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Square-triangle tilings : An infinite playground for soft
matter†

Marianne Impéror-Clerc,∗a Anuradha Jagannathan,a Pavel Kalugin,a and Jean-François
Sadoca

Regular square and triangle, two very simple geometrical figures, can be used to construct a fasci-
nating variety of tilings which cover the 2D plane without any overlaps or holes. Such tilings are
observed in many soft matter systems. Here we present a way to describe all possible globally uni-
form square-triangle phases using a three dimensional composition space. This approach takes into
account both the overall composition and the orientations of the two kinds of tiles. The geometrical
properties of special phases encountered in soft matter systems are described: the Archimedean Σ and
H phases, the striped phases and the 12-fold maximally symmetric phases. We show how this very
rich behavior with either periodic or aperiodic phases appears here as a consequence of the inherent
incommensurability between the areas of the two tiles related by the ratio

√
3/4. Geometrical con-

straints on boundary lines and junction points between domains of different compositions are given,
a situation likely to be encountered in experimental and numerical studies. Future developments are
suggested like considering the effect on phase behavior of possible symmetry breaking.

1 Introduction
There is a renewal of interest in the geometrical properties of
square-triangle tilings as they are observed in many experimental
systems at the nanoscale such as liquid crystals,1–3 copolymers,4

mesoporous materials,5–7 nanoparticles super-lattices,8 photonic
materials,9–11 along with numerical simulations studies12–15. In
all these soft matter systems, some phases can be described by
an underlying square-triangle tiling as illustrated in Figure 1 by
the example of a dodecagonal mesoporous material. Such square-
triangle phases are encountered either in pure bi-dimensional sys-
tems like in the numerical simulations of binary mixtures of hard
disks16–18 or in self-assembled three dimensional phases formed
by liquid-crystals, copolymers, surfactants. In the case of a three
dimensional phase, the structure is always a periodic stack of
two dimensional layers containing the same square-triangle tiling.
Such three dimensional stacks of 2D layers have been discussed
elsewhere.4,19 It is then sufficient to consider only bi-dimensional
square-triangle phases.

When quasicrystals were discovered in metallic alloys during
the 80’s, square-triangle tilings became popular models for phases
with 12-fold symmetry. Square-triangle tilings had been just in-
troduced in statistical mechanics as models of 2D amorphous lat-
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Fig. 1 A dodecagonal mesoporous material (Adapted from reference7).
The high resolution transmission electron microscopy of a single meso-
porous particle is analyzed with a finite patch of square and triangle
tiles with different orientations (see Figs. 2 and 3 later on). In the in-
set, the electron diffraction pattern shows a 12-fold symmetry. The two
tiles correspond to the two building units of the mesoporous material, a
cube and a triangular prism that are shown one the right. Each building
unit contains several cavities depicted by their polyhedral Voronoi cells
in different colors.

tices.20 Within a few years in the middle of the 90’s, the an-
alytical calculation of the entropy of configuration of square-
triangle tilings could be solved thanks to advanced statistical me-
chanics Bethe-Ansatz methods.21–24 The proposed models for 12-
fold quasicrystals were either deterministic (with a well-defined
rule for their construction) or random, and, for the later case,
it has been argued that the latter should be favored on entropic
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grounds.21,22 However, the relative merits of deterministic versus
random tilings models are still a matter of debate.25

In addition to the 12-fold symmetric phases that attract much
attention, soft matter systems can display a large variety of other
square-triangle phases. There is a need now to consider square-
triangle phases in a more global way, with no restriction to the
case of 12-fold symmetry, in order to understand their very rich
phase behavior. Given a system with a fixed composition (in terms
of the relative amount of triangles and squares), one may ask
what kind of phases could be observed. Out-of-equilibrium states
may be reached and the entropy of configuration may be not the
only factor to be taken into account.

The outline of the paper is as follows. After introducing square-
triangle tilings, we explain the notion of global uniformity for in-
finite tilings which is necessary to define their composition (sec-
tion 2). We conclude that only three independent parameters are
needed to specify the composition. A three-dimensional “compo-
sition space” is built accordingly and is systematically explored
(section 3). This approach allows to take into account both the
overall composition and the distribution in orientation of the
two kinds of tiles. The link between composition and lifting in
4D space is made (section 4) and special phases encountered in
soft matter systems are described in this context (section 5): the
Archimedean Σ and H phases, the striped phases and the 12-fold
maximally symmetric phases. Geometrical constraints on bound-
ary lines and junction points between domains of different com-
positions are given (section 6), a situation likely to be encoun-
tered in experimental and numerical studies. Finally, the geo-
metrical features of square-triangle phases are summarized and
predictions about their phase behavior are made (section 7). In
addition to the main text, the interested reader will find in the
†file introductions about geometrical concepts (lift in 4D, infla-
tion construction, diffraction) along with many specific mathe-
matical derivations.

2 Tiles, area fractions and global uniformity

2.1 Square-triangle tilings

Squares and triangles can be combined edge-to-edge in many
ways to cover the 2D plane without any overlaps or holes. Even
if the two tiles, regular squares and triangles, are simple geomet-
rical objects, there is a fascinating variety in the different pat-
terns/patches they can form to tile the 2D plane. Indeed, com-
bining regular squares and triangles introduces naturally some
’incommensurability’ in the system coming from the irrational ra-
tio
√

3/4 between the areas of the two tiles. This notion of in-
commensurability will be elaborated further on, particularly in
section 5.3 about the striped phases that are made of 1D stacks of
infinite stripes of squares and triangles.

Let us start by considering a finite patch of square-triangle
tilings like the one depicted on Figure 2. We denote the num-
ber of squares and triangles in the patch P by Ns(P) and Nt(P)

respectively. We use the notation |P| for the area of the patch P

and |∂P| for the total length of its boundary ∂P.

