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This paper presents a new control strategy for the well known problem of the PVTOL. The total thrust is computed using a non linear feedback compensation so that the altitude reaches the desired altitude. The horizontal position x is then controlled by choosing the orientation angle θ as a smooth saturation function of x and x˙. A proof of convergence is presented using a Lyapunov approach. The proposed control strategy is successfully tested in numerical simulations.

Introduction

The PVTOL (Planar Vertical Take-Off and Landing) problem has attracted a lot of attention during the last decades. The reason for such an interest stems from the fact that it is an important theoretical problem in the automatic control community which is clearly related to a practical application. Indeed, the PVTOL is a nonlinear dynamical system that represents the simplified longitudinal model of a helicopter or a quadrotor. The dynamic model is very simple but contains two trigonometric functions which make the stabilization problem quite challenging.

One of the first papers to deal with the stabilization of the PVTOL was [START_REF] Hauser | Nonlinear control design for slightly non-minimum phase systems: Application to V/STOL aircraft[END_REF]. This paper motivated the search for control algorithms to stabilize the PVTOL. Since the publication of (1), different techniques have been proposed to control the PVTOL. Optimal controllers were presented in [START_REF] Lin | Robust hovering control of a PVTOL aircraft[END_REF][START_REF] Jadbabaie | Control of a thrust-vectored flying wing: a receding horizon-LPV approach[END_REF][START_REF] Xin | Robust control of PVTOL aircraft with a nonlinear optimal control solution[END_REF][START_REF] Raffo | Robust nonlinear control for path tracking of a quad-rotor helicopter[END_REF] to stabilize the PVTOL. Nonlinear feedback linearization techniques to control the PVTOL have been developed in [START_REF] Olfati-Saber | Global configuration stabilization for the VTOL aircraft with strong input coupling[END_REF][START_REF] Huang | Output tracking of a non-linear non-minimum phase PVTOL aircraft based on non-linear state feedback control[END_REF][START_REF] Do | On global tracking control of a VTOL aircraft without velocity measurements[END_REF][START_REF] Shu | An augmented system approach to static output-feedback stabilization with performance for continuous-time plants[END_REF][START_REF] Consolini | A homotopy method for exact output tracking of some non-minimum phase nonlinear control systems[END_REF][START_REF] Zhu | Approximate trajectory tracking of input-disturbed PV-TOL aircraft with delayed attitude measurements[END_REF][START_REF] Marconi | High-gain output feedback for a miniature UAV[END_REF][START_REF] Aguilar-Ibanez | Robust trajectory-tracking control of a PVTOL under crosswind[END_REF]. The sliding mode controller design has also been applied to the PVTOL in [START_REF] Zhao | Nonlinear robust sliding mode control of a quadrotor unmanned aerial vehicle based on immersion and invariance method[END_REF][START_REF] Chen | Robust backstepping sliding-mode control and observer-based fault estimation for a quadrotor UAV[END_REF][START_REF] Yu-Chan | Robust stabilization of nonlinear PVTOL aircraft with parameter uncertainties[END_REF][START_REF] Aguilar-Ibanez | Stabilization of the PVTOL aircraft based on a sliding mode and a saturation function[END_REF]. Furthermore, the backstepping approach has been used in [START_REF] Abdessameud | Global trajectory tracking control of VTOL-UAVs without linear velocity measurements[END_REF][START_REF] Su | Robust output tracking control for a velocity-sensorless vertical take-off and landing aircraft with input disturbances and unmatched uncertainties[END_REF][START_REF] Aguilar-Ibáñez | A backstepping-based procedure with saturation functions to control the PVTOL system[END_REF][START_REF] Jia | Integral backstepping sliding mode control for quadrotor helicopter under external uncertain disturbances[END_REF]. Other well known techniques have been proposed to control the PVTOL as prediction based control [START_REF] Chemori | A prediction-based nonlinear controller for stabilization of a non-minimum phase PVTOL aircraft[END_REF], gain scheduling [START_REF] Wu | Gain-scheduled control of PVTOL aircraft dynamics with parameter-dependent disturbance[END_REF], singular perturbation [START_REF] Esteban | Three-time scale singular perturbation control and stability analysis for an autonomous helicopter on a platform[END_REF], fault tolerant control [START_REF] Chadli | Robust fault tolerant tracking controller design for a VTOL aircraft[END_REF], Lyapunov approach [START_REF] Brandão | PVTOL maneuvers guided by a high-level nonlinear controller applied to a rotorcraft machine[END_REF][START_REF] Kuga | Robust Adaptive Control of PVTOL System via Minimum Projection Method[END_REF], quaternions technique [START_REF] Tayebi | Attitude stabilization of a VTOL quadrotor aircraft[END_REF] and adaptive control [START_REF] Benrezki | Adaptive trajectory tracking control for VTOL-UAVs with unknown inertia, gyro-bias, and actuator LOE[END_REF][START_REF] Zou | Nonlinear robust adaptive hierarchical sliding mode control approach for quadrotors[END_REF]. [START_REF] Sanahuja | A Stabilization of n integrators in cascade with bounded input with experimental application to a VTOL laboratory system[END_REF] and [START_REF] Castillo | Real-time stabilization and tracking of a four-rotor mini rotorcraft[END_REF] proposed the use of a nested saturation control algorithm [START_REF] Teel | Global stabilization and restricted tracking for multiple integrators with bounded controls[END_REF] to stabilize the PVTOL.

