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Multisensory integration in spatial orientation 
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Recent psychophysical studies on normal subjects, as well as 

brain imaging studies, have revised the concepts concerning 

the mechanisms underlying spatial orientation during  

navigation tasks. The emphasis has been put on internal 

models that allow the prediction of a planned trajectory and are 

essential in the steering of locomotion. Cognitive factors such 

as strategies and emotional parameters are now starting to be 

included in the research on spatial orientation. It is obvious that 

important individual and gender differences exist in the brain 

operations underlying spatial orientation in humans, which may 

help to understand the construction of a coherent perception 

and the organic neural disorders related to the internal 

representation of space. 

 
Laboratoire de Physiologie de la Perception et de l’Action, Collège 

de France CNRS UMR 9950, 11 place Marcelin Berthelot, 75005 

Paris, France 

 

Current Opinion in Neurobiology 1999, 9:708–712 
 

 
Introduction 

The control of spatial orientation during navigational tasks 

and locomotion requires a dynamic updating of the repre- 

sentation of the relations between the body and the 

environment. This depends upon central integration of 

current multisensory information but also on the compari- 

son of sensory signals with planned trajectories, the body 

schema and past memories. Three main sensory modalities 

are involved in these processes: vision, the vestibular sys- 

tem and proprioception. In addition, efferent copies from 

motor signals also contribute to the updating of spatial rep- 

resentations during navigation. The brain mechanisms 

underlying spatial orientation have, in the past, mainly 

been studied in static conditions. We shall review here 

some recent studies concerning the brain mechanisms that 

are used to dynamically update, or memorise, routes or 

travelled paths. This review will also emphasise a neglect- 

ed dimension in the study of spatial orientation: the role of 

emotion in the underlying processes. This role is exam- 

ined by recent studies concerning the relationship 

between spatial orientation and anxiety disorders. 

 

Vestibular motion perception and memory 

during navigation 
Despite a variety of models of sensory interaction 

[1,2,3••,4••], the neuronal mechanisms of high-level interac- 

tion between vestibular and other sources of information 

remains unclear. In addition, motion perception also 

depends heavily upon internal models and not only on 

input–output transformations, but there is no general theory 

that can explain how the different afferent signals are com- 

bined in a unique coherent perception during navigation. 

 
Recently, brain imaging techniques have improved the 

anatomical identification of the projection areas of vestibu- 

lar, visual and kinaesthetic signals to the multimodal 

integration areas of the cerebral cortex involved in spatial 

orientation and memory in humans [5•,6], and in the deter- 

mination and perception of the mid-sagittal egocentric 

body reference [7•]. These data, together with the data 

obtained in the primate cortex concerning the cortical sys- 

tems dealing with head-in-space movement (see [8••]), 

contribute to the knowledge of the neural structures 

involved in space perception but they provide little infor- 

mation concerning the neural processes involved. Novel 

psychophysical methods in humans, however, have 

allowed the study of both canal and otolith organs during 

tasks involving the perception and memory of bi-dimen- 

sional motion during navigation [9]. Mobile robots can be 

used to passively displace human subjects while visual 

stimuli can be provided by virtual reality techniques. 

Together, these recent developments have given  rise  to 

new tools for the study of visual—vestibular interactions 

during combined rotations and translations. They  have 

also allowed the experimental testing of new hypotheses 

concerning the type of information that is stored in spatial 

memory during navigation. Such experiments have sug- 

gested that the brain stores dynamic patterns of motion, 

rather than just position on cartesian-like cognitive maps 

[10]. These, together with observations of deficits in 

vestibular memory in patients with cortical lesions, and 

positron emisson tomography (PET) studies of the brain 

areas involved in the memory of travelled routes, have led 

to the formulation of the concept of ‘topokinetic memory’ 

[11], (i.e. the dynamic memory of the movements and asso- 

ciated landmarks and views during locomotion). 

 
New methods of recording head and body movements dur- 

ing blind locomotion have also allowed the study of the 

spatial memory mechanisms underlying the steering of 

locomotion. In human subjects executing a locomotor 

turn — even in darkness — gaze direction leads the trunk 

and feet. This suggests that the steering is performed 

through predictive processes, probably involving complex 

interactions between kinesthetic information and internal 

models of the planned trajectory [12•]. This predictive 

ability is not present in young infants and develops during 

the first few years [13•]. It has also been proposed that 

there is a dissociation between the coding of distance and 

direction for the steering of locomotion [14•]. 