Since the tiles are either regular squares or equilateral trian-
gles, of the same edge size a, the constraint of covering the entire

plane by packing tiles tightly together edge-to-edge implies that
all tile edges have only six possible orientations, labelled from e1

to e6, with relative angles all multiple of π/6:

ei = a

(
cos π(i−1)

6
sin π(i−1)

6

)
. (1)

This geometrical property explains why long range orientational
order is always present in such tilings. The associated symmetry
may be 4-fold, 6-fold or 12-fold, as will be explained later on.

Fig. 2 A finite patch P of a square-triangle tiling with 12 squares and
19 triangles. All edges have the same length a and have six possible
orientations labelled from e1 to e6.

Since there are only six possible orientations for edges, there
are a finite number of possible orientations for the tiles, as shown
in Figure 3. Square tiles can have three different orientations,
noted S1, S2 and S3. For example, edges of a square tile with
orientation S1 are along e1 and e4. Triangles can have four dif-
ferent orientations, called here T1, T2, T3 and T4. In all, seven
different tiles must be considered, if one takes into account their
orientations. They are drawn in Figure 3. Edges of the T1 and T3

triangular tiles are along e1 and e3, when the edges of T2 and T4

tiles are along e2 and e4. Edges have been colored red or blue in
order to distinguish the T1 and T3 triangles (in blue) from the T2

and T4 ones (in red). The same color code is used in the next Fig-
ures to distinguish triangle’s orientations. Moreover, following17,
it is convenient to add dotted extra lines on the tiles or ’decora-
tion’ lines. These extra lines serve to indicate the orientation of
the tiles within a structure. Note that we are drawing the tilings
in the different figures with the direction of e1 always along the
horizontal direction.

In a similar manner, the tiles can combine in a finite number of
four different vertices, noted 44, 36, 32434 and 3342 (see Figure 3).
The notation corresponds to the tiles sequence around a vertice.
If one takes into account the orientation of the tiles, each type of
vertices may have different orientations. The 44 vertice can have
three different orientations of the tiles, corresponding to the S1,
S2 and S3 tiles. The 36 vertice has two orientations. The two other
types of vertices, 32434 and 3342, have twelve different possible
orientations, leading to a total number of 29 different vertices
taking into account their orientation.

2.2 Composition of infinite tilings

Here we consider infinite tilings of the plane. This is based on
the assumption that properties of a sufficiently large experimental
system can be described by the properties on an infinite tiling.
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Fig. 3 (a) The seven tiles when taking orientation into account. Squares
can have three different orientations (labelled S1, S2 and S3) when trian-
gles can have four (T1, T2, T3 and T4). Edges in T1 and T3 (respectively T2
and T4) triangles are depicted in blue (red) color. The same color code
is applied for the square tiles (S1, S2, S3), which all exhibit two blue and
two red edges. (b) The four types of vertices. The number of possible
orientations for each of them are respectively : three for 44 vertice, two
for 36 vertice and 12 for both the 32434 and 3342 vertices. The dashed
lines inside tiles are ’decoration’ lines, as introduced in17. By convention
the direction of e1 is along the horizontal axis in the Figures.

Border effects are thus not present but can be taken into account
later after we have defined properly the composition of an infinite
tiling.

When referring to area fraction of tiles of a given type in such
an infinite tiling, we shall implicitly assume that it can be obtained
as a limit of the area fraction for its finite patches, as their size
goes to infinity. To exclude the influence of boundary effects, we
shall consider only the situation when the area of the patch P

scales as the square of its perimeter, that is there exists a positive
constant c such that

|P|> c|∂P|2 (2)

It should be emphasized that for a given tiling of the entire plane
this limit does not necessarily exist. Consider for instance the
situation when half of the plane is covered by squares and the
other half by triangles. In this case one can find two sequences
of growing finite roundly-shaped patches, each contained in the
respective half-plane, and thus always having different composi-
tions (see later section 6).
We shall consider only the infinite tilings for which the limit of
the area fraction is well-defined. We shall call this assumption the
global uniformity condition (see Figure 4). Periodic tilings provide
an obvious example of this condition, since in them the area frac-
tions of tiles of a given type are fixed by their numbers in any
unit cell patch. The precise characterization of generic globally
uniform tilings -based on lifting maps- is given in Section 4.

We shall denote the area fraction occupied by squares and tri-
angles in a patch P by σ(P) and τ(P):

σ(P) = a2Ns(P)/|P|

τ(P) =

√
3

4
a2Nt(P)/|P|.

Fig. 4 An illustration to the global uniformity condition. In the sequence
of finite patches Pi, the area |P| of the patch P scales as a square of
its perimeter |∂P|. More specifically, there exists a constant c > 0 such
that |Pi|> c|∂Pi|2 for all i. The infinite tiling is called globally uniform
if for any such sequence of patches the area fraction of any given tile
species converges to the same limit.

To distinguish the number of tiles of a given orientation in a patch
P, we shall use a numerical index, for instance, Ns1(P) will
stand for the number of squares S1 and Nt2(P) for the number
of triangles T2, with the obvious identities

Ns(P) = Ns1(P)+Ns2(P)+Ns3(P)

Nt(P) = Nt1(P)+Nt2(P)+Nt3(P)+Nt4(P).

Similarly, we shall use the numerical index to denote the area
fraction occupied by tiles of a given orientation, for instance
τ1(P) will stand for the area fraction of triangles T1 in the patch
P.

