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On maximally totally real embeddings

Nefton Pali

Abstract

We consider complex structures with totally real zero section of the
tangent bundle. We assume that the complex structure tensor is real-
analytic along the fibers of the tangent bundle. This assumption is quite
natural in view of a well known result by Bruhart and Whitney [Br-Wh)].
We provide explicit integrability equations for such complex structures
in terms of the fiberwise Taylor expansion. For any torsion free complex
covariant derivative operator acting on the smooth sections of the com-
plexified tangent bundle we provide very simple and very explicit fiberwise
Taylor expansion of an associated canonical complex structure of the type
described above.

1 Introduction and statement of the main result

Let (E,mg, M) be a smooth vector bundle over a manifold M. Let E, be the
fiber of E over a point p € M and let n € E,. We consider the transition map
T, (v) := 1+ v acting over E, and we consider its differential

d(ﬂ}7 : TEp,O — TEPJ7 s

at the point 0. Composing dg7,; with the canonical isomorphism E, ~ Tk, o we
obtain an isomorphism map

T,:E, — Tg, ., (1.1)

We denote by 0j; the zero section of E. Differentiating the identity idy; =
g o 0y we obtain Iz, = dopwE o dp0pr. This implies the decomposition

Tgo, = dp 0 (Tar,p) © Kerdo, 7 .

We notice also the obvious equalities Ker d,mg = do, (T, ,0) = Ty (Ep) =~ Ep,
for any n € F,. Now applying this to n = 0,, using the previous decomposition
and the canonical isomorphism d, 0rr (Thrp) =~ Thr,p, we infer the existence of
the canonical isomorphism Tg o, >~ T, ® Ep, that we rewrite as

TE\M ETJM@E. (12)

Key words : Totally real embeddings, Integrability equations. Linear and non-linear connec-
tions over vector bundles.
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Definition 1 A real sub-manifold M of an almost complex manifold (X, J) is
called totally real if Tarp N J (Tarp) = 0, for all p € M. A totally real sub-
manifold M of an almost complex manifold (X,J) is called mazimally totally
real if dim, M = dim, X.

1.1 M-totally real almost complex structures over Ty,

We consider M included inside T, via the zero section. We know by the iso-
morphism (1.2) with E = T), that this embedding induces the canonical iso-
morphism Ty, >~ Ty &1 The vector bundle T, 5 is a complex one with
the canonical complex structure J" : (u,v) — (—v,u) acting on the fibers.

Any almost complex structure which is a continuous extension of J%" in a
neighborhood of M inside Th; makes M a maximally totally real sub-manifold
of TM .

Over an arbitrary small neighborhood of M inside T}, the complex distri-
bution T%’; is horizontal with respect to the natural projection 7 : Tjy — M.

We remind that the data of a smoth complex horizontal distribution over
Ty coincides with the one of section

Ae(C™ (TM,’]T*(DT]T/[ R (DTTM) s

such that dr - A = Lrqor,,.

For any complex vector field £ € C™ (M, CT)s) we will denote by abuse of
notations A (§) = A- (£ om). The section A evaluated at the point n € Th; will
be denoted by A,,.

We notice that we can write A = a + i3, with

a,f € C® (Ty, 7T ®r T1yy)

such that dr - o = Iz+7,, and S, = T,B,,, with B € C® (T, 7* End (T)).
The section A determines an almost complex structure J4 over T such that

0,1
TTMJAJ? = A"7 ((DTMJT(??)) - (DTTMJI7
if and only if
A,,7 ((DTM,w(n)) n 14,7 ((DTM,W(,])) =0. (13)
This condition is equivalent to the property:
4, (&) =4, (&), (1.4)

implies §; = { = 0. Taking d,7 in the equality (1.4) we infer {; = &. Thus

equality (1.4) is equivalent to (A — A) (&1) = 0 and the previous property is
equivalent to Ker (A — A) =0, i.e.

B e C®(Ty,n" GL(Ty)) -
We notice that with respect to the canonical complex structure of Tr,,|a; we
have the equality (u,v)”" = (&,i€), with € := (u—iv) /2. Then J, is an
extension of this complex structure over an open neighborhood U C T); of M

if and only if for any point p € M we have ag, = d,0y and By, = Ir,, .. We
denote by

T € C% (Tyy, w* T}y @y Tryy)

the canonical section which at the point n € T, takes the value T;,.



Definition 2 Let M be a smooth manifold. An M -totally real almost complex
structure over an open neighborhood U C Ty of the zero section is a couple
(o, B) with

a € C® U, Ty @y Tryy) s

and
B e C®(U,m* GL(Tu)),

such that dr - a = Iz, over U and such that g, = dp 0y, Bo, = Iy, ,, for
allp € M. The almost complex structure Jy, with A = a + iT' B associated to
(a, B) is the one which satisfies

0,1 _
TTM,JAJZ - A’? ((DTMJ(U)) - ®TTA4;7]7

foralln e U CTyy.

Every almost complex continuous extension of the canonical complex struc-
ture J of T, | over a neighborhood of M inside Th; writes as the almost
complex structure associated to an M-totally real almost complex structure
defined over a sufficiently small neighborhood of M.

We provide below an explicit formula for the almost complex structure J4.
For this purpose we notice first that for any vector ¢ € Tr,, »,

1 L

S = Ay [dm = BT (L, — )] €,

o _ e 171 (T d

£, = 94 nTtib, 1y Ty, — Qndym )| €.

0,1 0,1 1,0 1,0 _ 1,0 | #01

Indeed .£JA €ETr, gam §70 € Triygun and § = &7 + &7, . We deduce the
expression

Jay = —y BT (HTTM —ay dnﬂ) + T, B, dyr. (1.5)

This shows that for any a-horizontal vector £ € Ty, p, ie. &€ = ayd,m&, we
have

Jané = T,B,d,7m§.

In equivalent terms
Jananv="T,B,v, (1.6)

for any n € U C Ty and any v € Ty, (). Moreover (1.5) implies
JA,n\KerdT,ﬂ' = —Qy B;lTTTJ' (17)

A well known theorem by Bruhat and Whitney [Br-Wh]| states that for any
compact real-analytic manifold M there exist a complex manifold (X, J) and a
real-analytic embedding of M in X such that as a sub-manifold of X, M is max-
imally totally real. In addition one can arrange that X is an open neighborhood
U C Ty of the zero section and J)p, = J.

Moreover Bruhat and Whitney show [Br-Wh] that if X is a real-analytic
manifold equipped with two different real-analytic complex structures J; and
Jo which contains a real analytic sub-manifold M which is maximally totally



real with respect to both J; and Js, then there exist neighborhoods U; and U,
of M inside X and a real-analytic diffeomorphism k : Uy — Uy which is the
identity on M and is a holomorphic mapping of (Uy, J;) onto (Uz, J3).

In other terms the structure J constructed by Bruhat and Whitney in
[Br-Wh] is unique up to complex isomorphisms.

In a long series of celebrated papers inspired by the work of Grauert [Gral,
Guillemin-Stenzel [Gu-St], Lempert [Lem]|, Lempert-Szoke [Le-Sz1, Le-Sz2], Szoke
[Szol, Szo2], Burns [Bul, Bu2], Burns-Halverscheid-Hind [BHH], Aslam-Burns-
Irvine [ABI] as well as Bielawski [Bie] put pluri-potential and metric constraints
on J. Some of their results will be reminded in great detail in the next section.

Their results are needed in a crucial way in analytic micro-local analysis, in
pluri-potential theory (see the impressive work by Zelditch [Zel]) as well as in
Hamiltonian dynamics and in geometric quantization (see the work by Morao-
Nunes [Mo-Nu] and Hall-Kirwin [Ha-Ki]).

We state below our results on the integrability conditions for J.

1.2 The integrability equations for M-totally real almost
complex structures

Let (E, g, M) be a vector bundle over a manifold M. For an arbitrary section
B e C™®(E, 75 (T ® E)), we define the derivative along the fiber

DBeC® (E,ny(E*®@Ty®E)),

by the formula

d

D, B (v) == @t
t=0

B7I+t’U € TJTl,p @ EI) ’

for any n,v € E,. We denote by Alty the alternating operator (without nor-
malizing coefficient!) which acts on the first two entries of a tensor. For any
morphism A : Ty — FE and any bilinear form 5 : E x Ty; — E we define the
contraction operation

A-pB = Alty (Bo A),

where the composition operator o act on the first entry of 5.

Theorem 1 Let M be a smooth manifold and let J4 with A = a+iTB be a M-
totally real almost complex structure over an open neighborhood U C Ty of the
zero section. Let also V be a covariant derivative operator acting on the smooth
sections of Tny and let T € C* (U, m* End (Tyy)) such that o := HY — TT.

Then J 4 is integrable over U if and only if the complex section S =T +iB
satisfies the equation

HY - (vEnd(TMMS)n — 8,=D,S+ 8,7 +RY =0, (1.8)

for any point n € U, where VATV Gs the covariant derivative operator
acting on the smooth sections of ©* End (Ths) induced by V and where 7 and
RY are respectively the torsion and curvature forms of V.



We notice that Sy = ilr,, by the conditions ag, = H(Z = d,0p and
By, =11y, .

Notations for the statement of the main theorem.

For any A € T5;®” @ End,, (CTyy) and for any 0 € T5;%? ® CT)y, the product
operations of tensors A -0, A—-0 € T;}®<p+q) ® CTyr are defined by

(A-0) (ur,...,up,v1,...,09) = Aur,...,up)-0(v1,...,0q),
(A=0) (u1, ..., up,v1,...,0q) = Zﬁ(vl,...,A(ul,...,up)-vj,...,vq).
j=1

We will denote for notation simplicity RY.6 := RV - — RV —6. We will denote
by Circ the circular operator

(CII'CQ) ('[}1,’[}2,1}37.) = 0(1}1,’1}2,1}3,.)+0(U27’03,'U1,.)+0(1)3,Ul,’l)2,.),
acting on the first three entries of any g-tensor 6, with ¢ > 3. We define also
the permutation operation 0y (vq,vo,®) := 0 (ve, v1, ®).

For any covariant derivative V acting on the smooth sections of CTy; we
define the operator

aY 0 (M, T3 @y, ©Tar ) — €= (M ATy 0, Ty %Y @, €Ty ),
with k£ > 1 as follows

dlvA (517527M) = VflA(f%N) —V52A(£1,u),

with &1,& € Ty and with p € Tﬁ(k_l). Moreover for any

A e o= (M, TR0+ g (DTM> ,

B e (% (M, T80 g (DTM> ,
we define the exterior product
AMB e O (M,A2Tj{4 @, THBEH-1 o @TM) ,
as

(AN B) (&1,80,m,m) = A&, B(&2,n), 1) — A&, B(&,n), 1),

with &1,6 € Ty, n € Tﬁ?[l and p € Tﬁ(k_l). We denote by Sym,, . the
symmetrizing operator (without normalizing coefficient!) acting on the entries
r1,...,Ts of a multi-linear form. We use in this paper the common convention
that a sum and a product running over an empty set is equal respectively to 0
and 1.

With theese notations we can state our main theorem.



Theorem 2 (Integrability in the fiberwise real analytic case).

Let M be a smooth manifold, let U C Ty; be an open neighborhood of the
zero section with connected fibers and let J4 with A = a4+ iTB be a M -totally
real almost complex structure over U, which is real-analytic along the fibers of
U. Let V be a torsion free covariant derivative operator acting on the smooth
sections of Tny and let T € C* (U, m* End (Tyr)) such that oo = HY —TT.

