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On maximally totally real embeddings

Nefton Pali

Abstract

We consider complex structures with totally real zero section of the
tangent bundle. We assume that the complex structure tensor is real-
analytic along the fibers of the tangent bundle. This assumption is quite
natural in view of a well known result by Bruhart and Whitney [Br-Wh].
We provide explicit integrability equations for such complex structures
in terms of the fiberwise Taylor expansion. For any torsion free complex
covariant derivative operator acting on the smooth sections of the com-
plexified tangent bundle we provide very simple and very explicit fiberwise
Taylor expansion of an associated canonical complex structure of the type
described above.

1 Introduction and statement of the main result

Let (E, πE ,M) be a smooth vector bundle over a manifold M . Let Ep be the
fiber of E over a point p ∈ M and let η ∈ Ep. We consider the transition map
τη (v) := η + v acting over Ep and we consider its differential

d0τη : TEp,0 −→ TEp,η ,

at the point 0. Composing d0τη with the canonical isomorphism Ep ' TEp,0 we
obtain an isomorphism map

Tη : Ep −→ TEp,η . (1.1)

We denote by 0M the zero section of E. Differentiating the identity idM =
πE ◦ 0M we obtain ITM,p = d0pπE ◦ dp0M . This implies the decomposition

TE,0p = dp 0M (TM,p)⊕Ker d0pπE .

We notice also the obvious equalities Ker dηπE = d0τη
(
TEp,0

)
= Tη (Ep) ' Ep,

for any η ∈ Ep. Now applying this to η = 0p, using the previous decomposition
and the canonical isomorphism dp 0M (TM,p) ' TM,p, we infer the existence of
the canonical isomorphism TE,0p ' TM,p ⊕ Ep, that we rewrite as

TE|M ' TM ⊕ E . (1.2)

Key words : Totally real embeddings, Integrability equations. Linear and non-linear connec-
tions over vector bundles.
AMS Classification : 53C25, 53C55, 32J15.
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Definition 1 A real sub-manifold M of an almost complex manifold (X, J) is
called totally real if TM,p ∩ J (TM,p) = 0p for all p ∈ M . A totally real sub-
manifold M of an almost complex manifold (X, J) is called maximally totally
real if dim

R
M = dim

C
X.

1.1 M-totally real almost complex structures over TM

We consider M included inside TM via the zero section. We know by the iso-
morphism (1.2) with E = TM , that this embedding induces the canonical iso-
morphism TTM |M ' TM ⊕TM . The vector bundle TTM |M is a complex one with
the canonical complex structure Jcan : (u, v) 7−→ (−v, u) acting on the fibers.

Any almost complex structure which is a continuous extension of Jcan in a
neighborhood of M inside TM makes M a maximally totally real sub-manifold
of TM .

Over an arbitrary small neighborhood of M inside TM the complex distri-
bution T 0,1

TM
is horizontal with respect to the natural projection π : TM −→M .

We remind that the data of a smoth complex horizontal distribution over
TM coincides with the one of section

A ∈ C∞ (TM , π
∗
CT ∗M ⊗C CTTM ) ,

such that dπ ·A = Iπ∗CTM .
For any complex vector field ξ ∈ C∞ (M,CTM ) we will denote by abuse of

notations A (ξ) ≡ A · (ξ ◦ π). The section A evaluated at the point η ∈ TM will
be denoted by Aη.

We notice that we can write A = α+ iβ, with

α, β ∈ C∞ (TM , π
∗T ∗M ⊗R TTM ) ,

such that dπ · α = Iπ∗TM and βη = TηBη, with B ∈ C∞ (TM , π
∗ End (TM )).

The section A determines an almost complex structure JA over TM such that

T 0,1
TM ,JA,η

= Aη
(
CTM,π(η)

)
⊂ CTTM ,η ,

if and only if

Aη
(
CTM,π(η)

)
∩Aη

(
CTM,π(η)

)
= 0 . (1.3)

This condition is equivalent to the property:

Aη
(
ξ̄1
)

= Aη (ξ2) , (1.4)

implies ξ1 = ξ2 = 0. Taking dηπ in the equality (1.4) we infer ξ1 = ξ2. Thus
equality (1.4) is equivalent to

(
A−A

)
(ξ1) = 0 and the previous property is

equivalent to Ker
(
A−A

)
= 0, i.e.

B ∈ C∞ (TM , π
∗GL (TM )) .

We notice that with respect to the canonical complex structure of TTM |M we

have the equality (u, v)
0,1

= (ξ, iξ), with ξ := (u− iv) /2. Then JA is an
extension of this complex structure over an open neighborhood U ⊆ TM of M
if and only if for any point p ∈ M we have α0p = dp0M and B0p = ITM,p . We
denote by

T ∈ C∞ (TM , π
∗T ∗M ⊗R TTM ) ,

the canonical section which at the point η ∈ TM takes the value Tη.
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Definition 2 Let M be a smooth manifold. An M -totally real almost complex
structure over an open neighborhood U ⊆ TM of the zero section is a couple
(α,B) with

α ∈ C∞ (U, π∗T ∗M ⊗R TTM ) ,

and
B ∈ C∞ (U, π∗GL (TM )) ,

such that dπ · α = Iπ∗TM over U and such that α0p = dp 0M , B0p = ITM,p , for
all p ∈ M . The almost complex structure JA, with A = α + iTB associated to
(α,B) is the one which satisfies

T 0,1
TM ,JA,η

= Aη
(
CTM,π(η)

)
⊂ CTTM ,η ,

for all η ∈ U ⊆ TM .

Every almost complex continuous extension of the canonical complex struc-
ture Jcan of TTM |M over a neighborhood of M inside TM writes as the almost
complex structure associated to an M -totally real almost complex structure
defined over a sufficiently small neighborhood of M .

We provide below an explicit formula for the almost complex structure JA.
For this purpose we notice first that for any vector ξ ∈ TTM ,η,

ξ0,1
JA

=
1

2
Aη

[
dηπ − iB−1

η T−1
η

(
ITTM

− αη dηπ
)]
ξ ,

ξ1,0
JA

=
1

2
Aη

[
dηπ + iB−1

η T−1
η

(
ITTM

− αη dηπ
)]
ξ .

Indeed ξ0,1
JA
∈ T 0,1

TM ,JA,η
, ξ1,0

JA
∈ T 1,0

TM ,JA,η
and ξ = ξ1,0

JA
+ ξ0,1

JA
. We deduce the

expression

JA,η = −αη B−1
η T−1

η

(
ITTM

− αη dηπ
)

+ Tη Bη dηπ. (1.5)

This shows that for any α-horizontal vector ξ ∈ TTM ,η, i.e. ξ = αη dηπ ξ, we
have

JA,η ξ = Tη Bη dηπ ξ .

In equivalent terms
JA,η αη v = Tη Bη v , (1.6)

for any η ∈ U ⊂ TM and any v ∈ TM,π(η). Moreover (1.5) implies

JA,η|Ker dηπ = −αη B−1
η T−1

η . (1.7)

A well known theorem by Bruhat and Whitney [Br-Wh] states that for any
compact real-analytic manifold M there exist a complex manifold (X, J) and a
real-analytic embedding of M in X such that as a sub-manifold of X, M is max-
imally totally real. In addition one can arrange that X is an open neighborhood
U ⊆ TM of the zero section and J|M = Jcan.

Moreover Bruhat and Whitney show [Br-Wh] that if X is a real-analytic
manifold equipped with two different real-analytic complex structures J1 and
J2 which contains a real analytic sub-manifold M which is maximally totally
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real with respect to both J1 and J2, then there exist neighborhoods U1 and U2

of M inside X and a real-analytic diffeomorphism κ : U1 −→ U2 which is the
identity on M and is a holomorphic mapping of (U1, J1) onto (U2, J2).

In other terms the structure J constructed by Bruhat and Whitney in
[Br-Wh] is unique up to complex isomorphisms.

In a long series of celebrated papers inspired by the work of Grauert [Gra],
Guillemin-Stenzel [Gu-St], Lempert [Lem], Lempert-Szöke [Le-Sz1, Le-Sz2], Szöke
[Szo1, Szo2], Burns [Bu1, Bu2], Burns-Halverscheid-Hind [BHH], Aslam-Burns-
Irvine [ABI] as well as Bielawski [Bie] put pluri-potential and metric constraints
on J . Some of their results will be reminded in great detail in the next section.

Their results are needed in a crucial way in analytic micro-local analysis, in
pluri-potential theory (see the impressive work by Zelditch [Zel]) as well as in
Hamiltonian dynamics and in geometric quantization (see the work by Morao-
Nunes [Mo-Nu] and Hall-Kirwin [Ha-Ki]).

We state below our results on the integrability conditions for J .

1.2 The integrability equations for M-totally real almost
complex structures

Let (E, πE ,M) be a vector bundle over a manifold M . For an arbitrary section
B ∈ C∞(E, π∗E (T ∗M ⊗ E)), we define the derivative along the fiber

DB ∈ C∞
(
E, π∗E (E∗ ⊗ T ∗M ⊗ E)

)
,

by the formula

DηB (v) :=
d

dt |t=0

Bη+tv ∈ T ∗M,p ⊗ Ep ,

for any η, v ∈ Ep. We denote by Alt2 the alternating operator (without nor-
malizing coefficient!) which acts on the first two entries of a tensor. For any
morphism A : TM −→ E and any bilinear form β : E×TM −→ E we define the
contraction operation

A¬β := Alt2 (β ◦A) ,

where the composition operator ◦ act on the first entry of β.

Theorem 1 Let M be a smooth manifold and let JA with A = α+iTB be a M -
totally real almost complex structure over an open neighborhood U ⊆ TM of the
zero section. Let also ∇ be a covariant derivative operator acting on the smooth
sections of TM and let Γ ∈ C∞ (U, π∗ End (TM )) such that α := H∇ − TΓ.

Then JA is integrable over U if and only if the complex section S := Γ + iB
satisfies the equation

H∇η ¬
(
∇End(TM ),πS

)
η
− Sη¬DηS + Sητ

∇ +R∇ · η = 0 , (1.8)

for any point η ∈ U , where ∇End(TM ),π is the covariant derivative operator
acting on the smooth sections of π∗ End (TM ) induced by ∇ and where τ∇ and
R∇ are respectively the torsion and curvature forms of ∇.
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We notice that S|M = iITM by the conditions α0p = H∇0p = dp 0M and
B0p = ITM,p .

Notations for the statement of the main theorem.

For any A ∈ T ∗,⊗pM ⊗ End
C

(CTM ) and for any θ ∈ T ∗,⊗qM ⊗CTM , the product

operations of tensors A · θ,A¬ θ ∈ T ∗,⊗(p+q)
M ⊗CTM are defined by

(A · θ) (u1, . . . , up, v1, . . . , vq) := A(u1, . . . , up) · θ(v1, . . . , vq) ,

(A¬θ) (u1, . . . , up, v1, . . . , vq) :=

q∑
j=1

θ(v1, . . . , A(u1, . . . , up) · vj , . . . , vq) .

We will denote for notation simplicity R∇. θ := R∇ · θ−R∇¬ θ. We will denote
by Circ the circular operator

(Circ θ) (v1, v2, v3, •) = θ (v1, v2, v3, •) + θ (v2, v3, v1, •) + θ (v3, v1, v2, •) ,

acting on the first three entries of any q-tensor θ, with q > 3. We define also
the permutation operation θ2 (v1, v2, •) := θ (v2, v1, •).

For any covariant derivative ∇ acting on the smooth sections of CTM we
define the operator

d∇1 : C∞
(
M,T ∗,⊗kM ⊗

R
CTM

)
−→ C∞

(
M,Λ2T ∗M ⊗R T

∗,⊗(k−1)
M ⊗

R
CTM

)
,

with k > 1 as follows

d∇1 A (ξ1, ξ2, µ) := ∇ξ1A (ξ2, µ)−∇ξ2A (ξ1, µ) ,

with ξ1, ξ2 ∈ TM and with µ ∈ T⊕(k−1)
M . Moreover for any

A ∈ C∞
(
M,T

∗,⊗(k+1)
M ⊗

R
CTM

)
,

B ∈ C∞
(
M,T

∗,⊗(l+1)
M ⊗

R
CTM

)
,

we define the exterior product

A ∧1 B ∈ C∞
(
M ,Λ2T ∗M ⊗R T

∗,⊗(k+l−1)
M ⊗

R
CTM

)
,

as

(A ∧1 B) (ξ1, ξ2, η, µ) := A (ξ1, B (ξ2, η) , µ)−A (ξ2, B (ξ1, η) , µ) ,

with ξ1, ξ2 ∈ TM , η ∈ T⊕lM and µ ∈ T
⊕(k−1)
M . We denote by Symr1,...,rs the

symmetrizing operator (without normalizing coefficient!) acting on the entries
r1, . . . , rs of a multi-linear form. We use in this paper the common convention
that a sum and a product running over an empty set is equal respectively to 0
and 1.

With theese notations we can state our main theorem.
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Theorem 2 (Integrability in the fiberwise real analytic case).
Let M be a smooth manifold, let U ⊆ TM be an open neighborhood of the

zero section with connected fibers and let JA with A = α + iTB be a M -totally
real almost complex structure over U , which is real-analytic along the fibers of
U . Let ∇ be a torsion free covariant derivative operator acting on the smooth
sections of TM and let Γ ∈ C∞ (U, π∗ End (TM )) such that α = H∇ − TΓ.

Consider the fiberwise Taylor expansion of the complex section S := Γ + iB
at the origin, given by

Sη · ξ =
∑
k>0

Sk
(
ξ, ηk

)
,

for any η ∈ TM in a neighborhood of the zero section and any ξ ∈ TM,π(η), with
S0 = iITM and with

Sk ∈ C∞
(
M,T ∗M ⊗R SkT ∗M ⊗R CTM

)
,

for all k > 1, (here we denote by ηk := η×k ∈ T⊕kM,π(η)), and let ∇S1 be the

complex covariant derivative operator acting on the smooth sections of CTM
defined by

∇S1

ξ η := ∇ξη + S1 (ξ, η) .

Then JA is integrable over U if and only if S1 ∈ C∞
(
M,S2T ∗M ⊗R CTM

)
, (i.e.

∇S1 is torsion free) and for all k > 2,

Sk =
i

k
∇S1σk−1 +

i

(k + 1)!
Sym2,...,k+1 βk−1 (σk−2) + σk ,

σk ∈ C∞
(
M,Sk+1T ∗M ⊗R CTM

)
,

Circβk+1 (σk) = 0 ,

where σ1 := 0, β1 (σ0) := R∇
S1

, β2 (σ1) := − i
3 (∇S1R∇

S1
)2 and for all k > 3,

βk (σk−1) :=
i

k
R∇

S1
. σk−1 +

1

(k + 1)!k!
Sym3,...,k+2 θk (σk−1) ,

θk (σk−1) := i

k−2∑
r=2

(r + 2)!

r + 1
(i d∇

S1

1 )k−r−1(R∇
S1
. σr)

− 2 i (i d∇
S1

1 )k−2(∇S1R∇
S1

)2

+

k∑
r=3

(r + 1)!

r−1∑
p=2

(i d∇
S1

1 )k−r (pSp ∧1 Sr−p+1) .