The global uniformity condition requires that for any sequence
of growing patches like that shown on Figure 4 the area fractions
of each tile species have a well-defined limit, which we will de-
note for brevity by the same symbol, omitting the name of the
patch, for instance

lim
i→∞

τ1(Pi) = τ1. (3)

In addition to the obvious constraint

σ + τ = 1 (4)

we also have the identities τ1 = τ3 and τ2 = τ4 (see e.g.17). This
statement can be understood from the following simple argu-
ment. Consider a triangle T1 in a patch P and draw a ray from
its center perpendicular to the edge e1. There are only two possi-
bilities: either this ray hits a center of a triangle T3 (maybe after
crossing several squares S1), in which case we shall say that this
triangle T3 is coupled with the considered triangle T1, or it will
cross the boundary of P at the center of a segment parallel to e1.
Thus, the number of uncoupled triangles scales as the boundary
of P:

Nt1(P)−Nt3(P)∼ |∂P|

and the identity τ1 = τ3 follows from the assumption |∂P|/|P|→
0. We can therefore reduce the number of independent area frac-
tions by two. With the notations τ13 = τ1 + τ3 and τ24 = τ2 + τ4,
equation 4 reads (as σ = σ1 +σ2 +σ3)

σ1 +σ2 +σ3 + τ13 + τ24 = 1. (5)

The five area fractions σ1, σ2, σ3, τ13 and τ24 are also linked by
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another relation, which reads as follows:

σ1σ2 +σ2σ3 +σ3σ1 = 4τ13τ24/3 (6)

This second relation is much less trivial than equation 5 as it in-
volves products of the area fractions. We provide a demonstration
of this relation later on in section 4 using lifting maps. To our
knowledge, this relation was first introduced by B. Nienhuis24

and we term equation 6 the “Nienhuis relation”.
In sum, the five area fractions satisfy two relations, the coverage
relation (equation 5) and the Nienhuis relation (equation 6). This
implies that one requires only 3 = 5−2 independent parame-
ters to specify any given composition. Consequently, we can
built a three dimensional composition space, and this is described
in the next section.

3 3D composition space

Fig. 5 Barycentric representation of the three dimensional composition
space. (a) The unit sphere is shown in light blue with the five unit
vectors. A particular composition (X ,Y,Z,) correspond to a composition
point M(X ,Y,Z) (see Eq.8a). The five points S1, S2, S3, T13 and T24
correspond to the five “pure" phases consisting only of squares or triangles
of a single family, as illustrated in the small patches surrounding the unit
sphere. Two examples of phases are given for (b) a composition point
along the OZ direction at (0,0,0.8) showing a 3-fold symmetry and (c)
along the OX (c) at (0.8,0,0) showing a 4-fold symmetry. Both phases
are composed either of a majority of T1/T3 tiles in (b) or S1 tiles in (c).

3.1 Barycentric representation

In order to represent the three dimensional composition space,
we use the barycentric representation due to Kalugin,23 that pro-
vides a convenient way to represent the set of five area fraction
variables {σ1,σ2,σ3,τ13,τ24}. Such representations are commonly
used for ternary systems, where there are three variables which
must sum to a constant. This scheme can be extended to describe
our quinary system with five unit vectors introduced in the fol-
lowing way. For each of the three σ variables, three units vectors

form a triad in the plane XY :

us1 = OS1 = ux

us2 = OS2 =−(1/2)ux +(
√

3/2)uy

us3 = OS3 =−(1/2)ux− (
√

3/2)uy (7)

In addition, we introduce two unit vectors for the τ13 and τ24 vari-
ables pointing upwards (downwards) along the z-axis. In terms
of these unit vectors, shown in Figure 5, any given tiling com-
position can be represented by a point M with three Cartesian
coordinates (X ,Y,Z) given by

OM = Xux +Y uy +Zuz = σ1us1 +σ2us2 +σ3us3 + τ13uz + τ24(−uz)

(8a)

X =

(
σ1−

σ2 +σ3

2

)
;Y =

√
3

2
(σ2−σ3);Z = (τ13− τ24) (8b)

In Figure 5a, the five points S1, S2, S3, T13 and T24 play a special
role as they correspond to the five possible “pure" phases, made
of the regular tilings of squares and triangles. Because orien-
tation is taken into account, they are three “pure" phases with
squares (S1, S2 and S3 phases) and two with triangles (T13 and
T24 phases). Two examples of phases at two composition points
located along the OZ (Fig. 5b) and OX (Fig. 5c) directions are
also given. These phases reflect the symmetry in the orientation
of the tiles.
For X = Y = Z = 0, when the point M coincides with the point O,
all the area fractions have fixed values :

σ1 = σ2 = σ3 =
σ

3
=

1
6

τ13 = τ24 =
τ

2
=

1
4

(9)

Indeed, all the allowed orientations of squares and triangles
are present with equal area fractions at the point O. We term
“maximally symmetric" the corresponding tilings, to signify that
the distribution of tile orientations is maximally symmetric at
point O. The specific properties of such tilings are discussed later
on in section 5.4.
Reversely (by combining Eqs.5, 6 and Eqs in 8b), for any
composition point, the five area fractions can be expressed in
terms of its coordinates X ,Y,Z :

σ1 =
2X +1− τ

3
;σ2 =

1−X− τ

3
+

Y√
3

;σ3 =
1−X− τ

3
− Y√

3

τ13 =
1
2
(τ +Z) ;τ24 =

1
2
(τ−Z)

(10)

Finally, the overall composition, defined by the τ parameter at
any composition point X ,Y,Z reads:
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τ =
1
2

(
1+Z2−X2−Y 2

)
⇐⇒ τ−σ = Z2−X2−Y 2 (11)

This relation that contains quadratic terms in X , Y and Z comes
from the Nienhuis relation (Eq. 6) which is demonstrated later
on in section 4 using lifting maps in 4D space.

Fig. 6 Side and top views of the allowed sub-volume V in the 3D
composition space. The “pure phases" correspond to the five apexes of
the sub-volume V , points S1, S2, S3, T13 and T24 (see Figure 5). The
red lines joining apexes correspond to striped phases (see section 5.3).
Special points corresponding to τ = 1/2 (green) and τ = 2

√
3−3' 0.464

(red) are also indicated (see also Figure 7 and Table 1).