Consider the fiberwise Taylor expansion of the complex section S =T +iB
at the origin, given by

Sp-&= S (&n"),
k>0
for any n € T in a neighborhood of the zero section and any § € Ty (), with
So = illp,, and with

Sk € C® (M, Ty @p S*Ti; @5 CTnr)

for all k > 1, (here we denote by n* = n** ¢ Tgkﬂn)), and let V51 be the

complexr covariant derivative operator acting on the smooth sections of CTyy
defined by

Ve = Ven+ S (§m).

Then J 4 is integrable over U if and only if S € C*> (M, S2T3 @y (DTM), (i.e.
V51 is torsion free) and for all k > 2,

1

Sy = EVSIO'}C,1 +

k (k+1)! Symy ki1 Br—1(0k—2) + ok,

op € C* (M, S"'T}, @, CTy),
Circ B4 (ox) =0,
where o1 := 0, p1 (0p) = RV, By (01) == —%(V&Rvsl)g and for all k > 3,
1 1
Br (Uk—l) = ERVSI Ok—1+ 57— Symg,...,k+2 O (Uk—l) s

(k + 1)K!

N
™)

(r+2)!

VST ke s
1 (zdlvl)k 1(va.ar)

Gk (Uk—l) = 1

T

[
o

— 2i(idY” ) H(VIRYT ),

k r

+ Z (r+ DAY )T (S A Sr—pa) -
r=3 p

I
-

||
¥

In more explicit terms

Sy = S§+o0s, (1.9)
B 66) = L[R7(@e)6+ R (@.6)6], (110
oy € C®(M,STy; ®, CTu), (1.11)



CiI‘Cﬂg (0'2) = 07 (112)

7 sp 1
,83 (0'2) = gRV .09 + ﬁSym&zm 93 (0'2), (113)
O3 (02) = 2dY " (VS'RY™')y + 41255 A1 S, . (1.14)

The assumption that the complex structure tensor is real-analytic along the
fibers of the tangent bundle is quite natural. Indeed in the case M is real
analytic then the M-totally real complex structure constructed by Bruhat and
Whitney [Br-Wh] is also real analytic with respect to the real analytic structure
of the tangent bundle induced by M.

In this paper we request from the readers some knowledge of the geometric
theory of linear connections. Basics of such theory can be found in the appendix.

2 Some old and new facts
2.1 The almost complex structure associated to a connec-
tion over the tangent bundle

It is well known (see [Dom]) that we can construct an M-totally real almost
complex structure over T, by using the horizontal distribution H C T associ-
ated to a linear connection V acting on the sections of Th;. Indeed in this case
we set o, := Hy and B, := lp,, (), where n — H, is the horizontal map
associated to H. We will denote Jy := J4. If we define for any n € Ty, the
vertical projection Vert,, : Tt,, , — T, ,.n a8

Verty, :=1Ip,  — Hydym,
where 7 : T)y — M is the canonical projection, then
Jp = —Hy T, Vert, + T, dy .

If we decompose any vector { € CTr,, , in its horizontal and vertical parts
€ =¢&M + ¢ with €Y := Vert,, (€) then we have the expressions

Jumé = —H,T,'¢ +T,dym¢",
(Jun®)" = —H,T,'¢",

(Jun)® = T,d,meh.
We infer

[gh i H, T+ & 40T, dyr gh}

DN | =

&t =

1
= 3 [gh + Hyp+iT, (dnﬂgh —l—,u)} ,

with p = —i Tn_lzf“. We notice also the identity

1
0,1 .
TTM,JH,n = 5 (Hn + ZT?]) (DTJVI,p 5 (21)



for any any n € T'x ,. The distribution T 7,, 1s horizontal, but the associated
map does not satisfies the condition (8. 5) of linear connections thanks to the
identity (8.4). Therefore this distribution does not identify a linear connection.
However its integrability implies that the vector bundle Ty, is flat. Indeed we
have the following well known lemma due to Dombrowsky [Dom].

Lemma 1 The torsion form 1'% of the almost complea: structure Jy satisfies
at the point € Ty in the directions V1, Vo € T TM Jaim the identity

8t/ (Vi,Va) (n) = — H, [TV (v1,v2) + i RY (v1,v2) n]

+ T [”V (vi,v2) — RY (Ula'UQ)n] ,

where RY := V? is the complex linear extension of the curvature tensor of V,
where TV is the torsion of the complex connection V and where v = d,mVj,
j = 1,2. In particular Jy is a complex structure if and only if the linear
connection V is flat and torsion free.

Proof Let ¢; be vector field local extensions of v; such that [¢1, &7 () = 0.
Then

- 1 .
=5 = §(H+7’T)£Ja

are local vector field extensions of V;. We expand the bracket

1ELEN () = ([HE, HE] +ilHE TS +i (16, HE) — T4, TS ) (1)

= Hyl&, &) — Ty [RY (v1,02) ] + i Ty[Ve, & — Ve, &) -

The last equality follows from to the computation at the end of the proof of
lemma 19 and thanks to the identity (8.8) in the appendix. (We notice that
[T¢1, T =0, since the vector fields T'¢; are tangent constant along the fibers).
Thanks to the assumption [£1, & () = 0, we infer the equality

4121032 () = Ty [i77 (v1,02) — BT (3,00 ]
The required formula follows from the identity
&0 ) =3 [¢" +iH, T € + € —iT, dyret]
The fact that that the distribution TT J,, 1s horizontal implies that I (Vy, Vo) (n)
vanishes for all V; if and only if the quantlty
7V (v1,v2) +iRY (v1,v2) 7,

vanishes for all v;. In particular for real vectors v; this implies that RV and 7V
vanish at the point 7 (n). O

We observe that a connection over Ty, is flat and torsion free if and only if
there exist local parallel frames with vanishing Lie brackets.



3 The symplectic approach

Let M be a smooth manifold and let 8§ € C>(T},, T;]*W) be the canonical 1-form
on the total space of the cotangent bundle defined as 6 := A - dy7ry, , for any
A € Ty;. The canonical symplectic form over the total space T}, is defined as
Q := —df. Let now g be a Riemann metric over M viewed as a vector bundle
map g : Thy — T;. We define also the forms 69 := g*0 and 9 := ¢*Q = —db¥Y
over the total space of the tangent bundle. In explicit terms 09 = g (n) - d,71,,,
for all n € Ty, i.e.

9?] (6) = gTrTI\/I (’I’]) (777 d'qﬂ-TM : f) I

for all £ € Ty, . Let V9 be the Levi-Civita connection, defined as

2V = g~" [¢=d(gn) +n-d(9€) +dg )] + [€m),

for any §,n € C°° (M, Tyr). Let also v € C°(Tn,T7,, ® Try,) be the Levi-
Civita 1-form, which is determined along any section n € C*° (M, T)ys), by the
identity v - dn = T,,V9n.
For any curve n : t — ny € T, we define the covariant derivative
VIn

1 :
dt T T”]t Vgtm € TM,TF(Ut) .

We consider now two curves 7; : t — n;; € T, j = 1,2, such that 77, (nl’t) =
T ("72,1&) = x¢. Then

4 ( ) = Vim T Ving
dtgm Mt N2t) = Gla, dar n2,t Gy | Tt s dt .
With the previous notations hold the following well known lemma (see also

Klingenberg’s book [Kli] for a proof using local coordinates).
Lemma 2 The formula
Q9 (&1,&) = gpldymry, &, Ty ') — gpldymry, &2, Ty ' 7361)

hold for any 1 € Ty, p = mr,, () and for any &,& € Ty p-

Proof With respect to a local coordinate trivialization of the tangent bundle
we can extend in a linear way the vectors &1,&> in to vector fields Zp, =5 in a
neighborhood of T, inside Thy. In this way [Z1, Zo] = 0 and thus Q9 (1, E3) =
E2.09 (1) —E1.09 (E2). We denote by 71;+, j = 1,2 the corresponding flow lines
starting from 7. Then

d
dt |i—o

4
dt|,—o

Q9 (&1,62) [erTM ) (7727t sy Ty - 21 (12,0) )]

[gﬂ'TM (n1,¢) (nl,t 7d771,t7TTM =P (Wl,t) )] .

We distinguish two cases.



e In the case when d,,77,,{; = 0 for some j, say j = 1, then d,, , 77,,Z1 (92,t) =

0 and p
%dnl,tT‘—TIVIEQ (nl,t) =0,

by the linear nature of the local extension. Then
QI (&1,8) = —gp(T,, 7961, dyrry, E2) -

The case j = 2 is quite similar.
e In the case when d,mr,,£;, do not vanish for j = 1,2, then the vector fields
¢; = dnr,, E; are well defined and [(1, (2] = 0. Then

Q% (61,62) = gp(Tn_l%gf% dnﬂ—TMgl) + gp(n, vgz(p)Cl - vgl(p)CQ)

- gP(Tq;lvggladnﬂTn1£2)

9p(Ty "9 6a, dymry £1) + gp (0, 1, Co] (p))

- gp(T77177g§15 dnﬂ-TM 52) )
which implies the required conclusion. [

We need to remind in detail also the following very well known lemma (see
also [Kli]).

Lemma 3 Let 2(9 := Q9 1d]|- |3 and let ] be the corresponding 1-parameter
sub-group of transformations of Thy. Then for any n € Ty the curve ¢; =
7T, © ® (1) is the geodesic with initial speed ¢o =1 and ¢ = D7 ().

Proof For any n € T and for any & € I, 5, let t — 1, € T be the curve
such that 7y = £. Then

9 d

g‘ | ! ‘g = &‘ » |:g7TTM (m)(nt 3 ﬂt)]

= 2g,(n. T, '99¢)

and thus
Q9 (¢8,€) =gp (0, T, 173€),

by the definition of the vector field ¢§. Using lemma 2 we infer
9p(dymry 65, T 9) = gp(dyry &, T 99C8) = gp (0, T, 190€) - (3.1)
In the case d, 77, = 0, the identity (3.1) yields
gp(dnﬂ'TMCgva;lf) =9p (77; T17_1§) )
and thus d,mr,, ¢ =n. In the case 77 § = 0, the identity (3.1) yields

gp(dnﬂ-TMgaTnil'VgCg) = Oa

10



and thus vJ ¢ = 0. We deduce the formula

Gl =Hj-n. (3.2)

Thus the flow line n; := ®7 () satisfies the identity

We deduce
¢ = dﬁt T~ Tt
= dntﬂ-TI\/I Hily], T
= M,
and ¢, = H gt - ¢4, which is the geodesic equation. O

We provide now a proof of the following well known result due to Lempert-
Szoke [Le-Szl]. See also Guillemin-Stenzel [Gu-St], Burns [Bul, Bu2] and Burns-
Halverscheid-Hind [BHH].

Corollary 1 Let (M,g) be a smooth Riemannian manifold. A complex struc-
ture J over the total space of the tangent bundle Ty satisfies the conditions

Tiag = %, (3.4)

209 =d|- |2 J. (3.5)

if and only if for any n € Tar, the complex curve iy, : t +is — s®f (1), defined
in a neighborhood of 0 € C, is J-holomorphic.