 

Spatial orientation and emotion 
All the above results indicate that spatial orientation dur- 

ing  navigation  is  dependent  upon  higher  cognitive 



 

 

 

 

processes involving the limbic and cortical areas related to 

spatial memory. However, another dimension has also 

recently been revealed to play a role in these mechanisms. 

There is a remarkable overlap between the  brain  struc- 

tures involved in spatial orientation and spatial memory, 

and those involved in emotion (see [15,16]). Spatial disori- 

entation is a complaint reported by many patients in 

psychiatry. Evidence of dysfunction of spatial orientation 

has been found in agoraphobics [17]. During navigation in 

a complex environment, panic–agoraphobic patients 

became lost more often and utilised fewer navigation 

points. Moreover, the maps drawn afterwards by these 

patients were inaccurate [18]. 

 

The experience of vertigo and dizziness is a common 

symptom in several psychiatric disorders. Dizziness is also 

one of the key symptoms of panic. Because vestibular sys- 

tem dysfunction leads to dizziness and disorientation, it 

has been hypothesised that a peripheral vestibular abnor- 

mality could explain the presence of certain symptoms 

related to space perception in anxiety disorders [19]. 

Despite a strong association between dizziness and anxiety 

[20••], however, it is difficult to demonstrate a cause-and- 

effect relationship between pathological anxiety and 

vestibular system dysfunction. There is a growing litera- 

ture on vestibular abnormalities in anxiety disorders, in 

particular agoraphobia and panic disorder (see [21•,22•] for 

reviews). Numerous studies have investigated a potential 

link between anxiety and the vestibular system, but few of 

them have addressed the specific topic of spatial represen- 

tation. In particular, the problem of the construction of a 

coherent perception of space has not been addressed in 

these studies. 

 
Dizziness is characterised by a marked distortion of 

self–world relations and reflects a discrepancy between 

internal sensation and external reality. Spatial disorientation, 

as well as dizziness, can be due to a peripheral problem in 

any of the sensory modalities; or, it amy be due to a central 

problem, involving not one particular sensory modality but 

rather the integration and weighting of the different modal- 

ities and their relation with memory. Complaints concerning 

spatial disorientation in psychiatry have seldom been con- 

sidered as a possible manifestation of a distorted 

multisensory integrative ability. Several kinds of sensory 

mismatches are encountered in everyday life but despite 

this, the central nervous system usually manages to update 

the internal representation of the body in the surrounding 

space. Such sensory conflicts may occur between any of the 

vestibular, visual or somatosensory systems. For example, 

passive transports generate sensorimotor mismatch because 

of the absence of motor feedback. In some cases, a mis- 

match among simultaneous sensory information may elicit 

an erroneous perception of the body in space, resulting in a 

vertigo syndrome. Vertigo may thus be induced by physio- 

logical external stimulation. However, when no physical 

explanation is found to explain the symptom of vertigo, it is 

common to label it as ‘psychogenic’. We think it is necessary 

to go beyond such a dichotomy between ‘physiological’ and 

‘psychogenic’ vertigo in order to reach a better comprehen- 

sion of the mechanisms of spatial orientation. 

 

Space phobia 
A number of phobias that are acquired by dizziness-prone 

patients have been described. They often involve avoidance 

of stimulus situations having certain visual characteristics. 

 
Space phobia [23] is characterised by fear of the absence of 

visual orienting cues and fear of falling, which is unlike the 

fear of public places found in agoraphobia. Space and 

motion discomfort [24] occurs in situations characterised 

by inadequate visual or kinaesthetic information for nor- 

mal spatial orientation, and may contribute to promoting 

agoraphobic avoidance in patients with vestibular dysfunc- 

tion. Postural phobic vertigo [25] refers to dizziness and 

subjective disturbance of balance while standing or walk- 

ing despite normal clinical balance tests. Perceptual 

stimuli such as a bridge, a staircase, an empty room, a street 

or a social situation (e.g. a crowd, restaurant or concert) are 

provoking factors. The Motorist Disorientation Syndrome 

[26] refers to a difficulty when driving over the crests of 

hills and on open, featureless roads. 

 

In all these syndromes, a false sense of orientation arises 

either from inappropriate signals from distorted vestibular 

canal and otolith organs, in the case of a vestibular dys- 

function, or from a disordered central interpretation of 

sensory information. Symptoms of dizziness are mainly 

precipitated by certain visual surroundings. Some vestibu- 

lar patients are sensitive to particular visual environments 

(e.g. supermarket aisle, crest of a hill when driving). 