3.2 Sub-volume in the 3D composition space

Since all five area fractions must lie between 0 and 1, some
regions of the unit sphere are unphysical, i.e. do not correspond
to any composition. Using the relations in Eqs.10 one finds
that the allowed volume, V , is bounded by the three surfaces
given by the equations σ1 = 0, σ2 = 0 and σ3 = 0. The volume
V , whose side and top views are shown in Figure 6, has a
three-fold symmetry with respect to rotation about the z axis and
a mirror symmetry with respect to the XY plane. As introduced
later on in section 4, in the tiling plane P, a rotation by π/6
corresponds to a cyclic permutation of the points S1, S2 and S3

and a transposition of the points T13 and T24. It is thus sufficient
to describe the tilings in one-third of V , as all the others can
be deduced by symmetry. Thus, for example, one can choose to
consider the region subtended by the surface σ1 = 0, which reads :

Z2 = X2 +Y 2 +4X +1 (12)

The intersections of this surface with the XY plane (a circle)
and the XZ plane (a hyperbola) are shown as thin dark lines in
Figure 6. These two lines intersect at the special point ΣΣΣ1 lo-
cated at the intersection of the surface σ1 = 0 with the X axis at
X =

√
3− 2 ' −0.268. By symmetry, there are two other equiv-

alent points, labeled ΣΣΣ2 and ΣΣΣ3. The corresponding tilings are
discussed in more detail in section 5.1.

We turn to the six straight lines shown in red in Fig. 6, which
link each of the points Ti j with the Si. These lines are associated
with striped phases: 1D stacks of stripes of squares of a single ori-
entation followed by stripes of triangles of a given family. These

structures will be detailed in section 5.3.

Fig. 7 τ-surfaces in the three dimensional composition space. The
τ-surfaces are hyperboloids with three sheets for τ < 2

√
3−3 ' 0.464, a

single sheet for 2
√

3−3 < τ < 1/2, and two sheets for 1/2 < τ < 1. The
special points in green, O, A1, A2,... for τ = 0.5, and the special points
in red ΣΣΣ1, ΣΣΣ2, ΣΣΣ3, H1, H2,...for τ = 0.464 are the same as in Fig.6.

3.3 Surfaces for fixed values of the area fraction τ

Here we discuss the different τ-surfaces corresponding to a fixed
value of the total area fraction of triangles, τ. Using equation (11)
which relates the value of τ to the coordinates X ,Y,Z, it can be
shown that these τ-surfaces are hyperboloids of one or two sheets
as shown in Figure 7. We now list the different types of τ-surfaces
as τ is decreased from 1 (corresponding to a pure triangular lat-
tice):

• 1
2 ≤ τ ≤ 1: the τ-surfaces are composed of two disconnected
sheets: one for Z > 0 and the other for Z < 0. The sheets
are symmetric with respect to reflection about the XY plane:
Since Z = τ13 − τ24 (see Eqs. 10), changing the sign of Z
corresponds to interchanging the roles of the triangles T1

and T3 and the triangles T2 and T4. For τ = 1, the two sheets
shrink into the two points T13 and T24, corresponding to the
two regular triangular tilings.

• τ = 1
2 is a critical value of τ, for which the τ-surface is a

conical surface of apex O (see Figure 7). For this value of
τ, the ratio of squares and triangles is an irrational number:
Nt/Ns = 4/

√
3. Periodic tilings corresponding to this value

of τ are therefore ruled out but aperiodic structures can ex-
ist. The intersections of the conical surface for τ = 1/2 with
the boundary of the volume V give the six special points A1,
A2,... shown in green in Figs. 6 and 7. These points cor-
respond to 1D aperiodic ’striped phases’ which are discussed
later in section 5.3. At point O, all tilings are maximally sym-
metric with respect to the tiles orientation distribution and
this give rise to 2D aperiodic ordered phases also known as
quasicrystals (see section 5.4).

• 2
√

3−3≤ τ ≤ 1
2 : The τ-surface is composed of a single sheet
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(see Figure 7). The critical value τ = 2
√

3−3' 0.464 corre-
sponds to all compositions for which the number of triangles
is twice the number of squares, such that Nt/Ns = 2. For this
value of τ, periodic tilings can be encountered such as the
Archimedean Σ and H phases discussed in section 5.1 and
5.2.

• 0 ≤ τ ≤ 2
√

3 − 3 In this range of values a τ-surface is
composed of three disconnected sheets (see Figure 7). Each
of these sheets shrinks to a point as τ → 0, giving the three
regular square tilings (’pure" phases corresponding to the
points S1, S2 and S3) in this limit.

4 Composition and lift in 4D space
A general and powerful approach is to associate a two-
dimensional tiling (see Section 2.2) with a subset of a periodic
arrangement in a space of higher dimension, called a superspace,
containing the tiling plane P as a subspace.25,26 The original
tiling then arises as a projection of this subset, which is com-
monly referred to as a “lifted” tiling.26,27 The advantage of such
lift construction is that a unique periodic lattice in the superspace
contains all possible subsets. A more delicate associated ques-
tion is to define how to select a subset in the periodic lattice.
For square-triangle tilings, a standard lift construction is already
known21 and is described in details in the †ESI file (part A). The
superspace has four dimensions and is noted P⊕P⊥, where P⊥ is
a 2D-plane orthogonal to P. The 4D lattice is the direct sum of
two regular triangular lattices (see A.2 in †file and Fig. 19).

In this section, we first explain the relationship between the 3D
composition space and the lifting scheme by introducing the no-
tions of lifting maps, hyperslopes and pure phases (section 4.1).
We then give a precise characterization of the global uniformity
and a demonstration of the Nienhuis relation (section 4.2).