In more explicit terms

S2 = S0
2 + σ2 , (1.9)

S0
2 (ξ1, ξ2, ξ3) :=

i

6

[
R∇

S1
(ξ1, ξ2) ξ3 +R∇

S1
(ξ1, ξ3) ξ2

]
, (1.10)

σ2 ∈ C∞
(
M,S3T ∗M ⊗R CTM

)
, (1.11)
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Circβ3 (σ2) = 0 , (1.12)

β3 (σ2) :=
i

3
R∇

S1
. σ2 +

1

4!3!
Sym3,4,5 θ3 (σ2) , (1.13)

θ3 (σ2) := 2d∇
S1

1 (∇S1R∇
S1

)2 + 4!2S2 ∧1 S2 . (1.14)

The assumption that the complex structure tensor is real-analytic along the
fibers of the tangent bundle is quite natural. Indeed in the case M is real
analytic then the M -totally real complex structure constructed by Bruhat and
Whitney [Br-Wh] is also real analytic with respect to the real analytic structure
of the tangent bundle induced by M .

In this paper we request from the readers some knowledge of the geometric
theory of linear connections. Basics of such theory can be found in the appendix.

2 Some old and new facts

2.1 The almost complex structure associated to a connec-
tion over the tangent bundle

It is well known (see [Dom]) that we can construct an M -totally real almost
complex structure over TM by using the horizontal distribution H ⊂ TM associ-
ated to a linear connection ∇ acting on the sections of TM . Indeed in this case
we set αη := Hη and Bη := ITM ,π(η), where η 7−→ Hη is the horizontal map
associated to H. We will denote JH := JA. If we define for any η ∈ TM,p the
vertical projection Vertη : TTM ,η −→ TTM,p,η as

Vertη := ITTM,η
−Hηdηπ ,

where π : TM −→M is the canonical projection, then

JH,η := −Hη T
−1
η Vertη +Tη dηπ .

If we decompose any vector ξ ∈ CTTM ,η in its horizontal and vertical parts
ξ = ξh + ξv with ξv := Vertη (ξ) then we have the expressions

JH,ηξ = −Hη T
−1
η ξv + Tη dηπ ξ

h,

(JH,ηξ)
h

= −Hη T
−1
η ξv,

(JH,ηξ)
v

= Tη dηπ ξ
h.

We infer

ξ0,1
JH

(η) =
1

2

[
ξh − iHη T

−1
η ξv + ξv + i Tη dηπ ξ

h
]

=
1

2

[
ξh + Hη µ+ i Tη

(
dηπξ

h + µ
)]
,

with µ := −i T−1
η ξv. We notice also the identity

T 0,1
TM ,JH,η

=
1

2
(Hη + i Tη)CTM,p , (2.1)
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for any any η ∈ TX,p. The distribution T 0,1
TM ,JH

is horizontal, but the associated
map does not satisfies the condition (8.5) of linear connections thanks to the
identity (8.4). Therefore this distribution does not identify a linear connection.
However its integrability implies that the vector bundle TM is flat. Indeed we
have the following well known lemma due to Dombrowsky [Dom].

Lemma 1 The torsion form τJH of the almost complex structure JH satisfies
at the point η ∈ TM in the directions V1, V2 ∈ T 0,1

TM ,JH,η
the identity

8τJH (V1, V2) (η) = − Hη

[
τ∇ (v1, v2) + i R∇ (v1, v2) η

]
+ Tη

[
i τ∇ (v1, v2) −R∇ (v1, v2) η

]
,

where R∇ := ∇2 is the complex linear extension of the curvature tensor of ∇,
where τ∇ is the torsion of the complex connection ∇ and where vj := dηπVj,
j = 1, 2. In particular JH is a complex structure if and only if the linear
connection ∇ is flat and torsion free.

Proof Let ξj be vector field local extensions of vj such that [ξ1, ξ2]π (η) = 0.
Then

Ξj :=
1

2
(H + i T ) ξj ,

are local vector field extensions of Vj . We expand the bracket

4 [Ξ1,Ξ2] (η) =
(

[Hξ1, Hξ2] + i [Hξ1, T ξ2] + i [Tξ1, Hξ2]− [Tξ1, T ξ2]
)

(η)

= Hη[ξ1, ξ2]− Tη[R∇ (v1, v2) η] + i Tη[∇ξ1ξ2 −∇ξ2ξ1] .

The last equality follows from to the computation at the end of the proof of
lemma 19 and thanks to the identity (8.8) in the appendix. (We notice that
[Tξ1, T ξ2] ≡ 0, since the vector fields Tξ1 are tangent constant along the fibers).
Thanks to the assumption [ξ1, ξ2]π (η) = 0, we infer the equality

4 [Ξ1,Ξ2] (η) = Tη

[
i τ∇ (v1, v2) −R∇ (v1, v2) η

]
.

The required formula follows from the identity

ξ1,0
JH

(η) =
1

2

[
ξh + iHη T

−1
η ξv + ξv − i Tη dηπ ξh

]
.

The fact that that the distribution T 1,0
TM ,JH

is horizontal implies that τJH (V1, V2) (η)
vanishes for all Vj if and only if the quantity

τ∇ (v1, v2) + i R∇ (v1, v2) η ,

vanishes for all vj . In particular for real vectors vj this implies that R∇ and τ∇

vanish at the point π (η). �

We observe that a connection over TM is flat and torsion free if and only if
there exist local parallel frames with vanishing Lie brackets.
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3 The symplectic approach

Let M be a smooth manifold and let θ ∈ C∞(T ∗M , T
∗
T∗M

) be the canonical 1-form

on the total space of the cotangent bundle defined as θλ := λ · dλπT∗M , for any
λ ∈ T ∗M . The canonical symplectic form over the total space T ∗M is defined as
Ω := −dθ. Let now g be a Riemann metric over M viewed as a vector bundle
map g : TM −→ T ∗M . We define also the forms θg := g∗θ and Ωg := g∗Ω = −dθg
over the total space of the tangent bundle. In explicit terms θgη = g (η) · dηπTM ,
for all η ∈ TM , i.e.

θgη (ξ) = gπTM (η)(η, dηπTM · ξ) ,

for all ξ ∈ TTM ,η. Let ∇g be the Levi-Civita connection, defined as

2∇gξη := g−1
[
ξ ¬ d (gη) + η ¬ d (gξ) + d〈ξ, η〉g

]
+ [ξ, η] ,

for any ξ, η ∈ C∞ (M,TM ). Let also γg ∈ C∞(TM , T
∗
TM
⊗ TTM ) be the Levi-

Civita 1-form, which is determined along any section η ∈ C∞ (M,TM ), by the
identity γgη · dη = Tη∇gη.

For any curve η : t 7−→ ηt ∈ TM , we define the covariant derivative

∇gη
dt

:= T−1
ηt γ

g
ηt η̇t ∈ TM,π(ηt) .

We consider now two curves ηj : t 7−→ ηj,t ∈ TM , j = 1, 2, such that πTM (η1,t) =
πTM (η2,t) = xt. Then

d

dt
g|xt (η1,t , η2,t) = g|xt

(
∇gη1

dt
, η2,t

)
+ g|xt

(
η1,t ,

∇gη2

dt

)
.

With the previous notations hold the following well known lemma (see also
Klingenberg’s book [Kli] for a proof using local coordinates).

Lemma 2 The formula

Ωgη (ξ1, ξ2) = gp(dηπTM ξ1, T
−1
η γgηξ2)− gp(dηπTM ξ2, T−1

η γgηξ1) ,

hold for any η ∈ TM , p = πTM (η) and for any ξ1, ξ2 ∈ TTM ,η.

Proof With respect to a local coordinate trivialization of the tangent bundle
we can extend in a linear way the vectors ξ1, ξ2 in to vector fields Ξ1, Ξ2 in a
neighborhood of TM,p inside TM . In this way [Ξ1,Ξ2] = 0 and thus Ωg (Ξ1,Ξ2) =
Ξ2.θ

g (Ξ1)−Ξ1.θ
g (Ξ2). We denote by ηj,t, j = 1, 2 the corresponding flow lines

starting from η. Then

Ωgη (ξ1, ξ2) =
d

dt |t=0

[
gπTM (η2,t)

(
η2,t , dη2,tπTM · Ξ1 (η2,t)

)]
− d

dt |t=0

[
gπTM (η1,t)

(
η1,t , dη1,tπTM · Ξ2 (η1,t)

)]
.

We distinguish two cases.
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• In the case when dηπTM ξj = 0 for some j, say j = 1, then dη2,tπTMΞ1 (η2,t) =
0 and

d

dt
dη1,tπTMΞ2 (η1,t) = 0 ,

by the linear nature of the local extension. Then

Ωgη (ξ1, ξ2) = −gp(T−1
η γgηξ1, dηπTM ξ2) .

The case j = 2 is quite similar.
• In the case when dηπTM ξj , do not vanish for j = 1, 2, then the vector fields

ζj := dπTMΞj are well defined and [ζ1, ζ2] = 0. Then

Ωgη (ξ1, ξ2) = gp(T
−1
η γgηξ2, dηπTM ξ1) + gp(η,∇gζ2(p)ζ1 −∇

g
ζ1(p)ζ2)

− gp(T
−1
η γgηξ1, dηπTM ξ2)

= gp(T
−1
η γgηξ2, dηπTM ξ1) + gp(η, [ζ1, ζ2] (p))

− gp(T
−1
η γgηξ1, dηπTM ξ2) ,

which implies the required conclusion. �

We need to remind in detail also the following very well known lemma (see
also [Kli]).

Lemma 3 Let 2 ζg := Ωg,−1d | · |2g and let Φgt be the corresponding 1-parameter
sub-group of transformations of TM . Then for any η ∈ TM the curve ct :=
πTM ◦ Φgt (η) is the geodesic with initial speed ċ0 = η and ċt = Φgt (η).

Proof For any η ∈ TM and for any ξ ∈ TTM ,η, let t 7−→ ηt ∈ TM be the curve
such that η̇0 = ξ. Then

ξ . | · |2g =
d

dt |t=0

[
gπTM (ηt)(ηt , ηt)

]
= 2 gp

(
η , T−1

η γgηξ
)
,

and thus
Ωgη
(
ζgη , ξ

)
= gp

(
η , T−1

η γgηξ
)
,

by the definition of the vector field ζgη . Using lemma 2 we infer

gp(dηπTM ζ
g
η , T

−1
η γgηξ)− gp(dηπTM ξ, T−1

η γgηζ
g
η ) = gp

(
η, T−1

η γgηξ
)
. (3.1)

In the case dηπTM ξ = 0, the identity (3.1) yields

gp(dηπTM ζ
g
η , T

−1
η ξ) = gp

(
η, T−1

η ξ
)
,

and thus dηπTM ζ
g
η = η. In the case γgη ξ = 0, the identity (3.1) yields

gp(dηπTM ξ , T
−1
η γgηζ

g
η ) = 0 ,

10



and thus γgη ζ
g
η = 0. We deduce the formula

ζgη = Hg
η · η . (3.2)

Thus the flow line ηt := Φgt (η) satisfies the identity

η̇t = Hg
ηt · ηt . (3.3)

We deduce

ċt = dηtπTM · η̇t

= dηtπTM ·Hg
ηt · ηt

= ηt ,

and c̈t = Hg
ċt
· ċt, which is the geodesic equation. �

We provide now a proof of the following well known result due to Lempert-
Szöke [Le-Sz1]. See also Guillemin-Stenzel [Gu-St], Burns [Bu1, Bu2] and Burns-
Halverscheid-Hind [BHH].

Corollary 1 Let (M, g) be a smooth Riemannian manifold. A complex struc-
ture J over the total space of the tangent bundle TM satisfies the conditions

J|M = Jcan, (3.4)

2θg = d| · |2g · J. (3.5)

if and only if for any η ∈ TM , the complex curve ψη : t+ is 7−→ sΦgt (η), defined
in a neighborhood of 0 ∈ C, is J-holomorphic.

Proof We define the Reeb vector field Ξ := Ωg,−1θg. This vector field is
independent of the metric g. Indeed by lemma 2 hold the identity

gp(η , dηπTM ξ) = gp(dηπTMΞη , T
−1
η γgηξ)− gp(dηπTM ξ , T−1

η γgηΞη) , (3.6)

for any ξ ∈ TTM ,η. Thus if dηπTM ξ = 0 we deduce the equality

gp(dηπTMΞη , T
−1
η ξ) = 0 ,

and thus dηπTMΞη = 0. Then the identity (3.6) reduces as

gp(η , dηπTM ξ) = − gp(dηπTM ξ , T−1
η Ξη) ,

for any ξ ∈ TTM ,η. We infer the formula

Ξη = − Tη · η , (3.7)

for all η ∈ TM . We notice now that the identity (3.5) is equivalent to the identity

Ωg (2 Ξ , ξ) = d | · |2g Jξ ,

11



and is also equivalent to the identity θg = −dc
J
| · |2g. Thus

Ωg = ddc
J
| · |2g = i∂

J
∂
J
| · |2g ,

thanks to the fact that Jg is integrable. We infer that the symplectic form Ωg

is J -invariant. Thus

Ωg (2 J Ξ , Jξ) = d | · |2g Jξ ,

i.e.
J Ξ = ζg. (3.8)

This combined with (3.7) and with (3.2) implies that (3.5) is equivalent to the
identity

JηH
g
η · η = Tη · η . (3.9)

We show now that the later combined with (3.4) is equivalent to the J-holomorphy
of the maps ψη. For this purpose we observe that the differential of such maps
is given by

dt0+is0ψη

(
a
∂

∂t
+ b

∂

∂s

)
= a d (s0ITM ) Φ̇gt0 (η) + b Ts0Φgt0

(η)Φ
g
t0 (η) .

But

Φ̇gt0 (η) = ζg ◦ Φgt0 (η)

= Hg
Φgt0

(η)
· Φgt0 (η) ,

thanks to (3.2). Then using the property (8.5) of the linear connection ∇g we
infer

dt0+is0ψη

(
a
∂

∂t
+ b

∂

∂s

)
=
(
aHs0Φgt0

(η) + bTs0Φgt0
(η)

)
· Φgt0 (η) . (3.10)

The complex curve ψη is J-holomorphic if and only if

dt0+is0ψη

(
−b ∂

∂t
+ a

∂

∂s

)
= Jdt0+is0ψη

(
a
∂

∂t
+ b

∂

∂s

)
,

thus, if and only if(
−bHs0Φgt0

(η) + aTs0Φgt0
(η)

)
· Φgt0 (η) = J

(
aHs0Φgt0

(η) + bTs0Φgt0
(η)

)
· Φgt0 (η) .

For s0 6= 0 this is equivalent to (3.9). For s0 = 0 this is equivalent to (3.4). We
deduce the required conclusion. �

The condition (3.4) implies that J is an M -totally real complex structure.
We show now the following corollary of the main theorem 2.

Corollary 2 Let (M, g) be a smooth Riemannian manifold and let J ≡ JA with
A = α+ iTB be an M -totally real almost complex structure over an open neigh-
borhood U of M inside TM which is real analytic along the fibers of U . Then J is
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integrable over U and for any η ∈ U , the complex curve ψη : t+ is 7−→ sΦgt (η),
defined in a neighborhood of 0 ∈ C, is J-holomorphic if and only if the fiberwise
Taylor expansion of J at the origin given by the expansion of the complex section
S := T−1 (Hg − α) + iB,

Sη · ξ =
∑
k>0

Sk
(
ξ, ηk

)
,

for any η ∈ TM in a neighborhood of the zero section and any ξ ∈ TM,π(η), with
S0 = iITM and with

Sk ∈ C∞(M,T ∗M ⊗R SkT ∗M ⊗R CTM ) ,

for all k > 1, (here we denote by ηk := η×k ∈ T⊕kM,π(η)) satisfies S1 = 0,

Sk :=
i

(k + 1)!k!
Sym2,...,k+1 Θk (g) ,

for all k > 2, with Θ2 (g) := 2Rg and

Θk (g) := −2i
(
id∇

g

1

)k−3

(∇gRg)2

+

k−1∑
r=3

(r + 1)!

r−1∑
p=2

(
id∇

g

1

)k−1−r
(pSp ∧1 Sr−p+1) ,

for all k > 3 and the metric g satisfies the equations Circ Sym3,...,k+1 Θk (g) = 0
for all k > 4.