Proof We define the Reeb vector field = := Q9719. This vector field is
independent of the metric g. Indeed by lemma 2 hold the identity

gp(77 ) dnﬂ-TMf) = gp(dn’/TTM Zy 7T7;1'7g§) - gP(dUWTMf ) TJIVnEn) ) (3.6)

for any £ € Tr,, ;. Thus if d,77,,£ = 0 we deduce the equality
9p(dnTry, Ep ,T,1€) =0,
and thus d,mr,, =, = 0. Then the identity (3.6) reduces as
gp(n ) d777TTM§) == gp(d'r?TrTMg ’ TnilEn) ’
for any £ € Tr,, ;. We infer the formula
Ep=—Tyn, (3.7)

for all n € Thr. We notice now that the identity (3.5) is equivalent to the identity

09 (22,8 =d|-[; J¢,

11



. . . . _ 2
and is also equivalent to the identity 69 = —dS |- [. Thus

Q9 =dd|-|2=1i0,0,| |7,

thanks to the fact that J9 is integrable. We infer that the symplectic form QY
is J-invariant. Thus

W (2J2,J¢) =d]|- |2 JE,
ie.
Jz= =Y. (3.8)

This combined with (3.7) and with (3.2) implies that (3.5) is equivalent to the
identity

[1]

JoHy =T, -n. (3.9)

We show now that the later combined with (3.4) is equivalent to the J-holomorphy
of the maps v,,. For this purpose we observe that the differential of such maps
is given by

0

0 .
dto+isown (aét + bas> =ad (SOHTM) (bfo (77) + sto@fO (n)(IDfO (77) .

But

&7 (1) (70 @, (n)

= Hggo(n) ’ (I)fo (),

thanks to (3.2). Then using the property (8.5) of the linear connection V¢ we
infer

0 0
dto-i-isoqzbn <a’at + bas) = (aHso<I>fO (m) + bTSO(I’fO (17)) ! (D?O (77) . (310)

The complex curve v, is J-holomorphic if and only if

0 0 0 0
digtiso¥n <_b8t + a&s) = Jdtotisoty (aat + bas) ;

thus, if and only if
(—bH30<1>§0 m aT50<I>§O<n>) 0f (n)=J (aHSMDfO(n) + stOéfO(m) -0, (n).

For sp # 0 this is equivalent to (3.9). For sg = 0 this is equivalent to (3.4). We
deduce the required conclusion. O

The condition (3.4) implies that J is an M-totally real complex structure.

We show now the following corollary of the main theorem 2.

Corollary 2 Let (M, g) be a smooth Riemannian manifold and let J = Ja with
A = a+1iTB be an M-totally real almost complex structure over an open neigh-
borhood U of M inside Th; which is real analytic along the fibers of U. Then J is

12



integrable over U and for any n € U, the complex curve iy, : t + is — s®7 (n),
defined in a neighborhood of 0 € C, is J-holomorphic if and only if the fiberwise

Taylor expansion of J at the origin given by the expansion of the complex section
S:=T7'(HI - «a)+iB,

Sp-& = D Sk(&nb),

k>0

for any n € T in a neighborhood of the zero section and any § € Ty (), with
So = i, and with

Sk € C®°(M, T}y @y ST @5 CTar),

for all k > 1, (here we denote by n* = n**F Tj‘fﬁﬂ(n)) satisfies S1 =0,

)
S = m Sme,...,k—H O (9) s

for all k > 2, with ©2 (g) := 2RY and

Oclg) = ~2ifiay’) (VR

E
—

r—1

+ Yy (idlvg)k_l_r (DSp A1 Sr—p1) +

r

Il
w

p=2

for all k > 3 and the metric g satisfies the equations CircSymsz .16k (g9) =0
for allk > 4.

Proof If we write « = HY9 — TT then the complex section S rewrites as
S :=T+iB. Weset Sy = 'y +iBj. From the proof of corollary 1 we know that
in the case J is integrable over U, the curve v, is J-holomorphic if and only if
hold (3.9). The later rewrites as

HY-n=—J,T,n.
Using (1.7) we infer that the previous identity is equivalent to
Hg~77:anB;1~77. (3.11)

Taking d,,m on both sides of (3.11) we deduce = B,* - ). Therefore (3.11) is
equivalent to the system
By-m=n,
(3.12)
HY-n=oay-n.

Then the system (3.12) rewrites as

> k1 B (n*1) =0,

Ek>1 Ly (nkH) =0.

and thus as S (nk“) = 0 for all k& > 1. We remind now that, according
to theorem 2, the integrability of the structure J implies the condition 57 €

13



C>(M,S?T;; @5 CTar). We infer S; = 0. We notice that with the notations
of the statement of theorem 2, the identity

Br (n**t?) =0, (3.13)

hold for all k > 1, since every term in the definition of 8 contains two alternat-
ing entries. So if we use the definition of Sy in the statement of theorem 2 we
infer Sy (7%) = o2 (n*), which implies o2 = 0. We show now by induction that
o, = 0 for all k > 2. Indeed by the inductive assumption

)
Skt1 = it o) Symy  gt2 Bk + Okt

Using the identity (3.13), we infer Siy1 (7*72) = o441 (n*2). We deduce
ok+1 = 0. Using the identity
Sym2,‘..,k+1 Symg,“.,kﬂ = (k—-1)! SymZ,.‘.,kJrl ) (3.14)

we infer from the statement of theorem 2 and with the notations there

7
o msymzv-wk-s-l919—17

for k > 2, with 6; := 2RY and
k—2
0 = —2i (idlvg) (VIR9),

r—1

k —r
Y () @8, A S,
3

r= p=2

for all £ > 2. Moreover we observe that the equation Circ 8 = 0, k > 3 rewrites
as
CircSymg 4020k =0.

If we set O (g) := 0x_1, for all k > 2 we obtain the required expansion.

On the other hand if the expansion in the statement of the lemma under
consideration hold then J is integrable thanks to theorem 2 and Sy (nkH) =0,
for all k£ > 1, which is equivalent to (3.11) and so to the fact that the curves ¢,
are J-holomorphic. O

We notice in particular that the equation Circ Symj , 5 ©4 (g) = 0, writes as

Circ Symy 4 5 [3d¥" (VIRY), — 2RI A, Rg} —0, (3.15)

with RY := Sym, 3 R9. We will show below that the previous equation is an
identity.

We remind first the following elementary and well known fact.

Lemma 4 For any covariant derivative operator V acting on the smooth sec-
tions of CTy; and for any tensor 6 € C* (X, T;\'}@q ® (DTM) holds the identity

Alt, V20 = RV 6. (3.16)

14



Proposition 1 Let V be a torsion free complex covariant derivative opera-
tor acting on the smooth sections of the bundle CTy with curvature operator
RY (-,-)-=RY (,-,-). Let RV := Symy 3 RV. Then holds the identity

Circ Symg , 5 [3(1? (VRY), — 2RY A, RV] =0. (3.17)

Proof We expand first the term

dY (VRY), (&1,62,63,64,&5)
= Ve, (VRY), (&,8,64,65) — Ve, (VRY), (€1,63,64,65)
= V?RY (&1,63,62,64,85) — VPRY (2,63, 61,64, 65)
= V2RY (&,63,62,64,65) + V2RY (€2,63,64,61,65)
= VPRY (&,61,62,60,85) + VP RY (63,62, 64,61, 65)

+ (RV.RY)(&1,63,6,64,85) + (RY.RY) (&2,3,64,€1,65)

thanks to formula (3.16). Using the differential Bianchi identity we infer

dlV (VRV)2 (51752753764755)
= _VQRV (£3a§4a§17€27£5)

+ (RY.RY)(£1,8,&,64,&) + (RY.RY) (&2,63,64,61,65)

In order to simplify the notations in the computations that will follow we will
use from now on the identification

0 (£1a§2a€37€47£5) =0 (12345) )

for any tensor 8. We expand now the term
Circ Symyg 4 5 dy (VRV)2 .

We let
0 (12345) := V2RV (34125) ,

15



and we observe the identities

(Symg 4 50) (12345) = V2RV (34125) + V°RY (35124) + VRV (43125)

+ V2RV (45123) + V2RY (53124) + V?RY (54123),

(Symg 4 50) (23145) = V2RV (14235) + V°RY (15234) + V°RY (41235)

+ V2RV (45231) + VZRY (51234) + V2RY (54231),

(Symg 4 50) (31245) = V2RV (24315) + V°RY (25314) + VRV (42315)

+ V2RV (45312) + V2RY (52314) + V2RV (54312),

Summing up we obtain

+

_|_

(CircSymg 4 5 0) (12345)

V2RY (34125) + V2RV (14235) + V2RY (24315)
V2RY (35124) + V2RY (15234) + V2RY (25314)
V2RY (43125) + V?RY (41235) + V?RY (42315),
V2RY (45123) + V?RY (45231)_ + V°RY (45312),
V2RY (53124), + V?RY (51234) + V°RY (52314),

V2RY (54123), + V?RY (54231) + V°RY (54312) ,

where we denote by VZRY (--- - - )j the terms that summed up together equal
zero thanks to the differential Bianchi identity for j = 1,3 and thanks to the
algebraic Bianchi identity for j = 2,4. Using formula (3.16) we infer

(CircSymg 4 5 0) (12345)

= V’RY (43125) + V°RY (41235) + V>RY (42315),

+ VRV (53124), + V?RY (51234) + V2RV (52314),

+ (RV.RV)(34125) + (RV.RY) (14235) + (RV.RY) (24315)

+ (RY.RY)(35124) + (RV.RY) (15234) + (RV.RY) (25314),
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where as before we denote by V2RV (- - - )j the terms that summed up together
equal zero thanks to the differential Bianchi identity. We deduce the expression

(Circ Symg 4 5 0) (12345)
= (RV.RY)(34125) + (RV.RV) (14235) + (RV.RY) (24315)

+ (RY.RY)(35124) + (RY.RY) (15234) + (RV.RY) (25314) . (3.18)
We set now for notation simplicity p := RV.RV and let
© (12345) := p (13245) + p (23415) .
We observe that, by definition, the tensor
p € C® (M, NTy; @, N°Ty; @y Try @ CTup)

satisfies the circular identity with respect to its last three entries. We expand
now the term
CircSym; 4 5 ©.

We observe the identities

(Symg 45 0) (12345) = p(13245) + p(23415)
+  p(13254) + p(23514)
+  p(14235) + p(24315)
4+ p(14253) 4 p (24513)
4+ p(15234) 4 p(25314)

+ p(15243) + p(25413),

(Syms_ 4 5 ©) (23145) p (21345) + p (31425)
+ p(21354) + p(31524)
+ p(24315) + p (34125)
+ p(24351) + p(34521)
+ p(25314) + p(35124)

+  p(25341) + p(35421),
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(Syms 4 50) (31245) = p(32145) + p (12435)
+  p(32154) + p(12534)
+ p(34125) + p (14235)
+  p(34152) + p (14532)
+ p(35124) 4 p(15234)

+ p(35142) + p(15432).
Summing up we obtain

(CircSymg 4 5 ©) (12345)

= p(13245) + p(23415) + p(21345), + p(31425),
+ p(32145), 4 p(12435),

+ p(13254), 4 p(23514)_ + p(21354)_ + p(31524),
+ p(32154), + p(12534)

+ p(14235) + p(24315)_ + p(24315)_ + p (34125),
+ p(34125) 4 p(14235)

+ p(14253)_ 4 p(24513)_ + p(24351)_ + p (34521),
+ p(34152), + p(14532),

+ p(15234) +p(25314)  + p(25314)  + p(35124)

12

+ p(35124)  + p(15234)

10

+ p(15243), + p(25413)  +p(25341)  + p(35421)

12

+ p(35142)  + p(15432)

10

where we denote by p(----- )j the terms that we sum up together using the
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symmetries of p. We obtain

(CircSymg 4 5 ©) (12345)
= 2p(13245) + 2p (23415) + 2p (12435)
+  2p(13254) + 2p (23514) + 2p (12534)
4+ 3p(14235) + 3p (24315) + 3p (34125)

+ 3p(15234) + 3p (25314) + 3p (35124) .