4.1 Lifting maps, hyperslopes and “pure phases”
The lift of a square-triangle tiling can be conveniently described
in terms of the so-called “lifting map” ϕ : P→ P⊥ defined on the
vertices of the tiling as ϕ(v) = v⊥ and continued to the interior of
the tiles and their edges by linear interpolation.21 v and v⊥ are
the components of a 4D-vertex respectively in P and P⊥ (†ESI file
part A.2). Let us first illustrate this idea on the simplest case of the
“pure" phases (points S1, S2, S3, T13, T24 in the 3D composition
space, see Figure 6), where the plane P is entirely tiled either
by triangles or squares. Here the term of “pure" phase is chosen
by analogy with a pure component in the phase diagram of a
mixture. For instance, in the pure phase corresponding to the
composition point T13, the pure phase is the regular triangular
lattice of tiles T1 and T3 and the coordinates of all vertices has the
form v= n1e1+n3e3. Simultaneously in P⊥, the associated vertices
are v⊥ = n1e1⊥

+ n3e3⊥
and form a similar triangular lattice. The

same construction is possible for all other pure phases and their
lifting maps ϕ are all a linear function on the set of vertices of the
tiling (and thus on the entire plane P):

v⊥ = ϕ(v) = BΦ ·v, (13)

where BΦ is a real 2× 2 matrix corresponding to the pure phase
Φ among the five matrices BT 13, BT 24, BS1, BS2 and BS3 (see Table
2). Remarkably, these matrices are always symmetric. It should
be emphasized that this is not an intrinsic property of the lifting
scheme, but a peculiarity of the square-triangle tiling. In particu-
lar, since adding 30-degrees rhombi to the tiling does not modify
the set of allowed directions of tiles edges, such tilings can also
be lifted following the same recipe.28,29 However, although the
lifting map for the pure phase of rhombi is also linear, the corre-
sponding matrix is non-symmetric.

As follows from the above, the lifted tiling for the pure phase
composed by triangles T1 and T3 is a triangular lattice in the 2D-
plane PT13 . By applying the similar reasoning to other pure phases,
one can also construct the 2D-planes PT24 , PS1 , PS2 and PS3 . In
each case, the matrix BΦ corresponds to the “hyperslope” of the
corresponding plane with respect to P (†ESI file part A.2).

We can now consider the more general case where the tiling is
a mixture of different types of tiles. In this case ϕ is a piecewise-
affine function on P. However, this function has a constant slope
on the interior of each tile:

∂ϕα (x)
∂xβ

= BΦ

αβ
. (14)

Here xβ are the components of x in the standard orthonormal
basis of P, ϕα (x) are the components of ϕ(x) in the respective
orthonormal basis of P⊥ and the matrix BΦ corresponds to the
pure phase Φ containing the considered type of tiles. Since BΦ is
symmetric (as it is the case for all pure phases), the function ϕ

has an important “irrotational property”, holding in the interior
of each tile:21

∂ϕ1(x)
∂x2 − ∂ϕ2(x)

∂x1 = BΦ
12−BΦ

21 = 0. (15)

4.2 Global uniformity and Nienhuis relation

We can now give an exact characterization of the class of glob-
ally uniform tilings, that is those with a well-defined composition,
namely such that for every sequence of finite patches with asymp-
totically negligible boundary, the composition of the patches con-
verges to the same limit:

Proposition 1 The square-triangle tiling is globally uniform if and
only if its lifting map ϕ is asymptotically linear, that is there exists
a linear operator B : P→ P⊥ such that

ϕ(x) = B ·x+o(‖x‖), (16)

where o(‖x‖) stands for the residual terms growing slower than lin-
early in the norm of x. In this case, the coefficients of B in the
standard orthonormal bases of P and P⊥ are

B =

(
Z +X −Y
−Y Z−X

)
, (17)

where (X ,Y,Z) are the coordinates of the tiling in the 3D composi-
tion space given by the formulas in Eqs. 8b. Moreover, in this case
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Table 1 Some special composition points

τ Nt/Ns Composition points Example of phase
0 0 S1,S2,S3 pure phases of squares
2
√

3−3' 0.464 2 ΣΣΣ1, ΣΣΣ2, ΣΣΣ3 Σ phase
2
√

3−3' 0.464 2 H1, H2, H3, H′1, H′2, H′3 H phase
1/2 = 0.5 4/

√
3 O maximally symmetric phases

1/2 = 0.5 4/
√

3 A1, A2, A3, A′1, A′2, A′3 aperiodic striped phases
1 ∞ T13,T24 pure phases of triangles

also holds the following identity:

τ−σ = det(B) = Z2−X2−Y 2. (18)

A detailed proof of this proposition is given in †ESI file part B. It
is instructive to compare the situation of a general globally uni-
form tiling with that of the pure phases. As follows from (16),
the lifted version of a globally uniform tiling follows asymptoti-
cally the direction of a 2D-plane PB ∈ P⊕P⊥ with the hyperslope
given by the matrix B. However, except of the case of the pure
phases, the lifted tiling forms a corrugated surface, as the lifted
vertices are not located in the same 2D-plane. In practice, for a
globally uniform tiling, the relation between its composition and
the hyperslope (eq. 17) can be written in an equivalent form as
an average over the different types of tiles as follows (eq. 19) by
using the hyperslopes of the pure phases (see Table 2) :

B = σ1BS1 +σ2BS2 +σ3BS3 + τ13BT 13 + τ24BT 24. (19)

Since all matrices BΦ are symmetric, the matrix B is symmetric.
Moreover, its coefficients are related to the (X ,Y,Z) coordinates
in a simple way.

The lifting construction also allows for a simple demonstration
of the Nienhuis relation stated in section 2.2. We previously as-
sumed this relation following the literature.24 The presence of
quadratic terms in the surface area of tiles comes from the ex-
pression of the determinant of the matrix B (Eq. 18) and Eq. 11
is obtained directly. The Nienhuis relation (Eq. 6) follows imme-
diately from the latter along with the barycentric relations in Eqs
(8b).

Historically, square-triangle tilings were introduced as models
for quasicrystals with 12-fold symmetry. In this context, the point
O at the center composition space with X =Y = Z = 0 has a special
significance and corresponds to the maximally symmetric phases
as developed in Section 5.4. Since any deviation of the hyperslope
from zero breaks the average 12-fold symmetry, by a mechani-
cal analogy the matrix B is commonly called the “global phason
strain”, the term coined by C. Henley in21,30. Here we consider all
possible compositions, and do not restrict ourselves to the vicinity
of the center of the composition space.