Proof If we write α = Hg − TΓ then the complex section S rewrites as
S := Γ+ iB. We set Sk = Γk+ iBk. From the proof of corollary 1 we know that
in the case J is integrable over U , the curve ψη is J-holomorphic if and only if
hold (3.9). The later rewrites as

Hg
η · η = −JηTη · η .

Using (1.7) we infer that the previous identity is equivalent to

Hg
η · η = αηB

−1
η · η . (3.11)

Taking dηπ on both sides of (3.11) we deduce η = B−1
η · η. Therefore (3.11) is

equivalent to the system 
Bη · η = η ,

Hg
η · η = αη · η .

(3.12)

Then the system (3.12) rewrites as
∑
k>1Bk

(
ηk+1

)
= 0 ,∑

k>1 Γk
(
ηk+1

)
= 0 .

and thus as Sk
(
ηk+1

)
= 0 for all k > 1. We remind now that, according

to theorem 2, the integrability of the structure J implies the condition S1 ∈

13



C∞(M,S2T ∗M ⊗R CTM ). We infer S1 = 0. We notice that with the notations
of the statement of theorem 2, the identity

βk
(
ηk+2

)
= 0 , (3.13)

hold for all k > 1, since every term in the definition of βk contains two alternat-
ing entries. So if we use the definition of S2 in the statement of theorem 2 we
infer S2

(
η3
)

= σ2

(
η3
)
, which implies σ2 = 0. We show now by induction that

σk = 0 for all k > 2. Indeed by the inductive assumption

Sk+1 =
i

(k + 2)!
Sym2,...,k+2 βk + σk+1 .

Using the identity (3.13), we infer Sk+1

(
ηk+2

)
= σk+1

(
ηk+2

)
. We deduce

σk+1 = 0. Using the identity

Sym2,...,k+1 Sym3,...,k+1 = (k − 1)! Sym2,...,k+1 , (3.14)

we infer from the statement of theorem 2 and with the notations there

Sk =
i

(k + 1)!k!
Sym2,...,k+1 θk−1,

for k > 2, with θ1 := 2Rg and

θk := −2i
(
id∇

g

1

)k−2

(∇gRg)2

+

k∑
r=3

(r + 1)!

r−1∑
p=2

(
id∇

g

1

)k−r
(pSp ∧1 Sr−p+1) ,

for all k > 2. Moreover we observe that the equation Circβk = 0, k > 3 rewrites
as

Circ Sym3,...,k+2 θk = 0 .

If we set Θk (g) := θk−1, for all k > 2 we obtain the required expansion.
On the other hand if the expansion in the statement of the lemma under

consideration hold then J is integrable thanks to theorem 2 and Sk
(
ηk+1

)
= 0,

for all k > 1, which is equivalent to (3.11) and so to the fact that the curves ψη
are J-holomorphic. �

We notice in particular that the equation Circ Sym3,4,5 Θ4 (g) = 0, writes as

Circ Sym3,4,5

[
3d∇

g

1 (∇gRg)2 − 2R̃g ∧1 R̃
g
]

= 0 , (3.15)

with R̃g := Sym2,3R
g. We will show below that the previous equation is an

identity.
We remind first the following elementary and well known fact.

Lemma 4 For any covariant derivative operator ∇ acting on the smooth sec-
tions of CTM and for any tensor θ ∈ C∞

(
X,T ∗,⊗qM ⊗CTM

)
holds the identity

Alt2∇2θ = R∇. θ. (3.16)
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Proposition 1 Let ∇ be a torsion free complex covariant derivative opera-
tor acting on the smooth sections of the bundle CTM with curvature operator
R∇ (·, ·) · ≡ R∇ (·, ·, ·). Let R̃∇ := Sym2,3R

∇. Then holds the identity

Circ Sym3,4,5

[
3d∇1

(
∇R∇

)
2
− 2R̃∇ ∧1 R̃

∇
]

= 0 . (3.17)

Proof We expand first the term

d∇1
(
∇R∇

)
2

(ξ1, ξ2, ξ3, ξ4, ξ5)

= ∇ξ1
(
∇R∇

)
2

(ξ2, ξ3, ξ4, ξ5)−∇ξ2
(
∇R∇

)
2

(ξ1, ξ3, ξ4, ξ5)

= ∇2R∇ (ξ1, ξ3, ξ2, ξ4, ξ5)−∇2R∇ (ξ2, ξ3, ξ1, ξ4, ξ5)

= ∇2R∇ (ξ1, ξ3, ξ2, ξ4, ξ5) +∇2R∇ (ξ2, ξ3, ξ4, ξ1, ξ5)

= ∇2R∇ (ξ3, ξ1, ξ2, ξ4, ξ5) +∇2R∇ (ξ3, ξ2, ξ4, ξ1, ξ5)

+ (R∇.R∇) (ξ1, ξ3, ξ2, ξ4, ξ5) + (R∇.R∇) (ξ2, ξ3, ξ4, ξ1, ξ5) ,

thanks to formula (3.16). Using the differential Bianchi identity we infer

d∇1
(
∇R∇

)
2

(ξ1, ξ2, ξ3, ξ4, ξ5)

= −∇2R∇ (ξ3, ξ4, ξ1, ξ2, ξ5)

+ (R∇.R∇) (ξ1, ξ3, ξ2, ξ4, ξ5) + (R∇.R∇) (ξ2, ξ3, ξ4, ξ1, ξ5) .

In order to simplify the notations in the computations that will follow we will
use from now on the identification

θ (ξ1, ξ2, ξ3, ξ4, ξ5) ≡ θ (12345) ,

for any tensor θ. We expand now the term

Circ Sym3,4,5 d
∇
1

(
∇R∇

)
2
.

We let
θ (12345) := ∇2R∇ (34125) ,
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and we observe the identities(
Sym3,4,5 θ

)
(12345) = ∇2R∇ (34125) +∇2R∇ (35124) +∇2R∇ (43125)

+ ∇2R∇ (45123) +∇2R∇ (53124) +∇2R∇ (54123) ,

(
Sym3,4,5 θ

)
(23145) = ∇2R∇ (14235) +∇2R∇ (15234) +∇2R∇ (41235)

+ ∇2R∇ (45231) +∇2R∇ (51234) +∇2R∇ (54231) ,

(
Sym3,4,5 θ

)
(31245) = ∇2R∇ (24315) +∇2R∇ (25314) +∇2R∇ (42315)

+ ∇2R∇ (45312) +∇2R∇ (52314) +∇2R∇ (54312) ,

Summing up we obtain(
Circ Sym3,4,5 θ

)
(12345)

= ∇2R∇ (34125) +∇2R∇ (14235) +∇2R∇ (24315)

+ ∇2R∇ (35124) +∇2R∇ (15234) +∇2R∇ (25314)

+ ∇2R∇ (43125)
1

+∇2R∇ (41235)
1

+∇2R∇ (42315)
1

+ ∇2R∇ (45123)
2

+∇2R∇ (45231)
2

+∇2R∇ (45312)
2

+ ∇2R∇ (53124)
3

+∇2R∇ (51234)
3

+∇2R∇ (52314)
3

+ ∇2R∇ (54123)
4

+∇2R∇ (54231)
4

+∇2R∇ (54312)
4
,

where we denote by ∇2R∇ (· · · · ·)
j

the terms that summed up together equal
zero thanks to the differential Bianchi identity for j = 1, 3 and thanks to the
algebraic Bianchi identity for j = 2, 4. Using formula (3.16) we infer(

Circ Sym3,4,5 θ
)

(12345)

= ∇2R∇ (43125)
1

+∇2R∇ (41235)
1

+∇2R∇ (42315)
1

+ ∇2R∇ (53124)
2

+∇2R∇ (51234)
2

+∇2R∇ (52314)
2

+ (R∇.R∇) (34125) + (R∇.R∇) (14235) + (R∇.R∇) (24315)

+ (R∇.R∇) (35124) + (R∇.R∇) (15234) + (R∇.R∇) (25314) ,
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where as before we denote by∇2R∇ (· · · · ·)
j

the terms that summed up together
equal zero thanks to the differential Bianchi identity. We deduce the expression(

Circ Sym3,4,5 θ
)

(12345)

= (R∇.R∇) (34125) + (R∇.R∇) (14235) + (R∇.R∇) (24315)

+ (R∇.R∇) (35124) + (R∇.R∇) (15234) + (R∇.R∇) (25314) . (3.18)

We set now for notation simplicity ρ := R∇.R∇ and let

Θ (12345) := ρ (13245) + ρ (23415) .

We observe that, by definition, the tensor

ρ ∈ C∞
(
M,Λ2T ∗M ⊗R Λ2T ∗M ⊗R T ∗M ⊗R CTM

)
,

satisfies the circular identity with respect to its last three entries. We expand
now the term

Circ Sym3,4,5 Θ .

We observe the identities(
Sym3,4,5 Θ

)
(12345) = ρ (13245) + ρ (23415)

+ ρ (13254) + ρ (23514)

+ ρ (14235) + ρ (24315)

+ ρ (14253) + ρ (24513)

+ ρ (15234) + ρ (25314)

+ ρ (15243) + ρ (25413) ,

(
Sym3,4,5 Θ

)
(23145) = ρ (21345) + ρ (31425)

+ ρ (21354) + ρ (31524)

+ ρ (24315) + ρ (34125)

+ ρ (24351) + ρ (34521)

+ ρ (25314) + ρ (35124)

+ ρ (25341) + ρ (35421) ,
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(
Sym3,4,5 Θ

)
(31245) = ρ (32145) + ρ (12435)

+ ρ (32154) + ρ (12534)

+ ρ (34125) + ρ (14235)

+ ρ (34152) + ρ (14532)

+ ρ (35124) + ρ (15234)

+ ρ (35142) + ρ (15432) .

Summing up we obtain(
Circ Sym3,4,5 Θ

)
(12345)

= ρ (13245)
1

+ ρ (23415)
2

+ ρ (21345)
3

+ ρ (31425)
1

+ ρ (32145)
2

+ ρ (12435)
3

+ ρ (13254)
4

+ ρ (23514)
5

+ ρ (21354)
6

+ ρ (31524)
4

+ ρ (32154)
5

+ ρ (12534)
6

+ ρ (14235)
7

+ ρ (24315)
8

+ ρ (24315)
8

+ ρ (34125)
9

+ ρ (34125)
9

+ ρ (14235)
7

+ ρ (14253)
7

+ ρ (24513)
8

+ ρ (24351)
8

+ ρ (34521)
9

+ ρ (34152)
9

+ ρ (14532)
7

+ ρ (15234)
10

+ ρ (25314)
11

+ ρ (25314)
11

+ ρ (35124)
12

+ ρ (35124)
12

+ ρ (15234)
10

+ ρ (15243)
10

+ ρ (25413)
11

+ ρ (25341)
11

+ ρ (35421)
12

+ ρ (35142)
12

+ ρ (15432)
10
,

where we denote by ρ (· · · · ·)
j

the terms that we sum up together using the
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symmetries of ρ. We obtain(
Circ Sym3,4,5 Θ

)
(12345)

= 2ρ (13245) + 2ρ (23415) + 2ρ (12435)

+ 2ρ (13254) + 2ρ (23514) + 2ρ (12534)

+ 3ρ (14235) + 3ρ (24315) + 3ρ (34125)

+ 3ρ (15234) + 3ρ (25314) + 3ρ (35124) .

We conclude the expression[
Circ Sym3,4,5 d

∇
1

(
∇R∇

)
2

]
(12345)

= 2ρ (13245) + 2ρ (23415) + 2ρ (12435)

+ 2ρ (13254) + 2ρ (23514) + 2ρ (12534)

+ 2ρ (14235) + 2ρ (24315) + 2ρ (34125)

+ 2ρ (15234) + 2ρ (25314) + 2ρ (35124) . (3.19)

We expand now the term

Circ Sym3,4,5(R̃∇ ∧1 R̃
∇) .

From now on we will denote for notation simplicity (123) ≡ R∇ (123) and

[123] := (123) + (132) .

We observe the identities[
Sym3,4,5(R̃∇ ∧1 R̃

∇)
]

(12345) = [1 [234] 5]− [2 [134] 5]

+ [1 [235] 4]− [2 [135] 4]

+ [1 [243] 5]− [2 [143] 5]

+ [1 [245] 3]− [2 [145] 3]

+ [1 [253] 4]− [2 [153] 4]

+ [1 [254] 3]− [2 [154] 3] ,
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[
Sym3,4,5(R̃∇ ∧1 R̃

∇)
]

(23145) = [2 [314] 5]− [3 [214] 5]

+ [2 [315] 4]− [3 [215] 4]

+ [2 [341] 5]− [3 [241] 5]

+ [2 [345] 1]− [3 [245] 1]

+ [2 [351] 4]− [3 [251] 4]

+ [2 [354] 1]− [3 [254] 1] ,

[
Sym3,4,5(R̃∇ ∧1 R̃

∇)
]

(31245) = [3 [124] 5]− [1 [324] 5]

+ [3 [125] 4]− [1 [325] 4]

+ [3 [142] 5]− [1 [342] 5]

+ [3 [145] 2]− [1 [345] 2]

+ [3 [152] 4]− [1 [352] 4]

+ [3 [154] 2]− [1 [354] 2] .

Summing up using the symmetries of [· · · ] and (· · · ) we obtain[
Circ Sym3,4,5(R̃∇ ∧1 R̃

∇)
]

(12345)

= 6 [1 (234) 5] + 6 [2 (314) 5] + 6 [3 (124) 5]

+ 6 [1 (235) 4] + 6 [2 (315) 4] + 6 [3 (125) 4]

+ 2 [1 [245] 3]
1
− 2 [2 [145] 3]

2

+ 2 [2 [345] 1]
3
− 2 [3 [245] 1]

1

+ 2 [3 [145] 2]
2
− 2 [1 [345] 2]

3
.

We combine now the terms [·[· · · ]·]
j

for each j = 1, 2, 3 and we explicit and
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simplify them by using the algebraich Bianchi identity. We obtain[
Circ Sym3,4,5(R̃∇ ∧1 R̃

∇)
]

(12345)

= 6 [1 (234) 5] + 6 [2 (314) 5] + 6 [3 (124) 5]

+ 6 [1 (235) 4] + 6 [2 (315) 4] + 6 [3 (125) 4]

+ 6 (13 [245]) + 6 (32 [145]) + 6 (21 [345]) .

Expanding further we obtain the complete expansion[
Circ Sym3,4,5(R̃∇ ∧1 R̃

∇)
]

(12345)

= 6 (1 (234) 5) + 6 (15 (234))

+ 6 (2 (314) 5) + 6 (25 (314))

+ 6 (3 (124) 5) + 6 (35 (124))

+ 6 (1 (235) 4) + 6 (14 (235))

+ 6 (2 (315) 4) + 6 (24 (315))

+ 6 (3 (125) 4) + 6 (34 (125))

+ 6 (13 (245)) + 6 (13 (254))

+ 6 (32 (145)) + 6 (32 (154))

+ 6 (21 (345)) + 6 (21 (354)) .

