment lines. We do not have access
to an implementation of this algorithm right now, but a port of the algorithm in our open source platform CartAGen
[33] is scheduled. Finally, we plan to adapt the ReBankment algorithm to other problems of line displacement, e.g.
cycleways along roads, or ditches [39].
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