We conclude the expression

Cire Symg 5 dY (VRV)Q} (12345)
= 2p(13245) + 2p (23415) + 2 (12435)
+ 2p(13254) + 2p (23514) + 2p (12534)
+2p(14235) + 2p (24315) + 2p (34125)

+ 2p(15234) + 2p (25314) + 2p (35124) . (3.19)
We expand now the term
Circ Sym374)5(év A RV) .
From now on we will denote for notation simplicity (123) = RV (123) and
[123] := (123) + (132) .

We observe the identities

{Sym314y5(RV A RY) | (12345) [1[234] 5] — [2[134] 5]
+ [1]235)4] — [2[135] 4]
+ [1[243]5] — [2]143] 5]
+ [1]245]3] — [2[145] 3]
+ [1[253]4] - [2]153]4]

+ [1[254)3] — [2[154] 3] ,
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[sym?,,%(éV A RY) | (23145)

[2(314] 5] — [3[214] 5]
+ [2[315]4] — [3[215]4]
+ [2[341]5] - [3[241] 5]
+ [2[345]1] — [3[245] 1]
+ [2[351]4] - [3[251] 4]

+ [2[354]1] — [3[254] 1] ,

[Sym314y5(RV A RY) | (31245) [3[124] 5] — [1[324] 5]
+ [3[125]4] — [1[325] 4]
+ [3[142]5] — [1[342] 5]
+ [3[145)2] — [1[345] 2]

+ [3[152]4] — [1[352]4]

+ [3[154]2] — [1[354]2] .
Summing up using the symmetries of [---] and (---) we obtain
Circ Symg 4 5(RY A1 RY) | (12345)
= 6[1(234)5] +6[2(314) 5] + 63 (124) 5]
+ 6[1(235)4] +6[2(315) 4] + 6[3 (125) 4]
+ 2[1[245]3] —2[2[145] 3]
+ 2[2[345]1], — 2[3[245]1],

+ 2[3(145]2), — 2[1[345]2] .

We combine now the terms [-[---]-], for each j = 1,2,3 and we explicit and
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simplify them by using the algebraich Bianchi identity. We obtain

Circ Sym3,475(f~iv A1 RY) | (12345)

6[1(234) 5] + 6 [2(314) 5] + 6 [3 (124) 5]
+ 6[1(235)4] +6[2(315)4] + 6 [3(125) 4]

+ 6(13[245]) + 6 (32[145]) + 6 (21 [345]) .
Expanding further we obtain the complete expansion

[Circ Symy , 5(RY A BY) | (12345)
= 6(1(234)5) + 6 (15 (234))
+6(2(314)5) + 6 (25 (314))
+6(3(124)5) + 6 (35 (124))
+ 6(1(235)4) + 6 (14 (235))
+ 6(2(315)4) + 6 (24 (315))
+6(3(125)4) + 6 (34 (125))
+6(13(245)) + 6 (13 (254))
+6(32(145)) + 6 (32 (154))

+ 6(21(345)) 4 6(21(354)) .

Expanding the terms p present in the expression (3.19) we obtain the complete
expansion of the term

{Circ Symy 5 [3d¥ (VRY), - 2RY Ay RV} } (12345)
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given by
{CireSymy 45 [34 (VRY), = 28Y 1 RV } (12345)

= 6(13(245)), — 6((132)45), — 6(2(134)5), — 6(24(135)),

+ 6(23(415)), — 6((234)15), — 6 (4(231)5)_ — 6 (41 (235)),

5

+ 6(12(435)), — 6((124)35), — 6 (4(123)5)_ — 6 (43 (125))

10

+ 6(13(254))  —6((132)54)

11 12 14

—6(2(135)4) , — 6(25(134))

+ 6(23(514)),, —6((235)14) —6(5(231)4) , — 6(51(234))

15 16 17

+ 6(12(534)), —6((125)34), —6(5(123)4)  — 6(53(124))

18 19 20

+ 6(14(235)), — 6((142)35), — 6(2(143)5), — 6 (23 (145)),
+6(24(315)), — 6((243)15), — 6(3(241)5), — 6 (31 (245)),

+ 6(34(125)), —6((341)25), —6(1(342)5), — 6(12(345)),

10

+ 6(15(234)), —6((152)34)  —6(2(153)4), — 6(23 (154))

17 19 15

+ 6(25(314)) , —6((253)14)  —6(3(251)4), — 6(31(254))

14 16 11

+ 6(35(124)), —6((351)24)  — 6(1(352)4), — 6(12(354))

20 13 18

— 12(1(234)5), — 12(15(234))

17

— 12(2(314)5), — 12(25(314))

14

— 12(3(124)5), — 12(35(124))

20

— 12(1(235)4),, —12(14(235)),
— 12(2(315)4),, — 12(24(315)),

— 12(3(125)4),, —12(34(125)), — 12(13(245)), — 12(13 (254))

10 11

— 12(32(145)), — 12(32(154)),, — 12(21(345)), — 12(21 (354))

15 18’
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where as before we denote by (- - - - - )j the terms that we sum up together using

the symmetries of the curvature tensor RV. All the terms summed up together
cancel up. This is obvoious for all the sub indexes j with the exeption of
7 =3,6,9,13,16,19 for which me must provide the detail of the computation.
Indeed for j = 3 we have

—6((341)25) — 6(2(134) 5) — 6 (2 (143) 5) — 12 (2(314) 5)
= 6(2(341)5) + 6 (2 (413)5) — 6 (2 (314) 5)
= —6(2(134)5) — 6(2(314) 5)

= 0.
For j = 6 we have

—12(1(234)5) — 6 ((234) 15) — 6 ((243) 15) — 6 (1 (342) 5)
= 6(1(243)5) + 6 (1(432)5) — 6 (1(234) 5)
= —6(1(324)5) —6(1(234)5)

= 0.
For 7 =9 we have

—6((124) 35) — 6/((142) 35) — 6 (3 (241) 5) — 12 (3 (124) 5)

= 6(3(142)5) + 6 (3 (421)5) — 6 (3 (124) 5)

—6(3(214) 5) — 6 (3 (124) 5)

= 0.
For j = 13 we have

—6((351)24) — 6(2(135) 4) — 6 (2 (153) 4) — 12(2(315) 4)
= 6(2(351)4) +6(2(513)4) — 6(2(315)4)

= —6(2(135)4) — 6(2(315)4)
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For j = 16 we have

—12(1(235)4) — 6 ((235) 14) — 6 ((253) 14) — 6 (1 (352) 4)
= 6(1(253)4) +6(1(532)4) — 6(1(235)4)
= —6(1(325)4) — 6(1(235)4)

= 0.
For 7 = 19 we have

—6((125)34) — 6/ ((152) 34) — 6 (3 (251)4) — 12 (3 (125) 4)
= 6(3(152)4) +6(3(521)4) — 6(3(125) 4)
= —6(3(215)4) — 6(3(125)4)

= 0.

We infer the required identity (3.17). O

4 General connections over vector bundles

4.1 Basic definitions

Definition 3 Let (E,wg, M) be a smooth vector bundle over a manifold M. A
connection form over E is a section v € C*® (E, T} @ Tg) such that dng -y =0

and ’7|Ker drng — IIKcr drg -

We will denote by +,, the connection form v evaluated at the point n € E.
Lemma 5 For any connection v € C* (E,Tf ® Tg) the map
dnﬂ—E|Ker Y : Ker Tn — TMJI’E(T]) s (41)

s an isomorphism for alln € E.

Proof The assumption Ykerdr, = IKerdry implies 7 - (Ir, —7) = 0. Thus
Im (I7, —v) € Kery. Then Im (I, — ) = Ker~. Indeed if v (u) = 0 then
u = (Ir, —y)u. On the other hand we notice that the condition drg -y = 0
implies drg - (I, — ) = dng and thus

d7]7rE'|Kelr'y77 : (HTE - 7) = dﬂ—E . (42)
This equality shows that the map (4.1) is surjective. The injectivity follows from

the fact that if u,v € Ker~, and d,ng (v —v) =0thenu —v =7y(u—v) =0
by the assumption v|ker drp = IKer drp- O
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We denote by H) := (dnﬂ—E|Ker'yn)7l the horizontal map. We deduce the
existence of a section

HY = C= (B, 7 T3 © Ti)

such that drg - HY = I;:1,,. (We notice that drp € C* (E,T; @ npTh)).
Composing both sides of (4.2) with H) we infer

V:HTE_H’Y'dﬂ-E;

and the smooth vector bundle decomposition T = Ker drg & Ker .
The data of a connection form ~ is equivalent with the data of a horizontal
form H”. The connection form is called linear if the horizontal form H"” satisfies

d(mmz) (SmE) : (H";{l & ng) = H771+772 ’
H), = dy(\p) H],

where sm, : E ® E — E is the sum bundle map where 7,172,171 € E with
7 (m) =7g (n2), and A is a scalar.

Definition 4 The curvature form 07 € C* (E,AzTE ® TE) of a connection
form ~y is defined as

07(&1,82) == —[Irpy —7) &, Iy —7) &2l
for all &,& € C° (E,Tg).

The definition is tensorial. Indeed if f € C* (E,R) then

[(]ITE - ’7) JESH (IITE - ’7) 52] = f[(I[TE - ’Y) &1, (]ITE - ’7) 52}

= [z =& flIr —7) &
The conclusion follows from the fact that - (I, — ) = 0. We notice that
9" € C= (E,A\* (Ker)” ® Kerdn) ,
and such element is uniquely determined by the curvature field ©7 defined as
O (&1, &) (n) =T, 07 (H, &1, H) &)
for all £1,82 € Ty 7y (n)- In the case v is linear then
07 € C* (M, A*T}; ® End (E)) ,

is called the curvature operator. The terminology is consistent with the fact
that if we denote by V7 the covariant derivative associated to -y then the identity
RY" = ©" holds, thanks to lemma 19 in the appendix.
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4.2 Parallel transport

Given any horizontal form a € C* (E,n*T}; ®, Tk) over a vector bundle E,
the parallel transport with respect to « is defined as follows. We consider a
smooth curve ¢ : (—e,6) — M and the section o € C! ((—¢,¢),c*E) which
satisfies the equation

c=(aoo)- ¢,

over (—e,e) with o (0) = 1 € E.q). We define the parallel transport map
7 1 Eeo) — Ee(r), t € (—¢,¢) along ¢ with respect to a as 75 () = o (t).

We consider now a C'-vector field £ over M and let ¢¢+ be the associated
1-parameter sub-group of transformations of M. Let @?)t : E — FE be the
parallel transport map along the flow lines of ¢¢ ;. In equivalent terms the map
¢, is determined by the ODE

.?,t = (O‘O(I)?,t>'(5080£,to7TE),

with initial condition ®¢, = Ip. We observe that by definition of parallel
transport, the map CIJ?’t satisfies g o (D?,t = ¢ omg. This follows also from
the equalities

(drg o @?ﬂf) : ‘P?t = foper0TE
= ¢t OTE.
Moreover the vector field 2% := a - ({ owg) over E satisfies (i)?,t =E%0dg,.
Indeed
2o ®g; = (a0dg,)- (Compo®E,)

= (a o (b?,t) (€0 Vet O TE).

We deduce that ¢ — @, is also a 1-parameter sub-group of transformations
of E.

4.3 The geometric meaning of the curvature field

The following result provides a clear geometric meaning of the curvature field.

Lemma 6 Let (E,7mg, M) be a smooth vector bundle over a manifold M and
consider a horizontal form a € C* (E,n*T3; @, Tk) over bundle E. Then the
curvature field ©% associated to v satisfies

_, 02

06 &) (1) = Tl g (P800, 008 0, ().

for any &1,& € C° (M, Tyr) such that [€1,&2] =0 and for any n € E.
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Proof We observe first that if we have a family of transformations (¥), over
a manifold with ¥y = id and a curve ¢ then

d . .
o s (cs) = Wo(co) +d¥g(éo)
S|s=o

= \i/o (co) + ¢o.