Expanding the terms ρ present in the expression (3.19) we obtain the complete
expansion of the term{

Circ Sym3,4,5

[
3d∇1

(
∇R∇

)
2
− 2R̃∇ ∧1 R̃

∇
]}

(12345) ,
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given by {
Circ Sym3,4,5

[
3d∇1

(
∇R∇

)
2
− 2R̃∇ ∧1 R̃

∇
]}

(12345)

= 6 (13 (245))
1
− 6 ((132) 45)

2
− 6 (2 (134) 5)

3
− 6 (24 (135))

4

+ 6 (23 (415))
5
− 6 ((234) 15)

6
− 6 (4 (231) 5)

2
− 6 (41 (235))

7

+ 6 (12 (435))
8
− 6 ((124) 35)

9
− 6 (4 (123) 5)

2
− 6 (43 (125))

10

+ 6 (13 (254))
11
− 6 ((132) 54)

12
− 6 (2 (135) 4)

13
− 6 (25 (134))

14

+ 6 (23 (514))
15
− 6 ((235) 14)

16
− 6 (5 (231) 4)

12
− 6 (51 (234))

17

+ 6 (12 (534))
18
− 6 ((125) 34)

19
− 6 (5 (123) 4)

12
− 6 (53 (124))

20

+ 6 (14 (235))
7
− 6 ((142) 35)

9
− 6 (2 (143) 5)

3
− 6 (23 (145))

5

+ 6 (24 (315))
4
− 6 ((243) 15)

6
− 6 (3 (241) 5)

9
− 6 (31 (245))

1

+ 6 (34 (125))
10
− 6 ((341) 25)

3
− 6 (1 (342) 5)

6
− 6 (12 (345))

8

+ 6 (15 (234))
17
− 6 ((152) 34)

19
− 6 (2 (153) 4)

13
− 6 (23 (154))

15

+ 6 (25 (314))
14
− 6 ((253) 14)

16
− 6 (3 (251) 4)

19
− 6 (31 (254))

11

+ 6 (35 (124))
20
− 6 ((351) 24)

13
− 6 (1 (352) 4)

16
− 6 (12 (354))

18

− 12 (1 (234) 5)
6
− 12 (15 (234))

17

− 12 (2 (314) 5)
3
− 12 (25 (314))

14

− 12 (3 (124) 5)
9
− 12 (35 (124))

20

− 12 (1 (235) 4)
16
− 12 (14 (235))

7

− 12 (2 (315) 4)
13
− 12 (24 (315))

4

− 12 (3 (125) 4)
19
− 12 (34 (125))

10
− 12 (13 (245))

1
− 12 (13 (254))

11

− 12 (32 (145))
5
− 12 (32 (154))

15
− 12 (21 (345))

8
− 12 (21 (354))

18
,
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where as before we denote by (· · · · ·)
j

the terms that we sum up together using

the symmetries of the curvature tensor R∇. All the terms summed up together
cancel up. This is obvoious for all the sub indexes j with the exeption of
j = 3, 6, 9, 13, 16, 19 for which me must provide the detail of the computation.
Indeed for j = 3 we have

−6 ((341) 25)− 6 (2 (134) 5)− 6 (2 (143) 5)− 12 (2 (314) 5)

= 6 (2 (341) 5) + 6 (2 (413) 5)− 6 (2 (314) 5)

= −6 (2 (134) 5)− 6 (2 (314) 5)

= 0 .

For j = 6 we have

−12 (1 (234) 5)− 6 ((234) 15)− 6 ((243) 15)− 6 (1 (342) 5)

= 6 (1 (243) 5) + 6 (1 (432) 5)− 6 (1 (234) 5)

= −6 (1 (324) 5)− 6 (1 (234) 5)

= 0 .

For j = 9 we have

−6 ((124) 35)− 6 ((142) 35)− 6 (3 (241) 5)− 12 (3 (124) 5)

= 6 (3 (142) 5) + 6 (3 (421) 5)− 6 (3 (124) 5)

= −6 (3 (214) 5)− 6 (3 (124) 5)

= 0 .

For j = 13 we have

−6 ((351) 24)− 6 (2 (135) 4)− 6 (2 (153) 4)− 12 (2 (315) 4)

= 6 (2 (351) 4) + 6 (2 (513) 4)− 6 (2 (315) 4)

= −6 (2 (135) 4)− 6 (2 (315) 4)

= 0 .
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For j = 16 we have

−12 (1 (235) 4)− 6 ((235) 14)− 6 ((253) 14)− 6 (1 (352) 4)

= 6 (1 (253) 4) + 6 (1 (532) 4)− 6 (1 (235) 4)

= −6 (1 (325) 4)− 6 (1 (235) 4)

= 0 .

For j = 19 we have

−6 ((125) 34)− 6 ((152) 34)− 6 (3 (251) 4)− 12 (3 (125) 4)

= 6 (3 (152) 4) + 6 (3 (521) 4)− 6 (3 (125) 4)

= −6 (3 (215) 4)− 6 (3 (125) 4)

= 0 .

We infer the required identity (3.17). �

4 General connections over vector bundles

4.1 Basic definitions

Definition 3 Let (E, πE ,M) be a smooth vector bundle over a manifold M . A
connection form over E is a section γ ∈ C∞ (E, T ∗E ⊗ TE) such that dπE ·γ = 0
and γ|Ker dπE = IKer dπE .

We will denote by γη the connection form γ evaluated at the point η ∈ E.

Lemma 5 For any connection γ ∈ C∞ (E, T ∗E ⊗ TE) the map

dηπE|Ker γη : Ker γη −→ TM,πE(η) , (4.1)

is an isomorphism for all η ∈ E.

Proof The assumption γ|Ker dπE = IKer dπE implies γ · (ITE − γ) = 0. Thus
Im (ITE − γ) ⊆ Ker γ. Then Im (ITE − γ) = Ker γ. Indeed if γ (u) = 0 then
u = (ITE − γ)u. On the other hand we notice that the condition dπE · γ = 0
implies dπE · (ITE − γ) = dπE and thus

dηπE|Ker γη · (ITE − γ) = dπE . (4.2)

This equality shows that the map (4.1) is surjective. The injectivity follows from
the fact that if u, v ∈ Ker γη and dηπE (u− v) = 0 then u − v = γ (u− v) = 0
by the assumption γ|Ker dπE = IKer dπE . �
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We denote by Hγ
η := (dηπE|Ker γη )−1 the horizontal map. We deduce the

existence of a section

Hγ = C∞ (E, π∗ET
∗
M ⊗ TE) ,

such that dπE · Hγ = Iπ∗ETM
. (We notice that dπE ∈ C∞ (E, T ∗E ⊗ π∗ETM )).

Composing both sides of (4.2) with Hγ
η we infer

γ = ITE −Hγ · dπE ,

and the smooth vector bundle decomposition TE = Ker dπE ⊕Ker γ.
The data of a connection form γ is equivalent with the data of a horizontal

form Hγ . The connection form is called linear if the horizontal form Hγ satisfies

d(η1,η2) (sm
E

) · (Hγ
η1 ⊕H

γ
η2) = Hγ

η1+η2 ,

Hγ
λη = dη (λIE) ·Hγ

η ,

where sm
E

: E ⊕ E −→ E is the sum bundle map where η1, η2, η ∈ E with
πE (η1) = πE (η2), and λ is a scalar.

Definition 4 The curvature form θγ ∈ C∞
(
E,Λ2T ∗E ⊗ TE

)
of a connection

form γ is defined as

θγ(ξ1, ξ2) := −γ[(ITE − γ) ξ1 , (ITE − γ) ξ2] ,

for all ξ1, ξ2 ∈ C∞ (E, TE).

The definition is tensorial. Indeed if f ∈ C∞ (E,R) then

[(ITE − γ) fξ1 , (ITE − γ) ξ2] = f [(ITE − γ) ξ1 , (ITE − γ) ξ2]

− [(ITE − γ) ξ2 . f ] (ITE − γ) ξ1 .

The conclusion follows from the fact that γ · (ITE − γ) = 0. We notice that

θγ ∈ C∞
(
E,Λ2 (Ker γ)

∗ ⊗Ker dπ
)
,

and such element is uniquely determined by the curvature field Θγ defined as

Θγ(ξ1, ξ2) (η) := T−1
η θγη (Hγ

η ξ1, H
γ
η ξ2) ,

for all ξ1, ξ2 ∈ TM,πE(η). In the case γ is linear then

Θγ ∈ C∞
(
M,Λ2T ∗M ⊗ End (E)

)
,

is called the curvature operator. The terminology is consistent with the fact
that if we denote by∇γ the covariant derivative associated to γ then the identity
R∇

γ

= Θγ holds, thanks to lemma 19 in the appendix.
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4.2 Parallel transport

Given any horizontal form α ∈ C∞ (E, π∗T ∗M ⊗R TE) over a vector bundle E,
the parallel transport with respect to α is defined as follows. We consider a
smooth curve c : (−ε, ε) −→ M and the section σ ∈ C1 ((−ε, ε) , c∗E) which
satisfies the equation

σ̇ = (α ◦ σ) · ċ ,

over (−ε, ε) with σ (0) = η ∈ Ec(0). We define the parallel transport map
ταc,t : Ec(0) −→ Ec(t), t ∈ (−ε, ε) along c with respect to α as ταc,t (η) = σ (t).

We consider now a C1-vector field ξ over M and let ϕξ,t be the associated
1-parameter sub-group of transformations of M . Let Φαξ,t : E −→ E be the
parallel transport map along the flow lines of ϕξ,t. In equivalent terms the map
Φαξ,t is determined by the ODE

Φ̇αξ,t =
(
α ◦ Φαξ,t

)
· (ξ ◦ ϕξ,t ◦ πE) ,

with initial condition Φαξ,0 ≡ IE . We observe that by definition of parallel
transport, the map Φαξ,t satisfies πE ◦ Φαξ,t = ϕξ,t ◦ πE . This follows also from
the equalities (

dπE ◦ Φαξ,t
)
· Φ̇αξ,t = ξ ◦ ϕξ,t ◦ πE

= ϕ̇ξ,t ◦ πE .

Moreover the vector field Ξα := α · (ξ ◦ πE) over E satisfies Φ̇αξ,t = Ξα ◦ Φαξ,t.
Indeed

Ξα ◦ Φαξ,t =
(
α ◦ Φαξ,t

)
·
(
ξ ◦ πE ◦ Φαξ,t

)
=

(
α ◦ Φαξ,t

)
· (ξ ◦ ϕξ,t ◦ πE) .

We deduce that t 7−→ Φαξ,t is also a 1-parameter sub-group of transformations
of E.

4.3 The geometric meaning of the curvature field

The following result provides a clear geometric meaning of the curvature field.

Lemma 6 Let (E, πE ,M) be a smooth vector bundle over a manifold M and
consider a horizontal form α ∈ C∞ (E, π∗T ∗M ⊗R TE) over bundle E. Then the
curvature field Θα associated to α satisfies

Θα(ξ1, ξ2) (η) = T−1
η

∂2

∂t∂s |t=s=0

(
Φαξ1,−s ◦ Φαξ2,−t ◦ Φαξ1,s ◦ Φαξ2,t (η)

)
.

for any ξ1, ξ2 ∈ C∞ (M,TM ) such that [ξ1, ξ2] ≡ 0 and for any η ∈ E.
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Proof We observe first that if we have a family of transformations (Ψs)s over
a manifold with Ψ0 = id and a curve c then

d

ds |s=0

Ψs (cs) = Ψ̇0 (c0) + dΨ0 (ċ0)

= Ψ̇0 (c0) + ċ0.

Applying the last equality to Ψs = ϕξ2,−s and cs := ϕξ1,−t ◦ ϕξ2,s ◦ ϕξ1,t, we
infer

d

ds |s=0

(ϕξ2,−s ◦ ϕξ1,−t ◦ ϕξ2,s ◦ ϕξ1,t) = −ξ2 +
d

ds |s=0

(ϕξ1,−t ◦ ϕξ2,s ◦ ϕξ1,t) ,

and thus

[ξ1, ξ2] =
d

dt |t=0

d

ds |s=0

(ϕξ1,−t ◦ ϕξ2,s ◦ ϕξ1,t)

=
d

dt |t=0

d

ds |s=0

(ϕξ2,−s ◦ ϕξ1,−t ◦ ϕξ2,s ◦ ϕξ1,t) .

In a similar way

[Ξα2 ,Ξ
α
1 ] =

d

dt |t=0

d

ds |s=0

(
Φαξ1,−s ◦ Φαξ2,−t ◦ Φαξ1,s ◦ Φαξ2,t

)
,

with Ξαj := α · (ξj ◦ πE), j = 1, 2. Let η ∈ Ep and observe that

Φαξ1,−s ◦ Φαξ2,−t ◦ Φαξ1,s ◦ Φαξ2,t(η) ∈ Ep ,

for all parameters t, s, since ϕξ1,−s ◦ ϕξ2,−t ◦ ϕξ1,s ◦ ϕξ2,t (p) = p thanks to the
assumption [ξ1, ξ2] ≡ 0. We conclude the required geometric identity �

4.4 Comparison of the curvature fields of two connections

We consider now two connection forms γj , j = 1, 2 over E and let αj := Hγj

be the corresponding horizontal forms. The fact that dπE (α1 − α2) = 0 implies
that there exist a section

B := T−1 (α1 − α2) ∈ C∞
(
E, π∗E (T ∗M ⊗ E)

)
,

which satisfies

γ1 = γ2 − TB · dπE .

We want to compare the curvature fields Θj := Θγj . We will denote by abuse
of notations αjξ ≡ αj · (ξ ◦ πE) and Bξ ≡ B · (ξ ◦ πE) for any ξ ∈ C∞ (M,TM ).

Lemma 7 In the above set up, the identity

Θ1 (ξ1, ξ2) = (Θ2 −B¬DB) (ξ1, ξ2)

− T−1
([
α2ξ1, TB ξ2

]
− [α2ξ2, TBξ1]

)
+B [ξ1, ξ2] , (4.3)

holds for any ξ1, ξ2 ∈ C∞ (M,TM ).
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Proof We notice first the equalities

TΘ1 (ξ1, ξ2) = θγ1(α1ξ1, α1ξ2)

= −γ1

[
α1ξ1, α1 ξ2

]
= −γ2

[
α1ξ1, α1 ξ2

]
+ TB · dπE

[
α1ξ1, α1 ξ2

]
= TΘ2 (ξ1, ξ2)

− γ2

([
α2ξ1, TB ξ2

]
+ [TBξ1, α2ξ2] + [TBξ1, TBξ2]

)
+ TB [ξ1, ξ2] .