5 Some special phases
Here we focus on some special phases of interest for soft matter
systems. Their location in the 3D composition space is given in
Table 1. Note that, apart from the trivial case of the five “pure
phases” previously discussed, in general, a given point in the 3D
composition space corresponds to an infinite number of possible
phases. In this section, we will start by the simplest case of the

Table 2 Hyperslopes BΦ for the five “pure” phases (Eq. (13)

Pure phase Φ BΦ

T 13
(

1 0
0 1

)
T 24

(
−1 0
0 −1

)
S1

(
1 0
0 −1

)
S2

(
−1/2 −

√
3/2

−
√

3/2 1/2

)
S3

(
−1/2

√
3/2√

3/2 1/2

)

periodic Archimedean phases (section 5.1), that correspond to all
the regular and semi-regular tilings made of squares and trian-
gles, including the Σ phase (section 5.2). Then we will turn to the
striped phases (section 5.3) which include both periodic phases
(like the Archimedean H phase) and 1D quasi-crystalline phases.
Last but not least, the maximally symmetric phases located at the
center of the 3D composition space are investigated (section 5.4).

5.1 Archimedean phases : pure phases, Σ and H phases

By definition, Archimedean tilings are periodic structures built
from regular convex polygonal tiles that have only one kind of
vertex. In total, there are eleven different Archimedean tilings
of the plane. Three of them are the regular tilings made of only
one type of tiles : triangle, square or hexagon. They include the
already introduced “pure phases". The eight other Archimedean
tilings are semi-regular tilings as they combine different types of
regular tiles. Among them, only two combine square and triangle
tiles and are usually named the 32434 and 3342 tilings (Figure 8)
in the literature, where the notation comes from the arrangement
of the tiles around each vertex (see Figure 3). Here we will call
them the Σ and H phases respectively, by analogy with the Frank
and Kasper three dimensional structures known in metallic alloys
and also encountered in soft matter systems.

The Σ and H phases are the simplest examples of periodic
square-triangle phases with a number of triangles twice the num-
ber of squares in a unit cell. In the 3D composition space, they
are located on the same constant τ-surface, with τ = 2

√
3− 3 '

0.464... (Table 1 and Figure 7) but at different composition points.
In the H phase, all squares have the same orientation and are
combined with triangles of the appropriate family. This phase is
the simplest example of striped phases as discussed in section 5.3
later on and is made of a 1D periodic stack of alternate infinite
stripes of squares and triangles. As the H phase may have six dif-
ferent in-plane orientations, it is encountered at six points (H1,
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Fig. 8 The Σ phase and the H phase based on the two Archimedean
tilings combining squares and triangles. The orientation of the tilings
corresponds to the 3D composition points Σ1 and H1. In green are shown
elementary domains (two squares and four triangles for the Σ phase and
one square plus two triangles for the H phase) from which the whole tiling
can be built by successive translations. Conventional unit cells (square
centered for the Σ phase and rectangle centered for the H phase) are
depicted with green lines. Colors on vertices correspond to their different
orientations which are shown at the bottom of the figure. Left : the
four orientations (shown in black, blue, magenta and green) of the 32434
vertices. Right : the two orientations (shown in black and magenta) of
the 3342 vertices.

H2, H3, H′1, H′2, H′3) in the 3D composition space (see Table 1
and Figures 6 and 7). Assuming that in Figure 8 the squares are
in the orientation S1 and are combined with T1 and T3 triangles,
the composition point is H1 with X = σ1 = 4− 2

√
3, Y = 0 and

Z = τ13 = 2
√

3−3.
The Σ phase is encountered at three different composition points
(ΣΣΣ1, ΣΣΣ2, ΣΣΣ3), corresponding to three possible in-plane orienta-
tions, deduced from each other by a rotation of 2π/3 (Figures 6
and 7). In the Σ phase, the symmetry breaking in the tiles ori-
entation affects only the square tiles, with only two orientations
of squares present in the same amount. Composition point ΣΣΣ1

(see Figure 6) is located in the OXY plane along the OX axis at
X =
√

3−2'−0.268, at the intersection with the surface of equa-
tion σ1 = 0. Its composition is τ12 = τ34 = (2

√
3−3)/2' 0.23205,

σ2 =σ3 = 1/(2+
√

3)' 0.26795 and σ1 = 0. In the next section, we
investigate more deeply the geometrical feature of the Σ phase.

5.2 Σ phase

As expected for an Archimedean tiling, the arrangement of tiles
around each vertex of the Σ phase is fixed. All vertices are 32434
vertices (Figure 3) with four possible in-plane orientations pic-
tured with four different colors (blue, black, green and magenta)
in figures 8, 9 and 10. Each set of vertices having the same color

forms a regular square lattice so the whole tiling can be decom-
posed in four identical subsets of vertices translated from each
other. It is interesting to examine the lifted version of the Σ phase.
The whole derivation is given in †ESI file part C.1. As a result, the
decomposition into four regular square lattices is kept in the lifted
version in 4D space. Indeed, the lifted 4D vertices are located in
four 2D-planes parallel to each other, each 2D-plane containing
the vertices with the same orientation (same color). These 2D-
planes share the same hyperslope BΣ (composition point ΣΣΣ1 with
X =
√

3−2,Y = 0,Z = 0, see Eq. 17):

BΣ =

(
−(2−

√
3) 0

0 2−
√

3

)
(20)

In Figure 9, the two projections of the lifted Σ phase in the P and
P⊥ planes are shown. These two projections are complementary
views of the 4D-vertices of the lifted Σ phase. Both exhibit the
same periodic infinite tiling of the Σ phase but with a size ratio of
(2−
√

3) between the projections from P to P⊥, a ratio related to
the non-zero coefficient in the matrix BΣ (see Eq. 20).

Another useful way to characterise the Σ phase is to derive its
2D structure factor (see Figure 10 and †ESI file part C.1). The
Bragg diffraction peaks are located on a periodic square lattice
and exhibit strong modulations in their relative intensities. More-
over, some sets of Bragg peaks show an approximate 12-fold sym-
metry. This illustrates the fact that the Σ phase is an "approxi-
mant" phase of a dodecagonal quasicrystal, following the usual
terminology of quasicrystals. Other approximant phases with
larger unit cells31 can be built and the symmetry of their struc-
ture factor gets even closer to a perfect 12-fold symmetry (ESI file
E.2).