Idiosyncratic visual and vestibular factors may play a part 

in the outcome of any peripheral of central lesion that 

causes loss of balance and spatial orientation, underlining 

the necessity to study the variation of the tolerance to visu- 

al and vestibular stimuli among normal people. Bronstein 

[27] proposed that visual vertigo may occur specifically in 

patients with balance disorders who show high reliance on 

visual channels for postural control and spatial orientation. 

 

Agoraphobic patients demonstrate an abnormal destabilisa- 

tion when maintaining upright posture under sensory 

conflicting conditions [28,29]. It has been  hypothesised 

that dizziness symptomatology could be linked to a strate- 

gy for maintaining balance or orientation that relies on a 

dominant contribution of vision. Even though a recent 

study [30] attributed a stronger role of proprioceptive cues 

in the maintenance of balance in agoraphobic patients, the 

results of this study illustrated once more the possible role 

of a higher process involving multisensorial integration in 

anxiety disorders. It is indeed striking to note that an 

altered visual–vestibular interaction has often been 

observed in anxious patients. In addition, we have recently 

obtained evidence in anxious subjects of a lack of anticipa- 

tory oculomotor behaviour during passive rotations in 

darkness, which may reveal a physiological manifestation of 



 

 

 
 

a differing orientation strategy [31] in these persons com- 

pared with nonanxious subjects. 

 
Gender and sensory integration 
There are several sources of individual differences in space 

orientation, the most recognised of which is gender. 

Differences in space orientation between males and 

females have often been approached in terms of differing 

spatial abilities, but some studies indicate that gender dif- 

ferences in sensory integration could also exist. 

 
Evidence for gender differences in circular vection (i.e. the 

illusion of self-motion when viewing moving visual sur- 

rounds) exists [32], and could be related to the greater 

susceptibility of females to motion sickness [33]. The ‘mal 

de débarquement’ syndrome (the sensation of rocking and 

swaying that persists after sea travel) also appears to be 

more common among females. The etiology of this syn- 

drome is unknown, but it has been thought to result from 

an inability of the brain to integrate and adjust to new spa- 

tial surroundings [34]. In an experiment on sensory 

adaptation, female subjects were found to recalibrate their 

vestibular perception to a lesser extent after exposure to 

conflicting visual–vestibular stimuli [35•]. All these find- 

ings consistently suggest gender differences in the central 

processes dealing with visual–vestibular interaction and 

internal strategies of spatial orientation and spatial memory. 

 
We cannot exclude the idea that the observed differences 

in sensory integration in males and females are related to 

the differences observed in the ability to maintain a sense 

of self-position in relation to the global shape of the envi- 

ronment. Several studies have demonstrated that females 

use distal cues for spatial orientation in a different way to 

males (see [36]). While it has already been proposed that 

gender differences in the structure of the hippocampus, 

caused by the effects of sex hormones [37], could represent 

a neural correlate of the difference in spatial ability, the 

neural substrates of the difference in sensory integration 

are unknown. Further research using magnetic and meta- 

bolic brain imagery methods will be necessary if we are to 

understand the underlying differences between human 

males and females in the processing of spatial information. 

 

Conclusions and future directions 

It is now necessary to obtain more information concerning 

the neural basis of these higher cognitive processes. Brain 

imaging will certainly be useful, but we believe that record- 

ing of neurones in freely-moving monkeys during 

navigation tasks will also be absolutely necessary. The 

recent discoveries of Rolls et al. [38] concerning the mech- 

anisms by which the monkey hippocampus may code the 

relationship between the animal and its surrounding space 

are examples of the new approaches that may be followed 

fruitfully. It will also be important in the future to study the 

individual strategies that are used by subjects of the same, 

and of differing sexes, to solve spatial problems. For exam- 

ple, the simple measurement of eye movements during a 

 

rotation memory test suggests that different subjects can 

use either allocentric or egocentric strategies [39•]. 

Moreover, during a locomotor task the brain can either 

update the location and orientation of objects in a continu- 

ous manner or delay the updating until the end of the 

locomotion, performing only an egocentric path integration 

during the travelled route [40]. 

 

More investigations are needed to analyse different 

aspects of multisensory integration in anxious patients in 

tasks implying perception as well as motor control. In par- 

ticular, the roles of the hippocampus, parietal cortex and 

frontal cortex in the mechanisms that allow steering of 

locomotion during navigation tasks should be investigated. 

More generally, it is necessary to design brain imaging 

experiments in humans using paradigms in which subjects 

recall actual, actively–performed navigation tasks. Some 

attempts in this direction have been made [41] and should 

be continued. 
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