In the last line we use the well known identity dπE [α1ξ1, α1ξ2] = [ξ1, ξ2] ◦ πE ,
which follows from the fact that dπEα1ξj = ξj ◦ πE , j = 1, 2. Let now ΦTBξ2,t
be the 1-parameter sub-group of transformations of E associated to the vertical
vector field TBξ2. It satisfies πE ◦ΦTBξ2,t = πE . Using the standard expression
of the Lie bracket

[α2ξ1, TBξ2] =
d

dt |t=0

d

ds |s=0

(
Φα2

ξ1,−t ◦ ΦTBξ2,s ◦ Φα2

ξ1,t

)
,

we deduce that this vector field is vertical. In the same way [TBξ1, α2ξ2] is

vertical. It is obvious that the vector field
[
TBξ1, TB ξ2

]
is also vertical. We

infer the identity

TΘ1 (ξ1, ξ2) = TΘ2 (ξ1, ξ2)−
[
TBξ1, TB ξ2

]
−

[
α2ξ1, TB ξ2

]
− [TBξ1, α2ξ2] + TB [ξ1, ξ2] .

The required formula (4.3) follows from the identity

[TBξ1, TBξ2] = T (B¬DB) (ξ1, ξ2) , (4.4)

that we show now. We remind first that for any vector space V , the canonical
translation operator T : C∞ (V, V ) −→ C∞ (V, TV ) defined as (Tξ) (v) := Tvξv
is a Lie algebra isomorphism, where the Lie algebra structure over C∞ (V, V )
is defined by [ξ, η]v := Dvη · ξv − Dvξ · ηv. Indeed if we define the action of
C∞ (V, V ) over C∞ (V,R) as

(ξ.f) (v) := Dvf · ξv

=
d

dt |t=0

f (v + tξv)

= [(Tξ) .f ] (v) ,
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then

(ξ.η.f) (v) =
d

dt |t=0

(η.f) (v + tξv)

=
d

dt |t=0

(
Dv+tξvf · ηv+tξv

)
= D2

vf (ξv, ηv) +Dvf ·Dvη · ξv.

The fact that the bilinear form D2
vf is symmetric implies

ξ.η.f − η.ξ.f = [ξ, η].f.

On the other hand by definition

Tξ.Tη.f − Tη.Tξ.f = ξ.η.f − η.ξ.f,

[ξ, η].f = T [ξ, η].f.

We conclude the required identity [Tξ, Tη] = T [ξ, η]. We apply this remark to
our set-up. For any point p ∈ M , we denote by Bξ (p) ∈ C∞ (Ep, Ep) the map
η ∈ Ep 7−→ Bηξ (p) ∈ Ep and we denote by TBξ (p) ∈ C∞

(
Ep, TEp

)
the section

η ∈ Ep 7−→ TηBηξ (p) ∈ TEp,η. Then for any η ∈ Ep

[TBξ1, TBξ2]η =
[
TBξ1 (p) , TBξ2 (p)

]
η

= Tη

[
Bξ1 (p) , Bξ2 (p)

]
η

= Tη

[
DηB (Bηξ1 (p)) ξ2 (p)−DηB (Bηξ2 (p)) ξ1 (p)

]
,

which shows (4.4). �

We notice now that for any covariant derivative ∇ over E, the identity (8.8)
rewrites as [

H∇ξ , T π∗Es
]

= T π∗E (∇ξs) , (4.5)

for any vector field ξ ∈ C∞ (M,TM ) and any section s ∈ C∞ (M,E). We need
to show the following more general formula.

Lemma 8 Let (E, πE ,M) be a smooth vector bundle over a manifold M and let
∇ be a covariant derivative operator acting on the smooth sections of E. Then
the equality hold [

H∇ξ , T σ
]

= T∇πE
H∇ξ

σ , (4.6)

for any vector field ξ ∈ C∞ (M,TM ) and for any section σ ∈ C∞ (E, π∗EE).

We observe that (4.6) implies (4.5), since ∇πE
H∇ξ

σ = π∗E (∇ξs), thanks to the

functorial property (8.6).
Proof In order to show the identity (4.6) we notice first that the assumption
σ ∈ C∞ (E, π∗EE) means that σ is a map σ : E −→ E such that πE ◦ σ = πE .
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Then the 1-parameter subgroup of transformations of E associated to the vector
field Tσ satisfies ΦTσ,t (η) = η+tσ (η). Moreover with the notations in the proof
of identity (8.8)[

H∇ξ , T σ
]

=
d

dt |t=0

d

ds |s=0

(Φξ,−t ◦ ΦTσ,s ◦ Φξ,t) .

The fact that Φξ,−t is linear on the fibers of E implies

Φξ,−t ◦ ΦΣ,s ◦ Φξ,t = Φξ,−t [Φξ,t + sσ ◦ Φξ,t]

= IE + sΦξ,−t · σ ◦ Φξ,t .

We infer

d

ds |s=0

(Φξ,−t ◦ ΦTσ,s ◦ Φξ,t) (η) = TηΦξ,−t · σ ◦ Φξ,t (η) ,

for any η ∈ Ep. We observe that σ ◦ Φξ,t (η) ∈ Eϕξ,t(p). Indeed using the
property πE ◦ σ = πE we deduce

πE ◦ σ ◦ Φξ,t (η) = πE ◦ Φξ,t (η)

= ϕξ,t (p) .

We remind now that if t 7−→ ηt ∈ E is a smooth curve such that ct := πE (ηt)
then

T−1
η0 γ

∇
η0 η̇0 =

d

dt |t=0

(
τ−1
c,t ηt

)
,

thanks to formula (8.7). We apply the previous identity to the curve ηt :=
σ ◦ Φξ,t (η) ∈ Eϕξ,t(p). We obtain

T−1
σ(η)γ

∇
σ(η)

d

dt |t=0

[
σ ◦ Φξ,t (η)

]
=

d

dt |t=0

[
Φξ,−t · σ ◦ Φξ,t (η)

]
= T−1

η

[
H∇ξ , T σ

]
(η) .

Moreover

d

dt |t=0

[
σ ◦ Φξ,t (η)

]
= dησ · Φ̇ξ,0 (η)

= dησ ·H∇η ξ (p) .

We conclude the equality

T−1
σ(η)γσ(η)dησ ·H∇η ξ (p) = T−1

η

[
H∇ξ , T σ

]
(η) ,

which represents the required formula (4.6). �

We can show now the following result.
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Lemma 9 Let (E, πE ,M) be a smooth vector bundle over a manifold M and let
∇ and ∇TM be covariant derivative operators acting respectively on the smooth
sections of the bundles E and TM .

Then for any section B ∈ C∞ (E, π∗E (T ∗M ⊗ E)) the curvature field Θα of
the horizontal form α := H∇ + TB satisfies

Θα = −H∇¬∇T
∗
M⊗E,πEB −B¬DB −Bτ∇

TM
+R∇, (4.7)

where ∇T∗M⊗E,πE is the covariant derivative acting on the smooth sections of

the bundle π∗E (T ∗M ⊗ E), induced by ∇ and ∇TM and where τ∇
TM is the torsion

form of ∇TM .

Proof In the case α2 = H∇ in the identity (4.3) we can apply the formula
(4.6) to the sections Bξj ∈ C∞ (E, π∗EE). We obtain

Θ1 (ξ1, ξ2) =
(
R∇ −B¬DB

)
(ξ1, ξ2)

− ∇πE
H∇ξ1

(Bξ2) +∇πE
H∇ξ2

(Bξ1) +B [ξ1, ξ2] .

Using functorial properties of the pull-back we have (with no abuse of the no-
tations)

∇πE
H∇ξ1

(B · π∗E ξ2) = ∇T
∗
M⊗E,πE
H∇ξ1

B · π∗E ξ2 +B · ∇TM ,πE
H∇ξ1

(π∗E ξ2)

= ∇T
∗
M⊗E,πE
H∇ξ1

B · π∗E ξ2 +B · π∗E(∇TMξ1 ξ2) .

We conclude by (4.3) that if α1 = α = H∇+TB then the curvature field Θα of
α satisfies the identity

Θα (ξ1, ξ2) =
(
R∇ −B¬DB

)
(ξ1, ξ2)

− ∇T
∗
M⊗E,πE
H∇ξ1

Bξ2 +∇T
∗
M⊗E,πE
H∇ξ2

Bξ1 −Bτ∇
TM

(ξ1, ξ2) ,

We infer the required formula (4.7). �

5 First reduction of the integrability equations

Proof of theorem 1.
Proof Let γA be the connection form associated to the horizontal form A.
Then the integrability of JA is equivalent to the condition

γA[Aξ1, Aξ2] = 0, (5.1)

for all smooth complex vector fields ξ1, ξ2 over M . (We remind here the use of
the abusive notation Aξ ≡ A (ξ ◦ π)). We denote respectively by ΘA and Θα

the curvature fields of the horizontal distributions A and α. The integrability
condition (5.1) is equivalent to the condition ΘA ≡ 0. Then applying the identity
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(4.3) with α1 = A, α2 = α and separating real and imaginary parts we deduce
that the integrability of JA is equivalent to the system Θα +B¬DB = 0 ,

TB[ξ1, ξ2] = [αξ1, TBξ2]− [αξ2, TBξ1] .
(5.2)

Using the formula (4.7) in the case E = TM and ∇ = ∇TM we can write the
previous equation of the system (5.2) as

H∇¬∇End(TM ),πΓ− Γ¬DΓ + Γτ∇ +B¬DB +R∇ = 0 .

We rewrite the second equation of the system (5.2) as

TB[ξ1, ξ2] =
[
H∇ξ1, T Bξ2

]
− [TΓξ1, TBξ2]

−
[
H∇ξ2, T Bξ1

]
+ [TΓξ2, TBξ1] .

Using formula (4.6) we infer

B[ξ1, ξ2] = ∇End(TM ),π

H∇ξ1
Bξ2 −∇End(TM ),π

H∇ξ2
Bξ1 +B

(
∇ξ1ξ2 −∇ξ2ξ1

)
− DB (Γξ1) ξ2 +DΓ (Bξ2) ξ1

+ DB (Γξ2) ξ1 −DΓ (Bξ1) ξ2 ,

which rewrites as

H∇¬∇End(TM ),πB − Γ¬DB −B¬DΓ +Bτ∇ = 0 .

We conclude that the system (5.2) is equivalent to the system H∇¬∇End(TM ),πΓ− Γ¬DΓ + Γτ∇ +B¬DB +R∇ = 0 ,

H∇¬∇End(TM ),πB − Γ¬DB −B¬DΓ +Bτ∇ = 0 .
(5.3)

It follows that, using the identification S = Γ+iB, the system (5.3) is equivalent
to the complex equation (1.8). �

Remark 1 We notice that in the case (α,B) =
(
H∇, Iπ∗TM

)
, i.e. in the case

JA = JH∇ , the system (5.3) reduces to R∇ = 0 ,

τ∇ = 0 .

In this way we re-obtain the statement of lemma 1.
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Lemma 10 Under the assumptions of the theorem 2 the M -totally real almost
complex structure JA is integrable over U if and only if

S1 ∈ C∞
(
M,S2T ∗M ⊗R CTM

)
,

( i.e. ∇S1 is torsion free ),

R∇
S1

= −2iAlt2 S2 , (5.4)[
d∇

S1

1 Sk +

k−1∑
p=2

pSp ∧1 Sk−p+1 + i (k + 1) Alt2 Sk+1

] (
ξ1, ξ2, η

k
)

= 0 . (5.5)

for all k > 2 and for all ξ1, ξ2, η ∈ TM,π(η).

Proof In the case the connection ∇ is torsion free the equation (1.8) reduces
to

H∇¬∇End(TM ),πS − S¬DS +R∇ = 0 . (5.6)

The identification Sk,η · ξ ≡ Sk
(
ξ, ηk

)
shows that Sk,η ∈ T ∗M,π(η) ⊗ CTM,π(η),

i.e.

Sk ∈ C∞
(
TM , π

∗ (T ∗M ⊗R CTM )
)
,

and
S =

∑
k>0

Sk . (5.7)

We remind the formula

∇πH∇ξ1 (Sk · ξ2) = ∇End(TM ),π

H∇ξ1
Sk · ξ2 + Sk · ∇ξ1ξ2 ,

for any vector field ξ1, ξ2 over M . On the other hand, by definition

∇πH∇ξ1 (Sk · ξ2)|η

= T−1
Sk(ξ2,ηk)

γ∇Sk(ξ2,ηk)dη (Sk · ξ2)
(
H∇ξ1

)
= T−1

Sk(ξ2,ηk)
γ∇Sk(ξ2,ηk)

d

dt |t=0

[
Sk

(
ξ2 ◦ ϕξ1,t ◦ π (η) ,Φξ1,t (η)

k
) ]

.

Let now η be the vector field over Im (ϕξ1,• ◦ π (η)) defined by

η (ϕξ1,t ◦ π (η)) = Φξ1,t (η) .

Then

∇πH∇ξ1 (Sk · ξ2)|η = ∇ξ1
[
Sk
(
ξ2, η

k
)]
|π(η)

= ∇ξ1Sk
(
ξ2 ◦ π (η) , ηk

)
+ Sk

(
∇ξ1ξ2|π(η), η

k
)
,

since ∇ξ1η = 0. We conclude the identity(
∇End(TM ),π

H∇ξ1
Sk
)
|η
· ξ2 = ∇ξ1Sk

(
ξ2, η

k
)
,
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ξ1, ξ2 ∈ TM,π(η). We infer the formula

H∇¬∇End(TM ),πSk = d∇1 Sk , (5.8)

We notice now the equalities

DηSk (v) · ξ =
d

dt |t=0

[
Sk

(
ξ , (η + tv)

k
) ]

=

k∑
j=1

Sk
(
ξ, ηj−1, v, ηk−j

)
= kSk

(
ξ, v, ηk−1

)
,

and

(Sl¬DSk)|η (ξ1, ξ2) = kSk
(
ξ2,Sl,η · ξ1, ηk−1

)
− kSk

(
ξ1,Sl,η · ξ2, ηk−1

)
.

We infer the equality

(Sl¬DSk)|η (ξ1, ξ2) = −k (Sk ∧1 Sl)
(
ξ1, ξ2, η

k+l−1
)
. (5.9)

Let W ⊂ U be any set containing the zero section of TM such that W ∩ TM,p is
a neighborhood of 0p for any p ∈M and such that the fiberwise expansion (5.7)
converges over W ∩ TM,p. The fact that by assumption U ∩ TM,p is connected
implies by the fiberwise real analyticity of S that S is a solution of (5.6) over U
if and only if it satisfies (5.6) over W .

Using (5.8) we can write the equation (5.6) under the form∑
k>1

d∇1 Sk −
∑
l,p>0

(Sl¬DSp) +R∇ = 0 , (5.10)

over W . We decompose the sum∑
l,p>0

(Sl¬DSp)

=
∑

l>0,p>1

(Sl¬DSp)

=
∑
l,p>1

(Sl¬DSp) + i
∑
k>0

(ITM¬DSk+1)

=
∑
k>1

k∑
p=1

(Sk−p+1¬DSp) + i
∑
k>0

(ITM¬DSk+1)

= −
∑
k>1

k∑
p=1

p (Sp ∧1 Sk−p+1)− i
∑
k>0

(k + 1) (Sk+1 ∧1 ITM ) ,
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thanks to the equality (5.9). If we denote by degηthe degree with respect to the
fibre variable η ∈ Eπ(η) we have

degη d
∇
1 Sk = degη (Sp ∧1 Sk−p+1) = k,

degη (Sk+1 ∧1 ITM ) = k,

degη R
∇ = 1.