Fig. 9 Projections in the planes P (right hand side) and P⊥ (left hand
side) of the 4D lifted Σ phase. Both projections give the same periodic
pattern but with a size ratio of 2−

√
3 from P to P⊥. A zoom view of the

projection in P⊥ is shown at the bottom left of the Figure. The four square
lattices formed by each type of vertex orientation (blue, magenta black
and green disks) are indicated in light blue lines. Triangles in blue and
orange colors illustrate how the two projections of a given 4D vertex in
P and P⊥ are related. Globally, the green and magenta vertices exchange
their positions along the vertical direction (see Figure 23 in †ESI file).
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Fig. 10 (left) Σ phase with a square primitive unit cell outlined in blue
(4 vertices) and a square centered unit cell in green (8 vertices). The
edge’s size of the centered square unit cell is aΣ = a(1+

√
3) where a

is the edge’s size of the tiles. (right) Structure factor of the Σ phase.
Spots are located on a square lattice and their radii are proportional to
the diffraction peak intensities. For one of such set, an approximate 12-
fold symmetry is observed. Red points with a strict 12-fold symmetry
are added to help visualising the tiny difference in the peak positions.
Differences in the intensity values between these 12 peaks are much too
small (less than 1 percent) to be easily detected (see †ESI file part C.1).

Lastly, let’s us underline that, contrary to pure phases, the Σ

phase is not the only possible phase at its composition point. By
applying a simple transformation to the tiles (see †ESI file part
C.1), it is possible to generate an infinite sequence of phases shar-
ing the same composition. Note that all these periodic phases are
globally uniform and cannot be generated by a cut-and-project
method. Interestingly, the infinite limit of this transformation cor-
responds to the coexistence of four domains of pure phases (see
section 6.2) around a junction point.

5.3 Striped phases

Striped phases are found all along the red lines which lie on the
edges of the allowed region V (Fig. 6). They consist of squares
and triangles of only one orientation, like the S1 tiles combined
with the T1/T3 tiles (red line joining points S1 and T13). Stacks
of infinite stripes of squares or triangles is the only way to assem-
ble such tiles. Consequently, striped phases are periodic in the
direction parallel to the strips; however, in the perpendicular di-
rection, there are no restrictions on the stacking sequence, which
can be periodic, aperiodic or disordered. The simplest example of
a periodic striped phase is the alternation of one stripe of squares
and one stripe of triangles and it corresponds to the Archimedean
H phase (section 5.1 and Fig. 8).

In terms of composition, in contrast with the general case
where three parameters (X ,Y ,Z) are needed, the composition of
a striped phase is fixed by only one parameter, e.g. τ, the area
fraction occupied by the triangular tiles introduced in section 2.2.
Indeed, along the red line joining S1 and T13, the composition is
given by τ = τ13, with σ = σ1 = 1− τ13 or X = 1− τ, Y = 0, Z = τ.
The expression of the hyperslope B (Eq. 19) is a combination of
the two pure phases BT 13 and BS1:

B =

(
1 0
0 2τ−1

)
= σBS1 + τBT 13 = (1− τ)BS1 + τBT 13 (21)

The matrix is diagonal and the hyperslope depends only on a sin-

Fig. 11 Striped phases. (a) In the plane P, one vector (e1) corresponds
to the periodicity along the stripes when the two other ones (e3, e4)
define the stacking sequence. The average slope b(τ) =

√
3

τ
is directly

linked to the composition via the parameter τ. (b) Different stacking
sequences shown in a square lattice. The average slope is the stripe’s
ratio s/t. For the H phase, the average slope is equal to one. For τ = 1/2,
the sequence is aperiodic and is obtained via an inflation procedure (see
Figure 12). In a random sequence (bottom right), the probability p of
triangular stripes is fixed by the composition with (1− p)/p = s/t.

gle parameter τ. With only one parameter to fix the composition,
the lift construction is much more simple. When lifted in the 4D
space, a striped phase looks like a “staircase’ or a corrugated sheet
(†ESI file part C.3). To fully characterise a striped phase, only its
stacking sequence is needed.

The most direct way to visualise the stacking sequence is inside
the plane P (Fig. 11a). One vector corresponds to the periodicity
along the stripes when the two other ones define the stacking se-
quence. The stack of the stripes is given by a sequence of vectors
e3 (stripe of triangular tiles) and e4 (stripe of square tiles) that
follows a straight line of slope b(τ) =

√
3/τ (ESI file C.3.1). It is

noteworthy that the slope fixes the overall composition but not
the stacking sequence. Indeed, at any composition point (fixed τ

value), an infinite number of stacking sequences is possible (ex-
cept for the two pure phases for τ = 0 and τ = 1). To satisfy
the global uniformity condition, some lattice points in a stack se-
quence may be located far away of the straight line, but in such a
way that the average slope is followed at a global scale.

A convenient way to visualise any of these stacking sequences
is by encoding the successive stripes to form a broken line on a
square lattice (Fig. 11b). The average slope of the line is s/t for
a finite sequence of s stripes of S1 squares and t stripes of T1-T3
triangles. The relationship between s/t and τ is given by:

s
t
=

2Ns

Nt
=

√
3

2
1− τ

τ
(22)

An advantage of this representation is that the pure phases (all
triangles or all squares) lie along the horizontal and vertical axes
and the H phase corresponds to a slope equal to 1 (see †ESI file
part C.3). This representation using a square lattice is commonly
used for 1D aperiodic order.26 A straight line of rational slope
contains a periodic set of lattice points and describes in particular
periodic phases. In contrast, aperiodic phases are encountered
when the slope is irrational and no lattice points other than the
origin are located on the straight line.