Applying the last equality to U, = ¢, —s and cs 1= g, ,—t © Qg5 © g, ¢, WE
infer

d d
e (3052,—5 OPey,—t ©Pey,s © (pflyt) = 752 + = (5051,—7& O Pey,s © (pflyt) ;
ds [s=0 ds|.=o
and thus
d d
[51, §2} glt:r)%\s:o (9051,—75 O P, © 9051,15)
d d ( )
= —_ —_ _ ¢ O _+ 0O O .
dt|t=0 ds oo Pea,—s O P&, —t O Pey,s O Pet
In a similar way
—a — d d
[:g’ :(ﬁ - %lt:()%‘szo ((D?l’*s © (bgz,*t ° (I)?hs ° (I)?zyt) )

with 2§ == a - (§; o7g), j = 1,2. Let n € E;, and observe that
(I)?h—s © ¢?27—t °© q)?l,s 0 (I)?g,t(n) € E[)a

for all parameters ¢, s, since @g, —s © Ye, —t © Ye,.5 © eyt (P) = p thanks to the
assumption [£1,&2] = 0. We conclude the required geometric identity O

4.4 Comparison of the curvature fields of two connections

We consider now two connection forms v;, 7 = 1,2 over E and let oy := H
be the corresponding horizontal forms. The fact that drg (o1 — ae) = 0 implies
that there exist a section

B:=T""(a—az) e C®(E,mp(Ty; ®E)),
which satisfies
=7 —-TB-drg.

We want to compare the curvature fields ©; := ©7%. We will denote by abuse
of notations ;€ = a; - (( omg) and BE = B- (§ omg) for any £ € C*° (M, Tar).

Lemma 7 In the above set up, the identity
01 (&1,&2) = (©2— B=DB)(&1,82)

- 77! ([042517TB 52} - [042527TB€1]> + B61,&], (4.3)

holds for any &,& € C°° (M, Tyy).
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Proof We notice first the equalities

701 (&1,&) = 0" (&, a1é2)
= | &)
— [algl,algg} +TB-drg [algl,algg]
= T03(&,6)
— %2 ([02t1, TB G| + [TB&, a26a) + [TB&, TBE))

+ TBl&,&).

In the last line we use the well known identity dmpla1&1, a1&] = [€1,&2] o T,
which follows from the fact that drgo&; = &5 o mg, j = 1,2. Let now ®rpe, ¢
be the 1-parameter sub-group of transformations of E associated to the vertical
vector field T'B,. It satisfies 7 o ®rpe, = mg. Using the standard expression
of the Lie bracket

d d o o
[agfl, TBfQ] = %hzo £|S:0 ((I>§12,—t o ¢TB&-2,S ¢} (p§12,t) ,

we deduce that this vector field is vertical. In the same way [TBE&;, aaés] is
vertical. It is obvious that the vector field [T B¢, TB 52} is also vertical. We
infer the identity

TO1(&,&) = TO03(&1,&) - [TB&,TB&]

~ |26, TB&| - [TB&, azte] + TB 61, &)
The required formula (4.3) follows from the identity
[TB&1,TBE] = T(B-DB) (&1,62), (4.4)

that we show now. We remind first that for any vector space V', the canonical
translation operator T': C* (V, V) — C*° (V,Ty) defined as (T€) (v) := Ty&,
is a Lie algebra isomorphism, where the Lie algebra structure over C* (V, V)
is defined by [£,m], := Dyn - & — Dy - 1. Indeed if we define the action of
C>* (V,V) over C* (V,R) as

(ff) (U) = Dyf-&

d
= %h:of(v—'—tfv)
= [(T€) .f](v),
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then

d

Enh0) = G N+

qa
dt |10

(D7)+t£1)f * Mo+t )

= Dif (&osmu) + Dof - Dunp- &,
The fact that the bilinear form D?f is symmetric implies
Enf—n&f = [&En)f.
On the other hand by definition

TETn.f—TnT6f = &nf—né.f,

Enl.f = TEn]f

We conclude the required identity [T€,Tn] = T[¢,n]. We apply this remark to
our set-up. For any point p € M, we denote by B¢ (p) € C* (E,, E,) the map
n € E, — B¢ (p) € E, and we denote by T B¢ (p) € C*° (Ep7 TEP) the section
n € By — T,B,¢(p) € Tk, . Then for any n € E,

[TB¢1, TBE), = [TBfl (p),TB& (p) L

T, [B& (), B ()|

= T, [DyB (B (0) & () — DB (Bye 1) &1 0) |

which shows (4.4). O

We notice now that for any covariant derivative V over F, the identity (8.8)
rewrites as

[va,ijgs} = T (Ves) (4.5)

for any vector field £ € C°° (M, T)) and any section s € C (M, E). We need
to show the following more general formula.

Lemma 8 Let (E,wg, M) be a smooth vector bundle over a manifold M and let
V be a covariant derivative operator acting on the smooth sections of E. Then
the equality hold

[va : Tcr} =TV, (4.6)

for any vector field £ € C*° (M, Ty) and for any section o € C® (E, 7L E).

We observe that (4.6) implies (4.5), since Vi .0 = mp (Ves), thanks to the
functorial property (8.6).
Proof In order to show the identity (4.6) we notice first that the assumption

o € C®(E,n;E) means that o is a map o : E — E such that 7g oo = 7g.
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Then the 1-parameter subgroup of transformations of F associated to the vector
field T'o satisfies @1, () = n+to (). Moreover with the notations in the proof

of identity (8.8)

d d
[va,TJ} = G (e, 1 0 Pros o Bey).

The fact that ®¢ _; is linear on the fibers of E implies

PetoPy 0Py = gy [Pey+ 500 Deyl

= g+ 8(1)57_15 (oo q)g’t .

We infer
d
ds's:(}
for any n € E,. We observe that o o ®¢;(n) € E,,,()-

property mg o 0 = mg we deduce

mpooo®ei(n) = wpodes(n)

(Pe,—t0Pros0Pes)(n) = TyPe - -00Pey(n),

Indeed using the

= wei(p).

We remind now that if ¢ — 7, € F is a smooth curve such that ¢; := g (n;)

then

T

d
1.V - _ -1
A N C Ok

thanks to formula (8.7). We apply the previous identity to the curve n; :=
og0®c;(n) € By, ,(p)- We obtain
d

d
-1 . v % - “ .
Lo Yo g, [‘7 0 D¢ (77)} i [‘I’g,—t oo®e, (77)]

;! [va , TU} OF

Moreover

d .
G lrerem] = dyo-deom)

= dna'ang(p)-

We conclude the equality

T omdao - HYE () = T, [HY¢,To| (),

which represents the required formula (4.6).

We can show now the following result.
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Lemma 9 Let (E, g, M) be a smooth vector bundle over a manifold M and let
V and V™ be covariant derivative operators acting respectively on the smooth
sections of the bundles E and Thy.

Then for any section B € C*® (E,n5 (Th; @ E)) the curvature field ©% of
the horizontal form o := HY + TB satisfies

0% = —HV-vTu®Erep _ B-DB— BrV' ™ + RV, (4.7)

where VTM®ETE s the covariant derivative acting on the smooth sections of
the bundle w3 (Tr; ® E), induced by V and V™ and where V™M s the torsion
form of VInm,

Proof In the case ap = HV in the identity (4.3) we can apply the formula
(4.6) to the sections BE; € C*° (E, myE). We obtain

©1(&1,&) = (RY —B-DB) (£,&)

Viree, (B&) + Vi, (B&) + Bl&1, &

Using functorial properties of the pull-back we have (with no abuse of the no-
tations)

s * Ty QE,m * , T *
Vike (B mh&) = VMCTT"B-mhé+ B Vls (rh &)

Ty QE,m
= Vb, "PB-mpé+ B mp(Ve ).

We conclude by (4.3) that if a; = o = HY + TB then the curvature field ©% of
« satisfies the identity

0% (&1,&) = (RY —B-DB) (&)

Ty QE,m Ty QE,m T
Vit SETE Bey + VT B - BrY Y (61,6)

We infer the required formula (4.7). O

5 First reduction of the integrability equations

Proof of theorem 1.
Proof Let ¥4 be the connection form associated to the horizontal form A.
Then the integrability of J4 is equivalent to the condition

YA[A&, A =0, (5.1)

for all smooth complex vector fields &, & over M. (We remind here the use of
the abusive notation A¢ = A(€om)). We denote respectively by ©4 and 0
the curvature fields of the horizontal distributions A and «. The integrability
condition (5.1) is equivalent to the condition ©4 = 0. Then applying the identity
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(4.3) with a; = A, s = « and separating real and imaginary parts we deduce
that the integrability of J4 is equivalent to the system

©% + B-DB = 0,
(5.2)
TB[¢1,&] = [aé1, TBE| — [afz, TBE].

Using the formula (4.7) in the case E = Tj; and V = V™ we can write the
previous equation of the system (5.2) as

HY -vEdTv)mp _ ppDr 4+ 177V + B-DB+ RY = 0.

We rewrite the second equation of the system (5.2) as

TBl&,&] = |HY&,TBS| - [TT6, TBE)

[HY6, 786 + [TT6, TB&).

Using formula (4.6) we infer

Bl1,&] = Vel 7TBE — VM TBE + B (Ve & — Vi)

— DB(I'&) & + DI (Bé2) &

+ DB (I'&)& — DI'(B&) &2,
which rewrites as
HY -vEd(Tv)mp _ T-DB — B-DT + BrY = 0.
We conclude that the system (5.2) is equivalent to the system
HY-VvEdT) D — =PI +T7V + B-DB + RY = 0,
(5.3)
HY-vEd(Tm)mp — T-DB — B-DI' + BtV = 0.

It follows that, using the identification S = I'+iB, the system (5.3) is equivalent
to the complex equation (1.8). O

Remark 1 We notice that in the case (o, B) = (HY,Iz+1,,), i.e. in the case
Ja = Jgv, the system (5.3) reduces to

RY =0,
™V = 0.

In this way we re-obtain the statement of lemma 1.
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Lemma 10 Under the assumptions of the theorem 2 the M -totally real almost
complex structure J 4 is integrable over U if and only if

S1 € C™ (M, SQTX/[ (20 (DTM) s

(i.e. V51 is torsion free),

RY” = —2iAlty S5, (5.4)
oo k—1 ' L
dY 7 Sk + Y pSp A1 Skepar i (k+1) Aty Sppa | (§1,62,1%) =0, (5.5)
p=2

for all k > 2 and for all £1,82,m € Thr x(y)-

Proof In the case the connection V is torsion free the equation (1.8) reduces

to
HY-yErdn)mg — §-DS + RY = 0. (5.6)
The identification Sy, - § = Sk (5,77’“) shows that Sy, € T]Q,W(n) ® CT'n e (n)s
i.e.
S e C™ (TM,’IT* (Txr B (DTM)) ,
and
S=>"Sk. (5.7)

k>0

We remind the formula
Virve, (Sk - &2) = Vqunvdg(?M)’WSk &2+ Sk Ve, &a,
for any vector field &1, & over M. On the other hand, by definition

V;IV& (Sk : 52)|7,

_ -1 \v4 v
B TSk(&ﬂ?’“)’ySk(Ezﬂlk)dn (Sk : 52) (H 51)

_ d k
TSkl(Ez,n’“)’Vg(EMk)@‘t:O {Sk (52 o e om(n), ey (1) ) } -

Let now 7 be the vector field over Im (¢, o 0 7 (1)) defined by

N(pe,t0m(n) =Pe, v (0)-
Then

Virve, (Sk-&), = Ve [Sk (5277716)}\”(7;)

= vflSk (52 om (77) ank) + Sk (v§1€2|7r(77)777k) ’

since V¢, = 0. We conclude the identity

(Vie78e),, - = Ve Si (60n").
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1,82 € Tar n(n). We infer the formula
HY -V 7§, = dyY sy, (5.8)

We notice now the equalities

d
D,S; (v)-& = & {Sk (&(U*‘tv)k)]
k . .
= Zsk (E?UJ_lavank_J)
j=1

= kSk (57,0777]671) )
and

(8i=DSy),,, (€1,€2) = kSk (§2, S0y - &1,0° ") = kSk (€1, Sty - £2,1™ 1) .