Thus by homogeneity the equation (5.10) is equivalent to the countable system

S1 ∧1 ITM = 0 ,

d∇1 S1 + S1 ∧1 S1 + 2iS2 ∧1 ITM +R∇ = 0 ,[
d∇1 Sk +

∑k
p=1 p (Sp ∧1 Sk−p+1) + i (k + 1)Sk+1 ∧1 ITM

] (
ξ1, ξ2, η

k
)

= 0 ,

∀k > 2 , ∀ξ1, ξ2, η ∈ TM .
(5.11)

The first equation in the system means S1 ∈ C∞
(
M,S2T ∗M ⊗R CTM

)
, i.e. the

complex connection ∇S1 is torsion free. The second equation in the system
(5.11) rewrites as (5.4). We show now that the equation for k > 2 in the system
(5.11) rewrites as (5.5). Indeed using the formula

∇Γ
ξ θ (v1, . . . , vp) = ∇ξθ (v1, . . . , vp) + Γ (ξ, θ (v1, . . . , vp))

−
p∑
j=1

θ (v1, . . . , vj−1,Γ (ξ, vj) , vj+1, . . . , vp) ,

where Γ ∈ C∞(M,T ∗,⊗2
M ⊗

R
CTM ), θ ∈ C∞

(
M,T ∗,⊗pM ⊗

R
CTM

)
and ξ, vk ∈

TM , we infer

d∇
S1

1 Sk
(
ξ1, ξ2, η

k
)

= ∇ξ1Sk
(
ξ2, η

k
)
−∇ξ2Sk

(
ξ1, η

k
)

+ S1

(
ξ1, Sk

(
ξ2, η

k
))
− Sk

(
S1 (ξ1, ξ2) , ηk

)
− kSk

(
ξ2, S1 (ξ1, η) , ηk−1

)
− S1

(
ξ2, Sk

(
ξ1, η

k
))

+ Sk
(
S1 (ξ2, ξ1) , ηk

)
+ kSk

(
ξ1, S1 (ξ2, η) , ηk−1

)
=

[
d∇1 Sk + S1 ∧1 Sk + k Sk ∧1 S1

] (
ξ1, ξ2, η

k
)
,

since S1 is symmetric and Sk is symmetric in the last k variables. We conclude
(5.5). �

Remark 2 In the case Sk = 0, for all k > 2, the previous system reduces to
the equation

d∇1 S1 + S1 ∧1 S1 +R∇ = 0 . (5.12)
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The equation (5.12) means that the complex connection ∇S1 acting on sections
of CTM is flat. In the case B = Iπ∗TM , the second equation in the system (5.11)
implies

d∇1 Γ1 + Γ1 ∧1 Γ1 +R∇ = 0 ,

with Γ1 := S1. This means that the real connection ∇Γ1 is flat.

6 Second reduction of the integrability equa-
tions

In this section we will prove the following result.

Proposition 2 Under the assumptions of the theorem 2 the M -totally real al-
most complex structure JA is integrable over U if and only if

S1 ∈ C∞
(
M,S2T ∗M ⊗R CTM

)
, i.e. ∇S1 is torsion free,

S2 = S0
2 + σ2 ,

S0
2 (ξ1, ξ2, ξ3) :=

i

6

[
R∇

S1
(ξ1, ξ2) ξ3 +R∇

S1
(ξ1, ξ3) ξ2

]
,

σ2 ∈ C∞
(
M ,S3T ∗M ⊗R CTM

)
,

S3 =
i

3
∇S1σ2 +

1

4!3
Sym2,3,4(∇S1R∇

S1
)2 + σ3 ,

σ3 ∈ C∞
(
M ,S4T ∗M ⊗R CTM

)
,

(∇S1R∇
S1

)2 (ξ1, ξ2, ξ3, ξ4) := ∇S1

ξ2
R∇

S1
(ξ1, ξ3) ξ4, for all ξ1, ξ2, ξ3, ξ4 ∈ TM,π(ξ1)

and for all k > 3,[
d∇

S1

1 Sk +

k−1∑
p=2

pSp ∧1 Sk−p+1 + i (k + 1) Alt2 Sk+1

] (
ξ1, ξ2, η

k
)

= 0 ,

for all ξ1, ξ2, η ∈ TM,π(η).

We remind first that for any complex connection ∇ acting over the sections
of CTM its torsion τ∇ satisfies the identity

τ∇ = d∇ITM ,

where d∇ is the covariant exterior differentiation and ITM ∈ C∞ (M,T ∗M ⊗ TM ).
Then

d∇τ∇ = R∇ ∧ ITM ,

and

(R∇ ∧ ITM ) (ξ1, ξ2, ξ3) = R∇ (ξ1, ξ2) ξ3 +R∇ (ξ2, ξ3) ξ1 +R∇ (ξ3, ξ1) ξ2 .
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We conclude that if a connection is torsion free then then its curvature operator
satisfies the algebraic Bianchi identity.

We denote by Altp the alternating operator (without normalizing coeffi-
cients!) acting on the first p > 2 entries of a tensor, counted from the left to
the right. We notice the following very elementary fact.

Lemma 11 Let V be a vector space over a field K of characteristic zero. Then
for any integer p > 2, the sequence

0 −→ Sp+1V ∗ −→ V ∗ ⊗ SpV ∗ Alt2−−−→ Λ2V ∗ ⊗ Sp−1V ∗
Alt3−−−→ Λ3V ∗ ⊗ Sp−2V ∗,

is exact.

Proof The equality

Sp+1V ∗ = Ker
(
V ∗ ⊗ SpV ∗ Alt2−−−→ Λ2V ∗ ⊗ Sp−1V ∗

)
,

is obvious. We show now the equality

Im
(
V ∗ ⊗ SpV ∗ Alt2−−−→ Λ2V ∗ ⊗ Sp−1V ∗

)
= Ker

(
Λ2V ∗ ⊗ Sp−1V ∗

Alt3−−−→ Λ3V ∗ ⊗ Sp−2V ∗
)
. (6.1)

We show first the inclusion ⊆ in (6.1). We notice the equality(
Λ2V ∗ ⊗ Sp−1V ∗

Alt3−−−→ Λ3V ∗ ⊗ Sp−2V ∗
)

=
(

Λ2V ∗ ⊗ Sp−1V ∗
2 Circ−−−→ Λ3V ∗ ⊗ Sp−2V ∗

)
.

Let now β := Alt2 α, with α ∈ V ∗⊗SpV ∗. Then summing up the two equalities

β (v1, v2; v3, v4, . . . , vp+1) = α (v1; v2, v3, v4, . . . , vp+1)− α (v2; v1, v3, v4, . . . , vp+1) ,

−β (v1, v3; v2, v4, . . . , vp+1) = −α (v1; v3, v2, v4, . . . , vp+1) + α (v3; v1, v2, v4, . . . , vp+1) ,

we obtain

β (v1, v2; v3, v4, . . . , vp+1)− β (v1, v3; v2, v4, . . . , vp+1)

= − α (v2; v3, v1, v4, . . . , vp+1) + α (v3; v2, v1, v4, . . . , vp+1)

= − β (v2, v3; v1, v4, . . . , vp+1) ,

which rewrites as

β (v1, v2; v3, v4, . . . , vp+1)

+ β (v2, v3; v1, v4, . . . , vp+1)

+ β (v3, v1; v2, v4, . . . , vp+1) = 0 ,
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i.e. Circβ = 0, which shows the inclusion ⊆ in (6.1). In order to show the
reverse inclusion in (6.1) we consider β ∈ Λ2V ∗ ⊗ Sp−1V ∗ with Circβ = 0 and
we will prove that β = Cp Alt2 α, with

α := Sym2,...,p+1 β ∈ V ∗ ⊗ SpV ∗ ,

and with Cp := p/ (p+ 1)!. Indeed

1

(p− 1)!
α (v1; v2, . . . , vp+1) =

p+1∑
j=2

β (v1, vj ; v2, . . . , v̂j , . . . , vp+1)

and

1

(p− 1)!
(Alt2 α) (v1, v2; . . . , vp+1)

=
1

(p− 1)!
α (v1; v2, . . . , vp+1)− 1

(p− 1)!
α (v2; v1, v̂2, . . . , vp+1)

=

p+1∑
j=2

β (v1, vj ; v2, . . . , v̂j , . . . , vp+1)

−
p+1∑
j = 1
j 6= 2

β (v2, vj ; v1, v̂2, . . . , v̂j , . . . , vp+1)

= β (v1, v2; v3, . . . , vp+1) +

p+1∑
j=3

β (v1, vj ; v2, v3, . . . , v̂j , . . . , vp+1)

+ β (v1, v2; v3, . . . , vp+1) +

p+1∑
j=3

β (vj , v2; v1, v̂2, v3, . . . , v̂j , . . . , vp+1) .

Using the circular identity Circβ = 0, we obtain

1

(p− 1)!
(Alt2 α) (v1, v2; . . . , vp+1)

= 2β (v1, v2; v3, . . . , vp+1)−
p+1∑
j=3

β (v2, v1; vj , v3, . . . , v̂j , . . . , vp+1) .

This combined with the fact that β ∈ Λ2V ∗ ⊗ Sp−1V ∗ implies

1

(p− 1)!
(Alt2 α) (v1, v2; . . . , vp+1)

= 2β (v1, v2; v3, . . . , vp+1) + (p− 1)β (v1, v2; v3, . . . , vp+1)

= (p+ 1)β (v1, v2; . . . , vp+1) ,

which shows the required identity. �

A direct consequence of the proof of lemma 11 is the following fact.
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Corollary 3 Let R ∈ C∞
(
M,Λ2T ∗M ⊗R T ∗M ⊗R CTM

)
satisfying the algebraic

Bianchi identity. Then a tensor S ∈ C∞
(
M,T ∗M ⊗R S2T ∗M ⊗R CTM

)
satisfies

3R = Alt2 S if and only if S = Sym2,3R+σ, with σ ∈ C∞(M,S3T ∗M ⊗RCTM ).

We infer by corollary 3 that the equation (5.4) is satisfied by S2 = S0
2 +σ2, with

S0
2 (ξ1, ξ2, ξ3) =

i

6

[
R∇

S1
(ξ1, ξ2) ξ3 +R∇

S1
(ξ1, ξ3) ξ2

]
, (6.2)

and with σ2 ∈ C∞
(
M,S3T ∗M ⊗R CTM

)
. We consider now the equation (5.5)

for k = 2, which writes as[
d∇

S1

1 S2 + 3iAlt2 S3

] (
ξ1, ξ2, η

2
)

= 0. (6.3)

The fact that the tensor
d∇

S1

1 S2 + 3iAlt2 S3 ,

is symmetric in the last two variables implies that the equation (6.3) is equivalent
to the equation

d∇
S1

1 S2 + 3iAlt2 S3 = 0 ,

that we can rewrite under the form

d∇
S1

1 S0
2 + 3iAlt2 Ŝ3 = 0 , (6.4)

with

Ŝ3 := S3 −
i

3
∇S1σ2 .

Then using the expression (6.2) we can rewrite equation (6.4) in the explicit
form

∇S1

ξ1
R∇

S1
(ξ2, ξ3) ξ4 +∇S1

ξ1
R∇

S1
(ξ2, ξ4) ξ3

− ∇S1

ξ2
R∇

S1
(ξ1, ξ3) ξ4 −∇S1

ξ2
R∇

S1
(ξ1, ξ4) ξ3

= − 18
[
Ŝ3 (ξ1, ξ2, ξ3, ξ4)− Ŝ3 (ξ2, ξ1, ξ3, ξ4)

]
. (6.5)

We notice that the fact that the complex connection ∇S1 is torsion free implies

that the tensor ρ given by ρ (ξ1, ξ2, ξ3, ξ4) := ∇S1

ξ1
R∇

S1
(ξ2, ξ3) ξ4 satisfies the

circular identity with respect to the first and last three entries. Moreover ρ is
obviously skew-symmetric with respect to the variables ξ2, ξ3.

Lemma 12 Let ρ be a 4-linear form which satisfies the circular identity with re-
spect to the first and last three entries and which is skew-symmetric with respect
to the second and third variables. Then a 4-linear form S which is symmetric
with respect to the last three entries satisfies the equation

Alt2[8 Sym3,4 ρ− S] = 0 , (6.6)

if and only if

S = −2 Sym2,3,4 ρ2 + σ

= 2 Sym2,3,4 ρ3 + σ ,
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with ρ2 (ξ1, ξ2, ξ3, ξ4) := ρ (ξ2, ξ1, ξ3, ξ4), with ρ3 (ξ1, ξ2, ξ3, ξ4) := ρ (ξ2, ξ3, ξ1, ξ4),
for all ξ1, ξ2, ξ3, ξ4 ∈ TM,π(ξ1) and with σ a 4-linear form which is symmetric
with respect to all its entries.

Proof We observe first that the assumptions on ρ imply Circ Alt2 Sym3,4 ρ = 0.
Indeed

(Alt2 Sym3,4 ρ) (ξ1, ξ2, ξ3, ξ4) = ρ (ξ1, ξ2, ξ3, ξ4) + ρ (ξ1, ξ2, ξ4, ξ3)

− ρ (ξ2, ξ1, ξ3, ξ4)− ρ (ξ2, ξ1, ξ4, ξ3) ,

and

(Circ Alt2 Sym3,4 ρ) (ξ1, ξ2, ξ3, ξ4)

= ρ (ξ1, ξ2, ξ3, ξ4)
1

+ ρ (ξ1, ξ2, ξ4, ξ3)
4
− ρ (ξ2, ξ1, ξ3, ξ4)

2
− ρ (ξ2, ξ1, ξ4, ξ3)

5

+ ρ (ξ2, ξ3, ξ1, ξ4)
2

+ ρ (ξ2, ξ3, ξ4, ξ1)
5
− ρ (ξ3, ξ2, ξ1, ξ4)

3
− ρ (ξ3, ξ2, ξ4, ξ1)

6

+ ρ (ξ3, ξ1, ξ2, ξ4)
3

+ ρ (ξ3, ξ1, ξ4, ξ2)
6
− ρ (ξ1, ξ3, ξ2, ξ4)

1
− ρ (ξ1, ξ3, ξ4, ξ2)

4
,

where we denote by ρ (·, ·, ·, ·)
j

the terms we group together. Using the as-
sumption ρ is skew-symmetric with respect to the second and third variables we
infer

(Circ Alt2 Sym3,4 ρ) (ξ1, ξ2, ξ3, ξ4)

= 2ρ (ξ1, ξ2, ξ3, ξ4)
1

+ ρ (ξ1, ξ2, ξ4, ξ3)
4

+ ρ (ξ2, ξ4, ξ1, ξ3)
5

+ 2ρ (ξ2, ξ3, ξ1, ξ4)
1

+ ρ (ξ2, ξ3, ξ4, ξ1)
5

+ ρ (ξ3, ξ4, ξ2, ξ1)
6

+ 2ρ (ξ3, ξ1, ξ2, ξ4)
1

+ ρ (ξ3, ξ1, ξ4, ξ2)
6

+ ρ (ξ1, ξ4, ξ3, ξ2)
4
.

Using the circular assumptions on ρ we infer

(Circ Alt2 Sym3,4 ρ) (ξ1, ξ2, ξ3, ξ4)

= −ρ (ξ1, ξ3, ξ2, ξ4)− ρ (ξ2, ξ1, ξ3, ξ4)− ρ (ξ3, ξ2, ξ1, ξ4)

= 0 .