An interesting control algorithm for the PVTOL was proposed in [START_REF] Tran | Adaptive control of a quadrotor aerial vehicle with input constraints and uncertain parameters[END_REF]. They used the concept of virtual or ideal forces such that the PVTOL model becomes fully actuated.

The orientation angle and the thrust required to generate such virtual forces are then computed. The first and second order derivatives of the orientation are used in the control algorithm and therefore the virtual forces have to be smooth functions.

A controller was presented in [START_REF] Aguilar-Ibañez | Stabilization of the PVTOL aircraft based on a sliding mode and a saturation function[END_REF] which is based on a combination of the traditionally PD-controller and a sliding mode controller to stabilize both the horizontal and angular variables to the desired rest position. A hierarchical control strategy was proposed in [START_REF] Naldi | Robust global trajectory tracking for underactuated VTOL aerial vehicles using inner-outer loop control paradigms[END_REF] for a miniature VTOL vehicle to track a desired trajectory globally with respect to the initial position and attitude configuration.

The contribution of paper is as follows. The PVTOL has three degree of freedom which are the displacement x, the altitude z and the angular displacement θ. The total thrust u is currently used to stabilize the altitude z which converges to a desired value. The system is then essentially reduced to the form ẍ = tan (θ) = u 1 and θ = τ. The problem is to find an expression for τ such that x converges to a desired value. One way to solve the problem is to assign a virtual input u 1 as a function of x and ẋ, to stabilize x. The desired value for θ will then be θ d = arctan(u 1 ). In order to obtain a control input τ so that θ converges to θ d we will require the first and second derivatives of θ d . This technique has been used in [START_REF] Tran | Adaptive control of a quadrotor aerial vehicle with input constraints and uncertain parameters[END_REF]. In the present paper we have been able to simplify the expression for θ d to only θ d = u 1 without the arctan function. The computation of the first and second derivatives of θ d are much simpler since arctan does no longer appear in θ d . Furthermore, the contribution can also be presented in the following conceptual alternative way. Consider the first order non linear system ẋ = tan (θ). We can use the fact that tan (θ) and θ have the same sign and propose the simple desired angle θ d = -x which does not include arctan. When θ = θ d we get ẋ =tan (x) which is Lyapunov stable. The question is whether the above technique can be extended to the second order nonlinear system ẍ = tan (θ) without recurring to the arctan function. The present paper presents a solution to the above problem and applies it to the stabilization of the PVTOL.

The paper is organized as follows : Section ?? presents the PVTOL model. Section 3 describes the altitude control law. Section 4 is devoted to the controller for the horizontal displacement x. The orientation control algorithm is given in Section 5. The numerical simulations of the proposed control strategy are shown in Section 6. Final remarks are given in the conclusions.

PVTOL mathematical model

The PVTOL model can be written as

m ẍ = u sin θ m z = u cos θ -mg θ = τ (1)
Figure 1 presents the PVTOL where f 1 and f 2 are the control forces, m is the mass, θ is the angle of the aircraft with respect to the horizontal line, g is the gravitational acceleration, x is the horizontal displacement and z is the vertical displacement. Let us define the total thrust u and the torque τ respectively as follows 

u = f 1 + f 2 τ = ( f 1 -f 2 )l

Altitude control (z)

From ( 1) it follows that

m ẍ = u sin θ d + 1
(2)

m z = u cos θ d -mg + 2 (3) 
where

1 = u(sin θ -sin θ d ) (4) 
2 = u(cos θ -cos θ d ) (5) 
where θ d is the desired orientation. The control input τ will be computed so that θθ d converges to zero exponentially

In order to control the vertical displacement z let us choose the following control input u where z d is the constant desired altitude.