We infer the equality

(Si—DS),,, (1, 6) = —k (Sk A1 1) (€1, 62,77 . (5.9)

Let W C U be any set containing the zero section of T such that W N1y, is
a neighborhood of 0, for any p € M and such that the fiberwise expansion (5.7)
converges over W N Ty ,. The fact that by assumption U N Ty, is connected
implies by the fiberwise real analyticity of S that S is a solution of (5.6) over U
if and only if it satisfies (5.6) over W.

Using (5.8) we can write the equation (5.6) under the form

> dYSk— > (8DS,)+RY =0, (5.10)

k=1 l,p=0

over W. We decompose the sum

> (§DS,)

l,p=0

= Z (5~DSy)

1>0,p>1

= Z (Sl_‘DSP) +i Z (HTM _'DSk-i-l)

1p>1 k>0

k
= Z Z (Sk—p+17DSp) + i Z Iy, ~DSk+1)

k>1p=1 k>0

k
= - Z ZP(Sp A1 Sk—p-i-l) - ZZ (k + 1) (Sk-‘rl A1 HT}VI)’

E>1p=1 k=0

34



thanks to the equality (5.9). If we denote by deg, the degree with respect to the
fibre variable n € Er(,) we have

deg,, dlek = deg, (Sp A1 Sk—pt+1) =k,
deg, (Sk+1 A1 Iry,) = K,
deg,, RY = 1.

Thus by homogeneity the equation (5.10) is equivalent to the countable system
St A Ir, =0,

d1v51 + 51 A1 81+ 2053 A Iy, + RY = 0,

dy Sk + Zizlp (Sp N Sk—pt+1) +i(k+1) Sgt1 A1 HTM} (&1,&.7%) =0,

Vk 22, V&1,8,me Ty .

(5.11)
The first equation in the system means S; € C* (M, S2T%, @ (DTM), i.e. the
complex connection V' is torsion free. The second equation in the system
(5.11) rewrites as (5.4). We show now that the equation for k& > 2 in the system
(5.11) rewrites as (5.5). Indeed using the formula

Vg@(vl,...,vp) = Veb(v1,...,0) +T (&0 (v1,...,0p))

— Ze(vl,...7vj,1,F(§,vj),ij,...,vp),

Jj=1

where I' € C%(M,Ty;%? @y CTn), 0 € C= (M, Ty;%" @5, CTar) and &, vy, €
Ty, we infer

Y Sy (61 62.1")
= VeSi (&2.1") = Ve, Sk (€1,1%)
+ 81 (€0, Sk (62,0%)) = Sk (S1(61,&) ,1") — kS (€2, 81 (&1, m) 01
— 81 (€2, Sk (€1,17)) + Sk (81 (&2,€0) %) + kSk (€1, 51 (&2,m) 0" )

= [dlek + 51 AL SE+k Sk 51} (&1,&.7"),

since 57 is symmetric and Sy is symmetric in the last k£ variables. We conclude
(5.5). O

Remark 2 In the case S = 0, for all £k > 2, the previous system reduces to

the equation
dYSi+S1 A Si+RY=0. (5.12)
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The equation (5.12) means that the complex connection V*! acting on sections
of CTyy is flat. In the case B = I;«,,, the second equation in the system (5.11)
implies

dyT1+T1 AT+ RY =0,

with T’y := S;. This means that the real connection VI is flat.

6 Second reduction of the integrability equa-
tions

In this section we will prove the following result.

Proposition 2 Under the assumptions of the theorem 2 the M -totally real al-
most complex structure Jy is integrable over U if and only if

Sy € C* (M, ST @ (DTM), i.e. Vo is torsion free,

Sy = SY+0,,

59 (&1,62,&3) = % {RvSl (£1,&2) &3 + RV (51,53)52} ,

o e (M, 8Ty 0, CTy),

) 1
83 = %VSlUQ + m Sym273,4(vsl RVS1 )2 + g3,

o5 € 0= (M,5'T; 0, CTy),

(VSIRY™ )y (61,6, €3, 64) = V?;RVSI (£1,83) &a, for all §1,62,83,84 € Tarr(ey)
and for all k > 3,

k-1
dleI Sk + Zpsp A1 Sk—py1 +1i(k+ 1) Alty Sk+1] (&,&,7%) =0,

p=2
for all &,82,m € Ty n(y)-

We remind first that for any complex connection V acting over the sections
of CTyy its torsion 7V satisfies the identity

7'v = dv]ITM 5

where dV is the covariant exterior differentiation and Ir,, € C™ (M, T}, ® Tar).
Then

dVrV = RY Alp,, ,
and

(RY AIry,) (€1,62,&) = RY (&1,6) & + RY (62,&) & + RY (&3,6) &
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We conclude that if a connection is torsion free then then its curvature operator
satisfies the algebraic Bianchi identity.

We denote by Alt, the alternating operator (without normalizing coeffi-
cients!) acting on the first p > 2 entries of a tensor, counted from the left to
the right. We notice the following very elementary fact.

Lemma 11 Let V' be a vector space over a field K of characteristic zero. Then
for any integer p > 2, the sequence

0 — SPHV* — V¥ @ 5PV A2, A2y @ gr-lyr Allsy £3y @ gp2y
18 exact.

Proof The equality
STVt = Ker (Ve srve A a2y g sy,
is obvious. We show now the equality
I (V* @ 57V 22 A2V @ 5711
— Ker <A2V* ® SPly* Allsy A3y g SP—ZV*) . (6.1)

We show first the inclusion C in (6.1). We notice the equality

(A2v* @ sty 2 NSV 5r-2y)

= (nvr e syt 29 N0 g sroRy ).

Let now 5 := Alts o, with a € V*® SPV*. Then summing up the two equalities

6(?]1,1}2;U3,U4,...,Up+1):O[(’l}l;’l)Q,U3,U4,...,Up+1)—G{(UQ;’U]_,’U37’U4,...7’UP+1),
=B (v1,v3;V2, V4, . ., Vpr1) = — (V1;03, V2,04, -+, Upy1) + @ (V3;V1, V2, Va4, - oo Upy1)
we obtain
B (v1,v2; V3,04, s Vpi1) — B (V1,033 V2, Va5 - o+, Vpi1)
= — a(v2;03,V1,V4, -, Vpy1) + @ (V3;V2, V1, Va4, -+, Vpy1)
= —5(U27U3;U1,U4,---,Up+1),

which rewrites as

B (v1,v2; 03,4, ..., Upy1)
+ B (v2,v3;01,04,...,Vpy1)
+ 5(U3,v1;v27v47-~-71’p+1) =0,
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i.e. Circf = 0, which shows the inclusion C in (6.1). In order to show the
reverse inclusion in (6.1) we consider 8 € A2V* @ SP~1V* with Circ 8 = 0 and
we will prove that 8 = C}, Alts o, with

a:=8ymy .1 B€EV®SV",
and with C), := p/ (p+ 1)!. Indeed

1 p+1
(p_l)'a(vl;vg,...,vpﬂ) = Zﬁ(vl,’l]j;’ljg,...,’f}j,...,?}p+1)
! =
and
o= (Altg @) (v1,v2; ..., Vpy1)
1 1 R
= m@(vl;vg,...,fupﬂ)—Wa(vg;vl,vg,...,va)
p+1

= ZB(vl7vj;U27"'aﬁja"'7vp+1)
i=2

p+1
— Z B (v2,vj;v1,02, ..., Vjy .o, Upt1)
j=1
J#2
p+1
= 5(1}1,?}2;7}3,...,7)p+1)+Zﬁ(?}l,'l}j;'ljg,'l}g,...,'[A}j,...,'l)p+1)
=3
p+1
+ ,B(vl,vg;vg,...,vpﬂ)—|—ZB(Uj,vg;vl,ﬁg,vg,...7ﬁj,...,vp+1).
j=3

Using the circular identity Circ 8 = 0, we obtain
1

Altga V1,V25...,Upt1
p+1
= 25(1}17’02;@3"'"@174-1) _Z/B(UQavl;Uj7U37"'7ﬁja"'a1}p+1)~
j=3

This combined with the fact that 3 € A2V* ® SP~1V* implies
1
(p—1)!

(Ahﬁz Oé) (111, V25. .., Up+1)
= 25 (0171}2;1}37 o 7vp+1) + (p - 1) ﬂ (U17v2;v37 .. 'avp+1)

= (p+1)B(v1,v25--,Vpt1),
which shows the required identity. O

A direct consequence of the proof of lemma 11 is the following fact.
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Corollary 3 Let R € C* (M, AT3 @5 Tiy @ (DTM) satisfying the algebraic
Bianchi identity. Then a tensor S € C* (M, T} ®y S*Th; ®@n CTa) satisfies
3R = Alty S if and only if S = Symy 3 R+0, with 0 € C(M, STy @, CTr).

We infer by corollary 3 that the equation (5.4) is satisfied by Sy = S + 05, with

Sg (gla §27 53) = % |:RVS1 (517 52) 63 + RVSI (gla 53) §2j| ) (62)

and with o € C* (M, S*T}; ®, CTr). We consider now the equation (5.5)
for k = 2, which writes as

s .
{dlv ! So + 3i Alts 53:| (61, &, ’172) =0. (63)
The fact that the tensor .
dY ™Sy + 3i Alty S3,

is symmetric in the last two variables implies that the equation (6.3) is equivalent
to the equation
S
dY 'Sy +3iAlty S5 =0,

that we can rewrite under the form
dY™ 89+ 3iAlty S5 =0, (6.4)
with )
Sg = 53 - %vsldg .

Then using the expression (6.2) we can rewrite equation (6.4) in the explicit
form

V?ll RY™ (&9,86) €4 + V?ll RY™ (&2,64) &5

— VIR (6,6)& - VERY (61,60 &

2

= —18 [33 (&1, 2,63, 61) — S5 (€2,61,83, &) | - (6.5)

We notice that the fact that the complex connection V1 is torsion free implies
. s .

tl-lat the.teHSf)r p given by p(&1,&2,83,&4) = VfllRV ! (§g,§3)§4 satisfies the

circular identity with respect to the first and last three entries. Moreover p is

obviously skew-symmetric with respect to the variables &5, &3.

Lemma 12 Let p be a 4-linear form which satisfies the circular identity with re-
spect to the first and last three entries and which is skew-symmetric with respect
to the second and third variables. Then a 4-linear form S which is symmetric
with respect to the last three entries satisfies the equation

Altz[8Symy 4, p — S] =0, (6.6)
if and only if

S = —28ymy3,p2t+o

2Symy 3 4p3 + 0,
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with P2 (51)52»537§4) =p (52351753754)7 with P3 (51752;53754) =p (52153751754)’

for all §1,82,83,84 € Thrr(¢,) and with o a 4-linear form which is symmetric
with respect to all its entries.