Then by the proof of lemma 11 in the case p = 3, we infer that a 4-linear form
S which is symmetric with respect to the last three entries satisfies the equation
(6.6) if and only if

S = Sym2,3,4 Alt2 Sym3,4 ρ+ σ ,

40



with σ any 4-linear form which is symmetric with respect to all its entries,
satisfies (6.6). We write now

(Sym2,3,4 Alt2 Sym3,4 ρ) (ξ1, ξ2, ξ3, ξ4)

= ρ (ξ1, ξ2, ξ3, ξ4)
1

+ ρ (ξ1, ξ2, ξ4, ξ3)
2
− ρ (ξ2, ξ1, ξ3, ξ4)

3
− ρ (ξ2, ξ1, ξ4, ξ3)

4

+ ρ (ξ1, ξ2, ξ4, ξ3)
1

+ ρ (ξ1, ξ2, ξ3, ξ4)
2
− ρ (ξ2, ξ1, ξ4, ξ3)

4
− ρ (ξ2, ξ1, ξ3, ξ4)

3

+ ρ (ξ1, ξ3, ξ2, ξ4)
1

+ ρ (ξ1, ξ3, ξ4, ξ2)
2
− ρ (ξ3, ξ1, ξ2, ξ4)

5
− ρ (ξ3, ξ1, ξ4, ξ2)

6

+ ρ (ξ1, ξ3, ξ4, ξ2)
1

+ ρ (ξ1, ξ3, ξ2, ξ4)
2
− ρ (ξ3, ξ1, ξ4, ξ2)

6
− ρ (ξ3, ξ1, ξ2, ξ4)

5

+ ρ (ξ1, ξ4, ξ2, ξ3)
1

+ ρ (ξ1, ξ4, ξ3, ξ2)
2
− ρ (ξ4, ξ1, ξ2, ξ3)

7
− ρ (ξ4, ξ1, ξ3, ξ2)

8

+ ρ (ξ1, ξ4, ξ3, ξ2)
1

+ ρ (ξ1, ξ4, ξ2, ξ3)
2
− ρ (ξ4, ξ1, ξ3, ξ2)

8
− ρ (ξ4, ξ1, ξ2, ξ3)

7
.

The fact that ρ is skew-symmetric with respect to the second and third variables
implies that Sym2,3,4 ρ = 0. We infer

(Sym2,3,4 Alt2 Sym3,4 ρ) (ξ1, ξ2, ξ3, ξ4)

= −2ρ (ξ2, ξ1, ξ3, ξ4)− 2ρ (ξ2, ξ1, ξ4, ξ3)

− 2ρ (ξ3, ξ1, ξ2, ξ4)− 2ρ (ξ3, ξ1, ξ4, ξ2)

− 2ρ (ξ4, ξ1, ξ2, ξ3)− 2ρ (ξ4, ξ1, ξ3, ξ2)

= 2ρ (ξ2, ξ3, ξ1, ξ4) + 2ρ (ξ2, ξ4, ξ1, ξ3)

+ 2ρ (ξ3, ξ2, ξ1, ξ4) + 2ρ (ξ3, ξ4, ξ1, ξ2)

+ 2ρ (ξ4, ξ2, ξ1, ξ3) + 2ρ (ξ4, ξ3, ξ1, ξ2) ,

which shows the required expressions for S. �

By the equation (6.5) we can apply lemma 12 to the tensor ρ := ∇S1R∇
S1

.
We infer the equation

S3 =
1

4!3
Sym2,3,4(∇S1R∇

S1
)2 +

i

3
∇S1σ2 + σ3 , (6.7)

We deduce that the equation (6.4) is equivalent to the equation (6.7). This
concludes the proof of the proposition 2 thanks to lemma 10.
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7 Third reduction of the integrability equations
and proof of the main theorem

In this section we will prove the following result.

Lemma 13 Under the assumptions of the theorem 2 the M -totally real almost
complex structure JA is integrable over U if and only if

S1 ∈ C∞
(
M,S2T ∗M ⊗R CTM

)
, i.e. ∇S1 is torsion free,

S2 = S0
2 + σ2,

S0
2 (ξ1, ξ2, ξ3) :=

i

6

[
R∇

S1
(ξ1, ξ2) ξ3 +R∇

S1
(ξ1, ξ3) ξ2

]
,

σ2 ∈ C∞
(
M ,S3T ∗M ⊗R CTM

)
,

and for all k > 3,

Sk =
i

k
∇S1σk−1 +

i

(k + 1)!
Sym2,...,k+1 βk−1 + σk ,

σk ∈ C∞
(
M ,Sk+1T ∗M ⊗R CTM

)
,

βk :=
i

k
d∇

S1

1 ∇S1σk−1 +
i

(k + 1)!
d∇

S1

1 Sym2,...,k+1 βk−1

+
1

k!
Sym3,...,k+2

(
k−1∑
p=2

pSp ∧1 Sk−p+1

)
,

β2 := − i

3
(∇S1R∇

S1
)2 ,

Circβk = 0 .

Proof We show that the statement of proposition 2 is equivalent to the state-
ment of lemma 13. We show indeed by induction on k > 3 the following state-
ment.

Statement 1 The tensors Sh, h = 3, . . . , k + 1, satisfy the equations[
d∇

S1

1 Sh +

h−1∑
p=2

pSp ∧1 Sh−p+1 + i (h+ 1) Alt2 Sh+1

] (
ξ1, ξ2, η

h
)

= 0 , (7.1)

for all h = 3, . . . , k, for all ξ1, ξ2, η ∈ TM,π(η) and

S3 =
i

3
∇S1σ2 +

1

4!3
Sym2,3,4(∇S1R∇

S1
)2 + σ3 ,
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with σ3 ∈ C∞
(
M,S4T ∗M ⊗R CTM

)
, if and only if the tensors Sh satisfy for all

h = 3, . . . , k + 1, the identities

Sh =
i

h
∇S1σh−1 +

i

(h+ 1)!
Sym2,...,h+1 βh−1 + σh , (7.2)

with σh ∈ C∞
(
M,Sh+1T ∗M ⊗R CTM

)
and where for all r = 3, . . . , k,

βr :=
i

r
d∇

S1

1 ∇S1σr−1 +
i

(r + 1)!
d∇

S1

1 Sym2,...,r+1 βr−1

+
1

r!
Sym3,...,r+2

(
r−1∑
p=2

pSp ∧1 Sr−p+1

)
,

with β2 := − i
3 (∇S1R∇

S1
)2 satisfies the equation Circβr = 0.

The statement 1 follows directly from the following fact.

Fact 1 Let Sh, for some h = 3, . . . , k, be the tensor given by (7.2). Then the
tensor Sh+1 satisfies the equation (7.1) if and only if Sh+1 satisfies the identity
(7.2), with h replaced by h+ 1 and βh satisfies the equation Circβh = 0.

In order to show the fact 1 we observe first that (7.1) rewrites as

d∇
S1

1 Sh +
1

h!
Sym3,...,h+2

(
h−1∑
p=2

pSp ∧1 Sh−p+1

)
+ i (h+ 1) Alt2 Sh+1 = 0 .

Using the expression (7.2) for Sh and the definition of βh, we can rewrite the
previous identity as

βh = −Alt2

[
∇S1σh + i (h+ 1) Sh+1

]
. (7.3)

By the proof of lemma 11 we deduce Circβh = 0 and

−∇S1σh − i (h+ 1) Sh+1 = Ch+1 Sym2,...,h+2 βh − i (h+ 1) σh+1 .

Therefore the identity (7.3) is equivalent to; Circβh = 0 and Sh+1 satisfies (7.2),
with h replaced by h+1. This concludes the proof fact 1. We infer the required
conclusion of lemma 13. �

Proof of the main theorem

Proof We show that the recursive definition of βk in the statement of lemma
13 yields the formula

βk =
i

k
d∇

S1

1 ∇S1σk−1 +
1

(k + 1)!k!
Sym3,...,k+2 θk , (7.4)

θk :=

k−2∑
r=2

(r + 2)!

r + 1
(i d∇

S1

1 )k−r∇S1σr + 3!
(
i d∇

S1

1

)k−2

β2

+

k∑
r=3

(r + 1)!

r−1∑
p=2

(i d∇
S1

1 )k−r (pSp ∧1 Sr−p+1) ,
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for all k > 3. We show (7.4) by induction on k. We notice first that the recursive
definition of βk rewrites as

βk =
i

k
d∇

S1

1 ∇S1σk−1+Sym3,...,k+2

[
i

(k + 1)!
d∇

S1

1 βk−1 +
1

k!

k−1∑
p=2

pSp ∧1 Sk−p+1

]
,

and we write

βk+1 =
i

k + 1
d∇

S1

1 ∇S1σk + Sym3,...,k+3

[
i

(k + 2)!
d∇

S1

1 βk

]
,

+ Sym3,...,k+3

[
1

(k + 1)!

k∑
p=2

pSp ∧1 Sk−p+2

]
.

Using the inductive assumption (7.4) we infer the expressions

i

(k + 2)!
d∇

S1

1 βk =
1

(k + 2)!k
(i d∇

S1

1 )2∇S1σk−1

+
1

(k + 2)! (k + 1)!k!
Sym4,...,k+3 i d

∇S1
1 θk,

i d∇
S1

1 θk =

k−2∑
r=2

(r + 2)!

r + 1
(i d∇

S1

1 )k+1−r∇S1σr + 3!(i d∇
S1

1 )k−1β2

+

k∑
r=3

(r + 1)!

r−1∑
p=2

(i d∇
S1

1 )k+1−r (pSp ∧1 Sr−p+1) .

This combined with the identity Sym3,...,k+3 Sym4,...,k+3 = k! Sym3,...,k+3, yields

βk+1

=
i

k + 1
d∇

S1

1 ∇S1σk +
1

(k + 2)!k
Sym3,...,k+3(i d∇

S1

1 )2∇S1σk−1

+
1

(k + 2)! (k + 1)!
Sym3,...,k+3

k−2∑
r=2

(r + 2)!

r + 1
(i d∇

S1

1 )k+1−r∇S1σr

+
3!

(k + 2)! (k + 1)!
Sym3,...,k+3(i d∇

S1

1 )k−1β2

+
1

(k + 2)! (k + 1)!
Sym3,...,k+3

k∑
r=3

(r + 1)!

r−1∑
p=2

(i d∇
S1

1 )k+1−r (pSp ∧1 Sr−p+1)

+
1

(k + 1)!
Sym3,...,k+3

k∑
p=2

pSp ∧1 Sk−p+2.

Putting the terms together we obtain (7.4) for βk+1. Then the obvious iden-
tity d∇1 ∇ = Alt2∇2 combined with the formula (3.16) allows to conclude the
required expression of βk ≡ βk (σk−1) in the statement of the main theorem.
This concludes the proof of the main theorem. �
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8 Appendix

In this appendix we provide some well known basic facts about the geometric
theory of linear connections needed for the reading of the paper. (See also
[Gau]).

8.1 The horizontal distribution associated to a linear con-
nection

We start with the following fact.

Lemma 14 Let ∇ be a linear connection acting on sections of a vector bundle
E over a manifold M . Then the linear map

TM,p 3 ξ 7−→ Hη (ξ) := dpσ (ξ)− Tη∇ξσ ∈ TE,η ,

is independent of the sections σ such that σ (p) = η.

Proof Let e = (ek)
r
k=1 be a local frame of E over an open set U ⊂ M .

We consider the local expression σ = e · f with f ∈ C1 (U,Rr). Let A ∈
C∞ (U, T ∗M ⊗Matrixr×r (R)) be the connection form of ∇ with respect to the
local frame e, i.e ∇e = e · A. Then ∇σ = e ⊗ (df + A · f). If we denote by
θe : U × Rr −→ E|U then the differential of this map at the point (p, f (p))
provides an isomorphism

dp,f(p)θe : TU,p ⊕Rr −→ TE,σ(p).

With respect to it, the equality hold

dp,f(p)θe [ξ ⊕ dpf (ξ)] = dpσ (ξ) .

We observe now the linear identity dτσ(p) · dp,0θe|0⊕Rr = dp,f(p)θe|0⊕Rr . We
infer

Tσ(p) · θe|{p}×Rr = dp,f(p)θe|0⊕Rr , (8.1)

and

Tσ(p)

[
e (p) ·

(
dpf (ξ) +A (ξ) · f (p)

)]
= dp,f(p)θe

[
0⊕

(
dpf (ξ) +A (ξ) · f (p)

)]
,

Tσ(p)∇ξσ = dp,f(p)θe

[
0⊕

(
dpf (ξ) +A (ξ) · f (p)

)]
.

Thus

Hσ(p) (ξ) = dp,f(p)θe

[
ξ ⊕

(
−A (ξ) · f (p)

)]
,

i.e. if η = e · h, then

Hη (ξ) = dp,hθe

[
ξ ⊕

(
−A (ξ) · h

)]
,

which shows the required conclusion. �
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Let πE : E −→M be the projection map and notice the equality Ker dηπE =
TEp,η, for any η ∈ Ep. The identity πE ◦ σ = idM implies

dσ(p)πE ◦ dpσ (ξ) = ξ .

We deduce the identity dηπE ◦Hη (ξ) = ξ. We define the horizontal distribution
H ⊂ TE associated to ∇ as

Hη := Hη

(
TM,πE(η)

)
⊂ TE,η .

We notice now that the tangent bundle of the vector bundle E ⊕E is given by
the fibers

TE⊕E,(η1,η2) =
{

(v1, v2) ∈ TE,η1 ⊕ TE,η2 | dη1πE (v1) = dη2πE (v2)
}
,

and that the differential of the sum bundle map sm
E

: E ⊕ E −→ E satisfies

d(η1,η2) (sm
E

) (v1, v2) = Tη1+η2

(
T−1
η1 v1 + T−1

η2 v2

)
,

for any (v1, v2) ∈ TE,η1 ⊕TE,η2 such that dη1πE (v1) = dη2πE (v2) = 0. We infer
that for any sections σj of E such that σj (p) = ηj , j = 1, 2, hold the equalities

Hη1+η2 (ξ) = dp (σ1 + σ2) (ξ)− Tη1+η2∇ξ (σ1 + σ2)

= d(η1,η2) (sm
E

)
(
dpσ1 (ξ) , dpσ2 (ξ)

)
− Tη1+η2∇ξσ1 − Tη1+η2∇ξσ2

= d(η1,η2) (sm
E

)
(
dpσ1 (ξ)− Tη1∇ξσ1, dpσ2 (ξ) − Tη2∇ξσ2

)
.

We conclude the property

Hη1+η2 (ξ) = d(η1,η2) (sm
E

) (Hη1 (ξ) , Hη2 (ξ)) . (8.2)

Lemma 15 For any section σ ∈ C1 (M,E) and for any function u ∈ C1 (M,R)
the identity holds

dp (uσ) = dpu⊗ Tuσ(p)σ (p) + dσ(p)[u (p) IE ] · dpσ ,

for any point p ∈M .

Proof With the notations in the proof of lemma 14

dp (uσ) (ξ) = dp,uf(p)θe

[
ξ ⊕ dp (uf) (ξ)

]
= dp,uf(p)θe

{
ξ ⊕

[
dpu (ξ) f (p) + u (p) dpf (ξ)

]}
= dp,uf(p)θe

[
0⊕ dpu (ξ) f (p)

]
+ dp,uf(p)θe

[
ξ ⊕ u (p) dpf (ξ)

]
= Tuσ(p)θe

(
p, dpu (ξ) f (p)

)
+ dp (u (p)σ) (ξ) ,
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thanks to (8.1). Using the identity

dp (λσ) = dσ(p) (λIE) · dpσ , (8.3)

for any λ ∈ R, we conclude

dp (uσ) (ξ) = dpu (ξ)Tuσ(p)σ (p) + dσ(p)[u (p) IE ] · dpσ (ξ) .