u = m cos θ d [g -2 ż -(z -z d )] (6) 
To avoid singularities in the above equation the desired angular position θ d will be chosen so that |θ d < π 2 | in the next section. From ( 6) into (3) the closed loop system for the z dynamics is

z + 2 ż + (z -z d ) = 2 m (7) 
then z → z d , ż → 0 and u → mg cos θ d . Notice that the convergence rate is exponential. From the above it follows that for a time arbitrarily long the x dynamics reduces to

ẍ g = tan θ d (8) 
4 Horizontal displacement control (x)

Consider the following function θ d which depends on x and ẋ

θ d = -k 1 tanh ẋ g -k 2 tanh (x + ẋ) g (9) 
where 0 < k i < π/4 for i = 1, 2. The control input τ will be chosen so that θ converges exponentially to θ d . The expression for τ is given in section 6. Notice from the above that |θ d < π 2 | and this avoids the singularity in [START_REF] Olfati-Saber | Global configuration stabilization for the VTOL aircraft with strong input coupling[END_REF]. Therefore we will assume that after some transient θ = θ d . The RHS of (8) could then be rewritten as

tan θ d = -tan (A + B) (10) 
where

A k 1 tanh ẋ g ; B k 2 tanh (x + ẋ) g (11) 
Consider the following trigonometric identity

tan (A + B) = tan A + tan B D (12) 
where

D 1 -tan A tan B (13) 
Notice that D = 0 since 0 < k i < π 4 . We define

y x g (14) 
(9) can also be rewritten as

tan θ d = - tan A + tan B D = - σ 1 ( ẏ) + σ 2 (y + ẏ) D (15) 
where

σ 1 ( ẏ) = tan(k 1 tanh ẏ) σ 2 (y + ẏ) = tan(k 2 tanh (y + ẏ)) (16) 
Then from ( 8), ( 14) and ( 15) it follows

ÿ = - 1 D [σ 1 ( ẏ) + σ 2 (y + ẏ)] (17) 
Next it will be proved that the closed loop system ( 17) is asymptotically stable using a Lyapunov approach. We propose the following Lyapunov function candidate

V = y+ ẏ 0 σ 2 (ξ)dξ + 1 2 ẏ2 (18) 
Notice that V is positive definite since x i σ(x i ) > 0. Differentiating we obtain:

V = σ 2 (y + ẏ)[ ẏ + ÿ] + ẏ ÿ = σ 2 (y + ẏ) ẏ + [σ 2 (y + ẏ) + ẏ](- 1 D [σ 1 ( ẏ) + σ 2 (y + ẏ)]) = σ 2 (y + ẏ) ẏ - 1 D [σ 2 (y + ẏ)σ 1 ( ẏ) + σ 2 2 (y + ẏ) + σ 1 ( ẏ) ẏ + σ 2 (y + ẏ) ẏ] = 1 D σ 2 (y + ẏ) ẏ[1 -σ 1 ( ẏ)σ 2 (y + ẏ)] - 1 D [σ 2 (y + ẏ)σ 1 ( ẏ) + σ 2 2 (y + ẏ) + σ 1 ( ẏ) ẏ + σ 2 (y + ẏ) ẏ] = - 1 D [σ 2 2 (y + ẏ)σ 1 ( ẏ) ẏ + σ 1 ( ẏ)σ 2 (y + ẏ) + σ 2 2 (y + ẏ) + σ 1 ( ẏ) ẏ] ≤ - 1 D [σ 2 2 (y + ẏ)σ 1 ( ẏ) ẏ - 1 2 σ 2 1 ( ẏ) - 1 2 σ 2 2 (y + ẏ) + σ 2 2 (y + ẏ) + σ 1 ( ẏ) ẏ] ≤ - 1 D [σ 2 2 (y + ẏ)σ 1 ( ẏ) ẏ + 1 2 σ 2 2 (y + ẏ) + 1 2 σ 1 ( ẏ) ẏ] < 0 ( 19 
)
where we have used the facts that

-σ 1 σ 2 ≤ 1 2 σ 2 1 + 1 2 σ 2 2 ( 20 
)
and

σ 2 1 ( ẏ) ≤ ẏσ 1 ( ẏ) (21) 
or

|σ 1 ( ẏ)| ≤ | ẏ| which is equivalent to: ẏ -σ 1 ( ẏ) > 0 for ẏ > 0 ẏ -σ 1 ( ẏ) < 0 for ẏ < 0 ( 22 
)
Since σ 1 ( ẏ) is a saturation function (see ( 16)) it is clear that the above inequalities hold for large values of ẏ orẏ. Figure 2 shows that the inequalities also holds for values around the origin for the upper-bound of k 1 = π 4 . We conclude V is positive definite and V is negative definite. Therefore y and ẏ converge to zero, i.e. x and ẋ converge to zero.