Proof We observe first that the assumptions on p imply Circ Alts Symg 4 p = 0.
Indeed

(Ath Sym3,4p) (61352753)54) = p(€1a§27§37£4)+p(€17€27€47§3)

= p(&2:81,83,81) — p(§2,61,64,83),

and

(Circ Altg Symg 4 p) (&1, €2, €3, §a)
= p(&1,&,85,80), +p(61,62,84,83), — p(£2,61,&5,84), — p(€2,61,64,83),
+ p(62,83,61,84), +p(62,83,80,61), — p(€3,62,61,6a), — p (€3, 62,64, 61),

+ 1% (§37517€27£4)3 + p(§3a€17£47§2)6 - p(€1,£37§2a§4)1 - p(€17£3a§4a§2)4 5

where we denote by p(-,-, -, -)7, the terms we group together. Using the as-
sumption p is skew-symmetric with respect to the second and third variables we
infer

(Circ Alty Symg 4 p) (&1, &2, &3, €4)
= 2p(£1,€2,83,8), +p(£1,€2,64,83), + p (€2, 64,61, 3),
+ 2p (52763751754)1 +p(§27£37§47§1)5 + p(§37§4u€27§1)6

+ 2p (f37£17§2a§4)1 +p(£37§1a§47§2)5 + p(£1’§4a§37€2)4 .

Using the circular assumptions on p we infer

(CiI‘C Altg Sym3’4 p) (51, 527 533 54)

—P (517£S7§2a§4) - p(€27£17§3a§4) - p(§37€27£17€4)

= 0.
Then by the proof of lemma 11 in the case p = 3, we infer that a 4-linear form
S which is symmetric with respect to the last three entries satisfies the equation

(6.6) if and only if

S = Symygz,AltaSymgp+o,
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with o any 4-linear form which is symmetric with respect to all its entries,
satisfies (6.6). We write now

(Symg 5 4 Alta Symg 4 p) (€1, 82, &3, &4)
= (61 60,6, + (61,6060 ), — p (€01, 60,E0), — p (62,61, E0,68),
+ p(61,€2,61,83), +p(1,62,88,8), —p(€2,61,64,83), — p(&2,61, 83, Ea),
+ (61,83, 82:84), +0(61,83,84,82), — p (5,61, 82, 6), — p(€3,61, 64, &2),
+ p(61,83,80,&2), +p(61,83,82,84), — P (€3,61,€4,82) — p(€3,61, 62, 8a),
+ (61,64, 62:88), +0(61,64,85,82), — p (64561562, 83), — p (€461, €3, &2)

+ 061,640,835, &2), +p(61,64,82,83), — p(€4,61,€3,82), — p (64,61, 62,83),

The fact that p is skew-symmetric with respect to the second and third variables
implies that Sym, 5 4 p = 0. We infer

(Symy g4 Alts Symg 4 p) (§1,€2,63,64)
= —2p(£2,81,83,84) — 2p (€2, 61,64, €3)
= 2p(83,61,62,6) — 20 (83,61, 64, 62)
= 2p(64,61,62,83) = 2p (84,61, 83, 62)
= 2p(£2,83,61,84) +2p (£2,84,61,83)
+ 20 (83, 62,61,84) +2p (83, 64,61,62)

+ 2[)(54,52,51,53)+2P(£47§3,£1,£2),

which shows the required expressions for S. O
By the equation (6.5) we can apply lemma 12 to the tensor p := V51 RV,
We infer the equation

1 )
Sz = 413 Sme,?,A(vSlRVS1 )2 + %V&JQ + o3, (6.7)

We deduce that the equation (6.4) is equivalent to the equation (6.7). This
concludes the proof of the proposition 2 thanks to lemma 10.
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7 Third reduction of the integrability equations
and proof of the main theorem

In this section we will prove the following result.

Lemma 13 Under the assumptions of the theorem 2 the M -totally real almost
complex structure J 4 is integrable over U if and only if

Sy € C=® (M, STy, @ (DTM) . d.e. VU is torsion free,

Sy = Sg-l-ag,

36 66s) = & [R7 (6,6)6+ BT (6,69)6)]

o2 € (M, STy @, CTw ),
and for all k = 3,

i i
S = %V Yog—1+ msb’mz,“.,kﬂ Br-1+ 0k,

oy € O (M,S’““Tj\} ®p (DTM),

i

i S S
Br = %dlv 'V + (k:—i—l)!dlv ' Symg i1 Br—1
1 k—1
+ ESym?,,...,kJrz (ZpSp A Sk—p+1> )
! =
b= - LwIRT,,
Circg, = 0.

Proof We show that the statement of proposition 2 is equivalent to the state-
ment of lemma 13. We show indeed by induction on k > 3 the following state-

ment.
Statement 1 The tensors Sy, h =3,...,k+ 1, satisfy the equations

h—1
d1vs1 Sh + Zpsp A1 Sh—pt1 + i (h+ 1) Alty Spqq (51, &2, Wh) =0, (7.1)

p=2

Jor allh=3,....k, for all £&1,82,m € Thr x(y) and

) 1
SS - %Vsl o2 + m Sym2’3,4(VSIRvsl )2 + a3,
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with o3 € C'* (M, STy, @5 (DTM), if and only if the tensors Sy, satisfy for all
h=3,...,k+ 1, the identities

i s, i
Shp = EV Op—1+ m S}’IIl2,m’h_’_1 /Bh—l + oy, (72)

with o € C'° (M7 ShHTIT/[ ®n (DTM) and where for allT =3,... .k,

i oS ? S
B i= ATV T SV
1 r—1
! o
with By == f%(visvsl )2 satisfies the equation Circ 8, = 0.

The statement 1 follows directly from the following fact.

Fact 1 Let Sy, for some h = 3,...,k, be the tensor given by (7.2). Then the
tensor Spy1 satisfies the equation (7.1) if and only if Sp11 satisfies the identity
(7.2), with h replaced by h + 1 and By, satisfies the equation Circ 8y, = 0.

In order to show the fact 1 we observe first that (7.1) rewrites as
s 1 =
a¥™ s, + 2 SV 2 (Zpsp Ay Sh_p+1> +i(h41)Alty Sppqy =0.

p=2

Using the expression (7.2) for S;, and the definition of 3, we can rewrite the
previous identity as

B8, = — Alty [vslah +i(h+1) Shﬂ} . (7.3)
By the proof of lemma 11 we deduce Circ 8, = 0 and
V50, —i(h+1) Spy1 = Chi1Symy, o Br—i(h+1) opps.

Therefore the identity (7.3) is equivalent to; Circ 8, = 0 and Sj,41 satisfies (7.2),
with h replaced by h+ 1. This concludes the proof fact 1. We infer the required
conclusion of lemma 13. O

Proof of the main theorem

Proof We show that the recursive definition of 8 in the statement of lemma
13 yields the formula

1 oS 1
B = Edlv vslo'k_l + m Symg k2 0 , (7.4)
k—2
2)! k—2
O = (Zi 1) (idY™ oS st (1Y)
r=2

k r—1
+ Z 7’+1'Z dVl T (pSy A1 Sr—pi1)
r=3 p=2
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for all & > 3. We show (7.4) by induction on k. We notice first that the recursive
definition of B rewrites as

7 s
Br=7dY VI op 1 +Symg

. k—1

7 s 1

(k‘ + 1)'d1v 1kal + E § 2pSp AN Skp+11 )
p:

and we write

i
Bri1 = dY”' V5 oy, + Symy

—
..... k+3 {Mdl 5k] :

+ Symg  jys

2
1
m Zpsp A1 Sk—p+2] .
s

Using the inductive assumption (7.4) we infer the expressions

1
e e = (k+2)!k’<ld1vsl)2 Vi

1 g,
R CET ICESN SYMy,.. gz 01 O,

(k+2)

e
3]

(r+2)!
r+1

idy " o, (idy” )T VS, 31 dY )R By

ﬂ
I
o

k r—1
+ Z (r+1) 'Z (dy” 1= " (PSp A1 Sr—pr1) -

r=3 p=2

This combined with the identity Symg ;.3 Symy i 3= k!Syms ., yields

Br+1
1 o
I 1dv A msym&...,km(ldlv Vo
1 k— B
VZINk+1—r 7S
T T Yk Z iy "1 TS
=2
3! e
i WSYms,...,Hg(de b1,
1 r—1 s
+ —Syms, k+32 r—+1) IZ d1V 1)k+1—7~ (DS A1 Sr_ps1)
(k+2) (k+1)!
p=2
1 k
i (k+1)! Syms,._ s ) PSp M Skopso.
! o

Putting the terms together we obtain (7.4) for S;11. Then the obvious iden-
tity dY V = Alty V2 combined with the formula (3.16) allows to conclude the
required expression of 8y = B (0k—1) in the statement of the main theorem.
This concludes the proof of the main theorem. O
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8 Appendix

In this appendix we provide some well known basic facts about the geometric
theory of linear connections needed for the reading of the paper. (See also

[Gau]).

8.1 The horizontal distribution associated to a linear con-
nection

We start with the following fact.

Lemma 14 Let V be a linear connection acting on sections of a vector bundle
E over a manifold M. Then the linear map

Tyup2&r— Hy(§) :=dpo(§) =T, Veo € Ty,
is independent of the sections o such that o (p) = 1.

Proof Let e = (ex),_; be a local frame of E over an open set U C M.
We consider the local expression ¢ = e - f with f € C1(U,R"). Let A €
C> (U, Ty @ Matrix, «, (R)) be the connection form of V with respect to the
local frame e, i.e Ve = e+ A. Then Vo = e® (df + A- f). If we denote by
0. : U x R" — Ejy then the differential of this map at the point (p, f (p))
provides an isomorphism

dpsp)be : Tup ®R" —> Tg o).
With respect to it, the equality hold

dp. 1 (p)0e [EDdyf(§)] = dyo(§).

We observe now the linear identity d7,(,) - dpoOcjoar = dp f(p)lecjoor-- We
infer

To(p) - Oelipyxmr = dp,f(p)becjoorr (8.1)
and
Tyt [e @)+ (dof () + A ) £ ) )]
= dypife [0 (dpf (O +A©)- 1 (1))
Lo Ver = dyyinfe [0 (45O +AE©) T0))].
Thus

Ho (€) = dyyinfe [€8 (~4(6) 7)),

i.e. if n = e - h, then

Hy(€) = dypnde[¢0 (-4 )],

which shows the required conclusion. (Il
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Let mg : E — M be the projection map and notice the equality Ker d,7g =
Tg, ., for any n € E,. The identity mg o o = idps implies

dg(p)ﬂ'EOde'(f) = §

We deduce the identity d,mg o H,, (§) = {. We define the horizontal distribution
H C Tk associated to V as

Hy, = H, (TMJ"E(W)) CTey-

We notice now that the tangent bundle of the vector bundle E ¢ F is given by
the fibers

Teop,(nm) = {(Uhvz) € Tom © T, | dyy e (01) = dyy 7 (v2) }
and that the differential of the sum bundle map sm, : E ® E — E satisfies
dinyme) (5myg) (vi,v2) = Ty yp, (T,;llvl + T,;lvg) ,

for any (v1,v2) € Tk, ®TE,y, such that d,, 7g (v1) = dp, g (v2) = 0. We infer
that for any sections o; of E such that o; (p) =n;, j = 1,2, hold the equalities

Hy, 4, &) = dp (o1 +02) (§) - Tpy4n, Ve (01 + 02)
= d(m,nz) (SmE) (dpal (f) s dpa2 (5) ) - T771+772 vfal - T711+772 vaQ

iy o) (5125) (dpal (&) = Ty, Veor, dpoa (§) — Tn2v502) :
We conclude the property
HTI1+T]2 (5) = d(mﬂ?z) (SmE) (Hm (f) 5 HT]Q (5)) . (82)

Lemma 15 For any section o € C* (M, E) and for any function u € C* (M, R)
the identity holds

d;D (ua) = dpu ® Tuo(p)g (p) + da(p) [u (p) IIE] : d;DU
for any point p € M.