�

We observe also the elementary identity

dη (λIE) · Tη = λTλη , (8.4)

for all η ∈ E. We show now the identity

Hλη = dη (λIE) ·Hη , (8.5)

for all η ∈ E. Indeed let σ be a section such that σ (p) = η. Using (8.3) and
(8.4) we obtain the equalities

Hλη = dp (λσ)− Tλη∇ (λσ)

= dσ(p) (λIE) · dpσ − λTλη∇σ

= dσ(p) (λIE) · [dpσ − Tη∇σ]

= dη (λIE) ·Hη .

The property (8.5) implies in particular H0p = dp0M , where 0M is the zero
section of TM .

Definition 5 A distribution H ⊂ TE, is called horizontal if the map

dηπE|Hη : Hη −→ TM,πE(η) ,

is an isomorphism for all η ∈ E.

Lemma 16 Any horizontal distribution H ⊂ TE, which satisfies the conditions

(8.2) and (8.5) with Hη :=
(
dηπE|Hη

)−1
, determines a connection ∇ over E

with associated horizontal distribution H.

Proof The connection ∇ is defined by the formula

∇ξσ = T−1
σ(p) ·

[
dpσ −Hσ(p)

]
(ξ) ,

for any ξ ∈ TM,p. The definition is well posed because[
dpσ −Hσ(p)

]
(ξ) ∈ TEp,σ(p) ,

which follows from the identity

dσ(p)πE ·
[
dpσ −Hσ(p)

]
(ξ) = 0 .
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It is obvious that the additive property of ∇ is equivalent to the condition (8.2).
We observe now that with the previous definition, the covariant Leibniz property

∇ξ (uσ) = dpu (ξ)σ (p) + u (p)∇ξσ ,

is equivalent to the identity

dp (uσ) (ξ)−Huσ(p) (ξ)

= Tuσ(p)

{
dpu (ξ)σ (p) + u (p)T−1

σ(p) ·
[
dpσ (ξ) −Hσ(p) (ξ)

]}
.

We develop the right hand side using (8.4). We infer that the previous identity
is equivalent to the following one

dp (uσ) (ξ)−Huσ(p) (ξ) = dpu (ξ)Tuσ(p)σ (p)

+ dσ(p)

[
u (p) IE

]
·
[
dpσ (ξ) −Hσ(p) (ξ)

]
.

The later hold true thanks to lemma 15 and the assumption (8.5). �

The data of a smooth horizontal distribution over E coincides with the one
of section

H ∈ C∞ (E, π∗ET
∗
M ⊗ TE)

such that dπE ·H = Iπ∗ETE
. (We notice that dπE ∈ C∞ (E, T ∗E ⊗ π∗ETM )). Such

type of section determines a connection if and only if it satisfies the identity
(8.5).

For any vector Ξ ∈ TE,η we denote by

γHη (Ξ) := Ξ−Hη ◦ dηπE (Ξ) ,

its vertical component with respect to the horizontal distribution H. In partic-
ular

γHσ(p) · dpσ (ξ) = Tσ(p)[∇ξσ (p)] .

8.2 The induced connection

Let ψ : N −→M be a smooth map. We define the vector bundle ψ∗E := N×ψE
over N . In explicit terms

ψ∗E =
{

(y, η) ∈ N × E | ψ (y) = πE (η)
}
,

and the projection over N is given by the restriction of the projection to the first
factor. We will denote by Ψ : ψ∗E −→ E the restriction of the projection to the
second factor. The sections of ψ∗E are identified with the maps σ : N −→ E
such that πE ◦ σ = ψ. In this way, if s is a section of E then the section
ψ∗s := s ◦ψ is a section of ψ∗E. More in general if α is a section of ΛpT ∗M ⊗E,
we define the section ψ∗α ∈ ΛpT ∗N ⊗ ψ∗E as

(ψ∗α) (y) := (α ◦ ψ) (y) · Λp (dyψ) .

We provide a generalization of lemma (15).
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Lemma 17 For any section σ ∈ C1 (N,ψ∗E) and for any function u ∈ C1 (N,R)
the identity holds

dp (uσ) = dpu⊗ Tuσ(p)σ (p) + dσ(p)[u (p) IE ] · dpσ ,

for any point p ∈ N .

Proof A local frame e of E induces a local frame ψ∗e of ψ∗E over the open
set ψ−1 (U). Then σ = ψ∗e · f with f ∈ C1

(
ψ−1 (U) ,Rr

)
. We denote by

θe : U × Rr −→ E|U the trivialization map induced by the local frame e of
E. Then the differential of this map at the point (ψ (p) , f (p)) provides an
isomorphism

dψ(p),f(p)θe : TU,ψ(p) ⊕Rr −→ TE,σ(p),

and

dpσ (ξ) = dψ(p),uf(p)θe

[
dpψ (ξ)⊕ dpf (ξ)

]
.

for any ξ ∈ TN,p we have

dp (uσ) (ξ) = dψ(p),uf(p)θe

[
dpψ (ξ)⊕ dp (uf) (ξ)

]
= dψ(p),uf(p)θe

{
dpψ (ξ)⊕

[
dpu (ξ) f (p) + u (p) dpf (ξ)

]}
= dψ(p),uf(p)θe

[
0⊕ dpu (ξ) f (p)

]
+ dψ(p),uf(p)θe

[
dpψ (ξ)⊕ u (p) dpf (ξ)

]
= Tuσ(p) · θe

(
ψ (ξ) , dpu (ξ) f (p)

)
+ dp (u (p)σ) (ξ) ,

thanks to (8.1). Using the equality

dp (λσ) = dσ(p) (λIE) · dpσ,

for any λ ∈ R, we conclude the required identity

dp (uσ) (ξ) = dpu (ξ)Tuσ(p)σ (p) + dσ(p)[u (p) IE ] · dpσ (ξ) .

�

The induced connection ∇ψ over ψ∗E is defined by the formula

∇ψξ σ := T−1
σ(p)γ

H
σ(p)dpσ (ξ)

= T−1
σ(p)

[
dpσ (ξ)−Hσ(p)dpψ (ξ)

]
,

for any ξ ∈ TN,p. It is obvious that the additive property of ∇ψ follows from
the condition (8.2). We show now that ∇ψ satisfies the Leibniz property

∇ψξ (uσ) = dpu (ξ)σ (p) + u (p)∇ψξ σ .
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Indeed using lemma 17 and the identity (8.5) we have

∇ψξ (uσ) = T−1
uσ(p)γ

H
uσ(p)dp (uσ) (ξ)

= T−1
uσ(p)γ

H
uσ(p)

[
dpu (ξ) Tuσ(p)σ (p) + dσ(p)[u (p) IE ]dpσ (ξ)

]
= dpu (ξ)σ (p) + T−1

uσ(p)

[
dσ(p)[u (p) IE ]dpσ (ξ) −Huσ(p)dpψ (ξ)

]
= dpu (ξ)σ (p)

+ T−1
uσ(p)

[
dσ(p)[u (p) IE ]dpσ (ξ) − dσ(p)[u (p) IE ]Hσ(p)dpψ (ξ)

]

= dpu (ξ)σ (p) + T−1
uσ(p)

[
dσ(p)[u (p) IE ]γHσ(p)dpσ (ξ)

]
= dpu (ξ)σ (p) + T−1

uσ(p)

[
u (p) γHσ(p)dpσ (ξ)

]
= dpu (ξ)σ (p) + u (p)∇ψξ σ .

We observe also that for any s ∈ C∞ (M,E) and ξ ∈ TN,p we have the equalities

∇ψξ (ψ∗s) = T−1
s◦ψ(p)γ

H
s◦ψ(p)dψ(p)s · dpψ (ξ)

= ∇s (ψ (p)) · dpψ (ξ) ,

in other terms the functorial formula

∇ψ(ψ∗s) = ψ∗ (∇s) , (8.6)

holds.

8.2.1 The induced connection (second approach)

We observe that the tangent space of ψ∗E at the point (y, η) is given by the
equality

Tψ∗E,(y,η) =
{

(ξ, θ) ∈ TN,y ⊕ TE,η | dyψ (ξ) = dηπE (θ)
}
.

Given any horizontal distribution H ∈ C∞ (E, π∗ET
∗
M ⊗ TE) over E, we define

the horizontal distribution

Hψ := Ψ∗H ∈ C∞
(
ψ∗E, π∗ψ∗ET

∗
N ⊗ Tψ∗E

)
.

In explicit terms

Hψ
(y,η) = ITN,y ⊕Hη · dyψ.
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If H satisfies the identities (8.2) and (8.5) then so does Hψ. This follows indeed
from the identities

d(y,η1,η2)

(
sm

ψ∗E

)
= ITN,y ⊕ d(η1,η2) (sm

E
) ,

d(y,η)(λIψ∗E) = ITN,y ⊕ dη (λIE) .

By definition of Hψ we infer that the induced connection ∇ψ over ψ∗E satisfies
the formula

∇ψξ σ = T−1
σ(y) ·

[
dyσ (ξ)−Hσ(y) · dyψ (ξ)

]
,

for any ξ ∈ TN,y.
The local frame e induces a local frame η := e ◦ψ of ψ∗E over ψ−1 (U). We

compute the local connection Aψ form of ∇ψ with respect to such frame. We
notice that ∇ψη = ψ∗ (e ·A) = η · ψ∗A by the previous remark. We infer the
equality Aψ = ψ∗A.

8.2.2 Parallel transport

We consider a smooth curve γ : (−ε, ε) −→M and a section σ ∈ C1 ((−ε, ε) , γ∗E)
which satisfies the equation

∇γd
dt

σ = 0,

over (−ε, ε) with σ (0) = η ∈ Eγ(0). If we write σ (t) = e (γ (t)) · f (t) then

∇γd
dt

σ = e (γ (t)) ·
[
ḟ (t) +A (γ̇ (t)) · f (t)

]
.

We infer that the parallel transport map τγ,t : Eγ(0) −→ Eγ(t), t ∈ (−ε, ε) given
by τγ,t (η) = σ (t), is linear. We show the following fact.

Lemma 18 For any smooth curve γ : (−ε, ε) −→ M and for any section σ ∈
C1 ((−ε, ε) , γ∗E), holds the identity

∇γd
dt

σ (0) =
d

dt |t=0

[
τ−1
γ,t · σ (t)

]
. (8.7)

Proof We notice first that the term τ−1
γ,t ·σ (t) is given by the intrinsic identities

dut
ds

+A (γ̇ (s)) · ut (s) = 0,

ut (t) = f (t) ,

e (γ (0)) · ut (0) = τ−1
γ,t · σ (t) .

Integrating the first equation we infer

ut (t)− ut (0) = −
∫ t

0

A (γ̇ (s)) · ut (s) ds.
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Using the second equation we obtain

f (t)− ut (0) = −
∫ t

0

A (γ̇ (s)) · ut (s) ds.

Deriving with respect to the variable t we obtain

d

dt
ut (0) = ḟ (t) +A (γ̇ (t)) · ut (t)

= ḟ (t) +A (γ̇ (t)) · f (t) .

Evaluating at t = 0 and multiplying both sides with e (γ (0)) we infer the re-
quired conclusion. �

We consider now a C1-vector field ξ over M and let ϕξ,t be the associated
1-parameter subgroup of transformations of M . Let Φξ,t : E −→ E be the
parallel transport map along the flow lines of ϕξ,t. It is obvious by definition,
that the map Φξ,t satisfies πE ◦ Φξ,t = ϕξ,t ◦ πE .

The vector field Ξ := Φ̇ξ,0 over E satisfies the equality Ξ (η) = Hη (ξ), for any
η ∈ E. This is a direct consequence of the definition of the induced connection
along the flow lines of ξ.

To any section σ ∈ C1 (M,E) we can associate a C1-vector field Σ over
E defined as Σ (η) := Tη[σ ◦ πE (η)]. Let ΦΣ,t be the associated 1-parameter
subgroup of transformations of E. In explicit terms it satisfies

ΦΣ,t (η) = η + tσ ◦ πE (η) .

Then

[Ξ,Σ] =
d

dt |t=0

d

ds |s=0

(Φξ,−t ◦ ΦΣ,s ◦ Φξ,t) .

The fact that the map Φξ,−t is linear on the fibers implies

Φξ,−t ◦ ΦΣ,s ◦ Φξ,t = Φξ,−t [Φξ,t + sσ ◦ πE ◦ Φξ,t]

= IE + sΦξ,−t · σ ◦ πE ◦ Φξ,t

= IE + sΦξ,−t · σ ◦ ϕξ,t ◦ πE .

Thus for any η ∈ Ep holds

Φξ,−t ◦ ΦΣ,s ◦ Φξ,t (η) = η + sΦξ,−t · σ ◦ ϕξ,t (p) ∈ Ep .

We conclude

[Ξ,Σ] (η) =
d

dt |t=0

Tη

[
Φξ,−t · σ ◦ ϕξ,t (p)

]
= Tη [∇ξσ (p)] ,

i.e for any η ∈ E the equality holds

[Ξ,Σ] (η) = Tη

[
(∇ξσ) ◦ πE (η)

]
. (8.8)
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Iterating twice we deduce the identity[
Ξ1, [Ξ2,Σ]

]
(η) = Tη

[
(∇ξ1∇ξ2σ) ◦ πE (η)

]
. (8.9)

Moreover the fact that by (8.8) the vector fields [Ξj ,Σ], j = 1, 2 are tangent to
the fibers of E and constant along them implies[

[Ξ1,Σ], [Ξ2,Σ]
]

= 0 . (8.10)

8.3 The geometric meaning of the curvature tensor

Lemma 19 Let R := ∇2 be the curvature tensor of the connection ∇. Then
for any vector fields ξ1, ξ2 over M and for any η ∈ E the identity holds

γ∇η

(
[Ξ1,Ξ2] (η)

)
= Tη[R (ξ2, ξ1) η] .

Proof Let σ be a local section of E such that σ (p) = η. By definition of
horizontal lift Ξ of a vector field ξ we have

Ξ (η) = [dσ (ξ)] ◦ πE (η)− Tη
[
(∇ξσ) ◦ πE (η)

]
.

We infer by (8.8) the identity

[dσ (ξ)] ◦ πE = Ξ + [Ξ,Σ] .

We infer σ∗ξ = Ξ + [Ξ,Σ] over Imσ. Thus

σ∗[ξ1, ξ2] = [σ∗ξ1, σ∗ξ2]

= [Ξ1,Ξ2] +
[
Ξ1, [Ξ2,Σ]

]
+
[
[Ξ1,Σ] ,Ξ2

]
,

thanks to (8.10). We rewrite the previous equality as

[Ξ1,Ξ2] =
[
Ξ2, [Ξ1,Σ]

]
−
[
Ξ1, [Ξ2,Σ]

]
− σ∗[ξ2, ξ1] .

Using (8.9) we deduce

[Ξ1,Ξ2] (η) = Tη

[
(∇ξ2∇ξ1σ −∇ξ1∇ξ2σ) (p)

]
− dpσ([ξ2, ξ1])

= Tη

[
(∇ξ2∇ξ1σ −∇ξ1∇ξ2σ −∇[ξ2,ξ1]σ) (p)

]
−Hη([ξ2, ξ1])

= Tη[R (ξ2, ξ1)σ (p)] +Hη([ξ1, ξ2]) .

We infer the required conclusion. �
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