Attitude control (θ)

The torque control input τ is given by

τ = θd -2( θ -θd ) -(θ -θ d ) (23) 
where

θ d = -k 1 tanh ẋ g -k 2 tanh x + ẋ g θd = -k 1 ẍ g sech 2 ẋ g -k 2 ẍ + ẋ g sech 2 ẋ + x g θd = 2k 1 ẍ g 2 tanh ẋ g sech 2 ẋ g + 2k 2 ẍ + ẋ g 2 tanh ẋ + x g sech 2 ẋ + x g - -k 1 ... x g sech 2 ẋ g -k 2 ... x + ẍ g sech 2 ẋ + x g (24) 
where ẍ and ...

x are not required to be measured since they are given by the expressions (see ( 2) and ( 6))

ẍ = u sin θ d ... x = u sin θ d + u θd cos θ d u = m cos θ d [g -2 ż -(z + z d )] u = m cos θ d [-2 z -ż] - m[g -2 ż -(z + z d )](-θd sin θ d ) cos 2 θ d (25) 
where z can be computed from [START_REF] Huang | Output tracking of a non-linear non-minimum phase PVTOL aircraft based on non-linear state feedback control[END_REF] in terms of z and ż. Substituting ( 23) into (1) it follows

θ -θd + 2( θ -θd ) + (θ -θ d ) = 0 (26) 
Therefore θθ d and θθd converge to zero. The control input ( 6) is basically composed of a nonlinear compensation of cos θ d , and a linear state feedback. If the control input u has to satisfy a lowerbound (u > 0) and an upperbound, we can replace the state feedback part on z and ż by saturation functions as in [START_REF] Yu-Chan | Robust stabilization of nonlinear PVTOL aircraft with parameter uncertainties[END_REF] such that the closed loop for the z dynamics will have the form given in [START_REF] Aguilar-Ibanez | Stabilization of the PVTOL aircraft based on a sliding mode and a saturation function[END_REF] with D = 1. The corresponding values of k 1 and k 2 could then be used to reduce the size of the saturation functions in [START_REF] Yu-Chan | Robust stabilization of nonlinear PVTOL aircraft with parameter uncertainties[END_REF] as well as to reduce the upperbound of |θ d | in (9).

Simulation results

This section presents the numerical simulation results obtained with the proposed controller. Furthermore we will compare this algorithm with respect to another control algorithm. The second control algorithm which we will call State Feedback is obtained as follows. The altitude z will be controlled as before by using the control input u in [START_REF] Olfati-Saber | Global configuration stabilization for the VTOL aircraft with strong input coupling[END_REF]. The torque control input τ will be given also as before, i.e. as in [START_REF] Wu | Gain-scheduled control of PVTOL aircraft dynamics with parameter-dependent disturbance[END_REF] but the desired angular position θ d will be simplified as follows

θ d = -k 1 ẋ g -k 2 x + ẋ g (27) 
Therefore the State Feedback control algorithm is similar to the proposed algorithm but with a desired angle θ d which is linear with respect to x and ẋ. The stability of this State Feedback control strategy is obtained from [START_REF] Huang | Output tracking of a non-linear non-minimum phase PVTOL aircraft based on non-linear state feedback control[END_REF] for the altitude dynamics z, from [START_REF] Wu | Gain-scheduled control of PVTOL aircraft dynamics with parameter-dependent disturbance[END_REF] for the convergence of θ to θ d , and from ( 8) and ( 27) for the local stability of the x dynamics assuming that θ is so small that tan(θ) ≈ θ. We may expect a similar behavior of the two control algorithms when x and ẋ are close to the origin.

In the simulations we have used the following controller parameters for both algorithms: m = 1, k a = 20, k b = 10, k 1 = 5 and k 2 = 3. We have used the following initial conditions for z and θ: z(0) = 0.5 and θ(0) = 0. The desired altitude is z d = 1. We have run 2 simulations with 2 different initial conditions for x. Figures 3 and4 

Conclusions

This paper has presented a new control strategy for the well known problem of the PVTOL. The altitude control has been obtained by non linear compensation which guarantees that the altitude will reach the desired altitude in a short period of time. A desired orientation has been proposed as a function of smooth saturation function of x and ẋ. It has been proved that when the orientation reaches the desired orientation then the closed loop for the horizontal displacement is Lyapunov stable. The proposed control strategy has been tested in numerical simulations.
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 1 Figure 1: The PVTOL diagram.
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 2 Figure 2: Plot of ẏσ 1 ( ẏ) showing that inequalities (22) hold.
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 3 Figure 3: The vertical displacement z, the angular displacement θ and the horizontal displacement x with initial condition x(0) = 0.5
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 4556 Figure 4: Control inputs u and τ with initial condition x(0) = 0.5
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