Proof With the notations in the proof of lemma 14

dy (w0) (§) = dpugibe [€5 dy (uf) (©)]

_ %w@@&@pw@wwmw@MJ@ﬂ}

|
|

+ dpupple |EDu(p )]

= p’uf(p)ee O@d u ):|

=7%@@@%M@f@)+%wwwﬂﬁ
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thanks to (8.1). Using the identity
dp (Ao) = dy(py (MEg) - dpo, (8.3)

for any A € R, we conclude

d:D (uo’) (5) = dpu (5) Tua(p)g (p) + dcr(p) [u (p) ]IE] ’ dpg (f) :
|
We observe also the elementary identity
dy, (Mlg) - T, = AT, , (8.4)
for all n € E. We show now the identity
Hyy =dy (M) - Hy, (8.5)

for all n € E. Indeed let o be a section such that o (p) = 7. Using (8.3) and
(8.4) we obtain the equalities

Hy, = dy(Ao)—Tx\,V (\o)
= dg(p) ()\IIE) . de — )\TMVJ
= dg(p) (/\HE) . [de — TnVU]

= d,(\g)-H,.

The property (8.5) implies in particular Hy, = d,05s, where Oy is the zero
section of Tyy.

Definition 5 A distribution H C Tg, is called horizontal if the map
g, My — Thimp(n) 5
is an isomorphism for alln € E.

Lemma 16 Any horizontal distribution H C Tg, which satisfies the conditions

(8.2) and (8.5) with H, = (dnwEmn)fl, determines a connection V over E
with associated horizontal distribution H.

Proof The connection V is defined by the formula

Ver = Trb - |dpo = Hogy) (©),

for any £ € Thr,p,. The definition is well posed because

[dpg - Ha(p)} &) € Tpo@)-

which follows from the identity

do(p)TE - {dpa — Hg(p)] & = 0.
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It is obvious that the additive property of V is equivalent to the condition (8.2).
We observe now that with the previous definition, the covariant Leibniz property

Ve(uo) = dpu(§)o(p)+ul(p) Veo,

is equivalent to the identity

dp (UU) (5) - Huo'(p) (5)

= Tuty {du(© 0 () +ud) Tl - [d0 (€) — Hor) ©)] }.

We develop the right hand side using (8.4). We infer that the previous identity
is equivalent to the following one

dp (’LLO') (5) - Huo(p) (5) = dpu (E) Tuo’(p)g (p)

+ do(p) [u (p) HE} : [dpo(é“) — Hyp) (€)

The later hold true thanks to lemma 15 and the assumption (8.5). O

The data of a smooth horizontal distribution over E coincides with the one
of section
HeC®(E, 5Ty ®TE)

such that drg - H = Lz ;. (We notice that drp € C*° (B, Ty ® mpThr)). Such
type of section determines a connection if and only if it satisfies the identity
(8.5).
For any vector = € Tk, we denote by
YH(E) :=E— Hyodymg (E),

its vertical component with respect to the horizontal distribution H. In partic-
ular

eri(p) ~dpo (§) = Ty (p) [VEU ()] -

8.2 The induced connection
Let ¢ : N — M be a smooth map. We define the vector bundle *E := N x4 E

over N. In explicit terms

B = {umeNxBlvy) =)},

and the projection over N is given by the restriction of the projection to the first
factor. We will denote by ¥ : ¢* E — FE the restriction of the projection to the
second factor. The sections of ¥*F are identified with the maps 6 : N — FE
such that 7 o 0 = 3. In this way, if s is a section of E then the section
1Y*s 1= s01) is a section of ¢* E. More in general if « is a section of APT}; ® E,
we define the section Y*a € APTH @ *E as

W) (y) = (aoy)(y) A" (dyy).

We provide a generalization of lemma (15).

48



Lemma 17 For any section o € C' (N,v*E) and for any functionu € C* (N, R)
the identity holds

dp (uo) = dpu® Tyo(pyo (p) + doyu (p) 1] - dyo,
for any point p € N.

Proof A local frame e of E induces a local frame 1*e of ¢*E over the open
set =1 (U). Then o = ¢*e- f with f € C* (¢~ (U),R"). We denote by
0o : U x R" — Ejy the trivialization map induced by the local frame e of
E. Then the differential of this map at the point (¢ (p), f (p)) provides an
isomorphism

dy(p),f)0e : Towp) ®R™ — Tr o),

and

o (€)= dyipyugnle [t () @ dyf (€) ]

for any £ € Ty, we have

dy (u0) (€)= dyiurne [t (€) @ dy (uf) (&)

— dupasorte {0 (© @ [4u© 1 0) +u )0, ©)] |
= dy)usm)fe [0 @ dpu (€) f (p) }
+ dyarle [doth (€) B u@)dyf (€) ]

= Tuoy -0 (408, du () £ () ) +dy (u(p) 0) (€).
thanks to (8.1). Using the equality
dp ()\O’) = da(p) ()\]IE) . de',
for any A € R, we conclude the required identity

dp (uo) (§) = dpu(§) Tuo(p) (p) + do(p[u (p) IE] - dpo () -
The induced connection V¥ over ¢*F is defined by the formula
V?U = T;(]lg)’y;"(p)dpa €3

Toby [doo () = Homdyo (€) ]

for any £ € T . It is obvious that the additive property of V¥ follows from
the condition (8.2). We show now that V¥ satisfies the Leibniz property

Ve (uo) = dyu(&)o(p)+ulp)Vio.
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Indeed using lemma 17 and the identity (8.5) we have

Ve (o) = Ty (u0) (€)
= T 1) [ () Tugyo (P) + o [u (p) L )dyor (£) |
= dpu(€) o (0) + T [dotle () Tldyo (€) — Huorydytt (€) |
= du(©o )

Tl [dot [t (0) Taldyo (€)= dog [ (p) Le ] Ho gy dyt (6)

= du(§) o () + T,k [donle () T dyo (©) ]
= dpu(§)o(p)+ Tng(p) [U (p) ’YZ{(p)dpJ (3] }

= du(€)o(p)+ulp) Vio.

We observe also that for any s € C*° (M, E) and £ € T, we have the equalities

VEWs) = Toyim s duwms - dpd (€)

= Vs(¢(p) dpt (§),
in other terms the functorial formula

VY (YTs) =97 (Vs), (8.6)
holds.

8.2.1 The induced connection (second approach)

We observe that the tangent space of ¥*FE at the point (y,n) is given by the
equality

Tw*E’(ym) = {(f’ 0) € Iny ®Tgny | dytp (f) = anE (9) } .

Given any horizontal distribution H € C* (E, 7Ty, ® Tg) over E, we define
the horizontal distribution

HY :=V'H € C®WE,m.-gTh®Typ).
In explicit terms

H1/1

(y.m) Iry,, © Hy - dytp.
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If H satisfies the identities (8.2) and (8.5) then so does H¥. This follows indeed
from the identities

d(yﬂh,m) (Smw*E) = ]ITN,y D d(m,m) (smy),

diyyMy=g) = Iy, &d, (MEg).

By definition of HY we infer that the induced connection V¥ over 1* E satisfies
the formula

Vio = T [de (©) ~ Howy - di (©)]

for any £ € Ty 4.

The local frame e induces a local frame 7 := e o) of ¥*E over ¥~ (U). We
compute the local connection A% form of V¥ with respect to such frame. We
notice that V¥n = ¢* (e- A) = n - ¢*A by the previous remark. We infer the
equality AY = ¢*A.

8.2.2 Parallel transport

We consider a smooth curve v : (—¢,e) — M and asection o € C! ((—¢,¢) ,v*E)
which satisfies the equation

over (—¢,¢) with o (0) =n € E, ). If we write o (t) = e (v (t)) - f (t) then

Vie = et) [fO+AGW)-F0)].

dt
We infer that the parallel transport map 7.; : Ey ) — Ey ), t € (—¢,€) given
by 7,,: (n) = o (t), is linear. We show the following fact.

Lemma 18 For any smooth curve 7y : (—e,e) — M and for any section o €
C! ((—¢,¢) ,7*E), holds the identity

d
5 _a —1 .
VieO=g [Tw o (t) ] . (8.7)
Proof We notice first that the term 7. + -0 (t) is given by the intrinsic identities
du .
TELAGE) wls) = 0,
u(t) = f(t),
e(v(0) - ue(0) = 75, 0(t).

Integrating the first equation we infer
t
w @) - u©0) = = [ AG ) u ) ds
0
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Using the second equation we obtain

J(t) —u (0) = —/O A (Y (8)) - uyg (8) ds.

Deriving with respect to the variable ¢t we obtain

G 0) = F0)+AG@) )

= fO+AF®)-f(@).
Evaluating at ¢ = 0 and multiplying both sides with e ((0)) we infer the re-
quired conclusion. O

We consider now a C'-vector field ¢ over M and let @e,+ be the associated
1-parameter subgroup of transformations of M. Let ®¢; : £ — E be the
parallel transport map along the flow lines of ¢¢ ;. It is obvious by definition,
that the map ®¢ ; satisfies mg o ¢ 1 = ¢ 0 TE.

The vector field = := &g g over E satisfies the equality = (1) = H,, (€), for any
n € E. This is a direct consequence of the definition of the induced connection
along the flow lines of &.

To any section o € C' (M, E) we can associate a C'-vector field ¥ over
E defined as ¥ (n) := Tylo o g (n)]. Let @5, be the associated 1-parameter
subgroup of transformations of F. In explicit terms it satisfies

Py (n) =n+toome(n) .

Then

d d
4 = o oo (Pe-t0Pni0ey).
[ ’ ] dt\t:odslszo( £t O®%,s 0 f,t)

The fact that the map ®¢ _; is linear on the fibers implies

e 1oPy 0Py = Py [Pey+500mE 0 Dey
= ]IE+S(I)§,_,§~O’O7TEO(I>§¢

= ]IE—I—Sq)E’,t-O'OQOS’tOTFE.
Thus for any n € E, holds
e 1oPys0Pei(n) = ntsPer 009 (p) € Ep.

We conclude

d

=) = g Ta[®er oo )]

= T,[Veo ()],

i.e for any n € F the equality holds

£, 21 () = T, [(Veo) o ma (n) ] - (8:8)
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Iterating twice we deduce the identity

20523 | () = T, [ (Ve Veo) o ()| (8.9)

Moreover the fact that by (8.8) the vector fields [E;,X], j = 1,2 are tangent to
the fibers of E and constant along them implies

[[51,2], [Eg,z]} =0. (8.10)

8.3 The geometric meaning of the curvature tensor

Lemma 19 Let R := V? be the curvature tensor of the connection V. Then
for any vector fields &1,&; over M and for any n € E the identity holds

W (Bl () = TR (6.6 ).

Proof Let o be a local section of E such that o (p) = n. By definition of
horizontal lift = of a vector field £ we have

E(n) = [do(©)]oms(n)— T, [(Veo) om (n)
We infer by (8.8) the identity
[do (&) ors = Z+[53].
We infer 9.& = Z+ [Z, %] over Imo. Thus

0:[61,8] = [04&1,0480]
= [E1,E]+ {517 [52,2]} + {[51,2] ,Ez} )
thanks to (8.10). We rewrite the previous equality as
B2 = [22ELY]] - [5 (53] - o6l
Using (8.9) we deduce
B2 = T |(VeVao - Ve Veo) () | - do(le &)

T [(V&V&U = V& Ve,0 = Vig, £)0) (p)} — Hy([€2,61])

= T,[R(&,61) 0 (p)] + Hy([1,&)).

We infer the required conclusion. O
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