The slope equal to
√

3
2 in Figure 11b is of particular interest as

it corresponds to the composition point A1 located on the conical
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τ-surface for τ = 1/2 (Figs 6 and 12). An explicit way to construct
a 1D aperiodic phase for this composition is to use an inflation
procedure based on a substitution rule.32 As illustrated in Figure
12, by repeating the substitution rule (given in †ESI file part D.1),
the irrational slope is approximated step by step by a sequence
of rational numbers getting closer and closer to the non-periodic
limit case. Each step in the inflation procedure corresponds to
a periodic stack, with τ getting closer and closer to 1/2 and s/t
closer and closer to

√
3/2. Thus, in the limit of an infinite number

of iterations, a 1D aperiodic sequence with τ = 1/2 is obtained.
The first three iteration steps of the inflation are shown in Fig.
12b.

Fig. 12 Striped phases. (a) In the Oxz plane of the 3D space, they are
located all along the red line joining the point S1 and T13 (see Figure
6). Special composition points are shown along this line like point H1
corresponding to the H phase (τ = 0.464, see Table 1) and point A1
corresponding to the intersection with the τ-surface for τ = 1/2 (see
Figure 7). (b) Construction by inflation of a 1D quasiperiodic striped
phase of composition corresponding to point A1. The three first iteration
steps are shown and the substitution rules for the two tiles are given in
†ESI file part D.1). Each inflation step gives a stacking sequence which
average slope (green line) gets closer and closer to the irrational value√

3/2.

The above procedure produces aperiodic striped phases that
are maximally uniform, for which the lifted tiling deviates the
least from the average slope. The order of stripes in such phases
is always given by a binary Sturmian sequence and is therefore
unambiguously defined by the composition.33 Alternatively to
the inflation, Sturmian sequences can be produced by a cut-and-
project scheme, a convenient approach to construct a maximally
uniform striped phase of any composition. A well-known exam-
ple of such constructions is the Fibonacci sequence (see †ESI file
part E).

On the opposite side of the spectrum to the Sturmian sequences
lie random striped phases. In these phases the sequence of stripes
is given by a Bernoulli process, that is the type of each stripe is
chosen at random with a fixed probability, depending of the av-
erage global composition. Note that in contrast to the 2D case
discussed in the next section, the corresponding entropy is sub-
extensive: it grows with the length L of the tiling along the aperi-
odic direction as S ∝ L.

5.4 Maximally symmetric phases

The center of the composition space (point O) corresponds to
’maximally symmetric phases’ where all allowed orientations for
each type of tile (square or triangle) are equally frequent. This
fixes the values of all the five area fractions (see Eq. 9) and the
overall composition to τ = 1/2. Because the ratio Nt/Ns = 4/

√
3 is

irrational, maximally symmetric phases cannot be periodic, a very
important property already encountered for the striped phases
with τ = 1/2 (section 5.3). The composition of a maximally sym-
metric phase is given by X = Y = Z = 0 and thus corresponds to
zero hyperslope:

BO =

(
0 0
0 0

)
(23)

Therefore, in the superspace, the lifted tiling remains globally
close to the plane P which has the hyperslope BO. As for any other
composition point, there is an infinite number of different possi-
ble maximally symmetric phases. Moreover, the entropy density is
maximal at this very composition.17,22,23 In fact, in the literature,
maximally symmetric phases often occur as solutions of random
tiling models.34,35

Fig. 13 Inflation method for maximally symmetric phases. (a) Initial seed
is a dodecagonal wheel. At the first inflation step, 19 dodecagonal wheels
are constructed on each vertices of the initial seed. Two different choices,
B (blue) or R (red), are possible for the orientation of a wheel. Patches
obtained after one inflation step are shown for (b) the dodecagonal QC
phase (c) the hexagonal QC phase (d) a phase using a random choice
between the B and R orientations. The Fourier transform of the patches
obtained after two inflation steps is shown. For the two QC phases,
either with 12-fold (b) or 6-fold symmetry (c), the pattern exhibits sharp
diffraction peaks, whereas additional diffuse background in-between the
peaks is present for the random choice (d).

The emblematic property of maximally symmetric phases is the
dodecagonal symmetry. It should be emphasized that this prop-
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erty holds only in the statistical sense, that is as a symmetry of a
class of globally uniform phases corresponding to the composition
point O, while none of the tilings is invariant itself with respect to
the rotation of the plane by π/6. As a consequence, in maximally
symmetric phases all six orientations for edges (e1,e2,e3,e4,e5,e6)
appear with equal frequency36. It is noteworthy that a small
subset of maximally symmetric phases exhibit the dodecagonal
symmetry in a stronger sense – that of the symmetry of the lo-
cal isomorphism class26, when the arbitrarily large regions of the
tiling obtained by rotation can also be found in the original one.
For instance, this is the case for the tilings corresponding to cut-
and-project models with the acceptance windows having 12-fold
symmetry (Figure 14 b, c).

In addition to rotational invariance, some quasicrystalline
phases show self similarity: making a local transformation con-
verts the tiling into an equivalent one with bigger tiles. It is thus
possible to generate examples of maximally symmetric phases us-
ing inflation method, a method already introduced for the 1D
striped quasiperiodic phases (see section 5.3). For 12-fold sym-
metry, different possible sets of seeds and substitution rules are
available in the literature.21,26,32,36–40 To illustrate this method,
let’s consider an initial seed in the form of a dodecagonal wheel
as shown in Figure 13a. Note that the composition of this seed
is maximally symmetric, with all area fractions in the adequate
amount (see Eq. 9), but it cannot tile the plane without holes. At
the first inflation step, dodecagonal wheels are placed on the 19
vertices of the seed. The gaps between them are filled in a unique
way by triangles and squares and their orientations are maximally
symmetric as well (see Figure 13a). All the tiles are then scaled
up in length by a factor 2+

√
3 to make them the same size as

the original ones. The inflation rules are applied infinitely many
times and patches of increasing sizes are generated at each step.

Each dodecagonal wheel can be placed with two possible ori-
entations, labeled B (blue for the T1-T3 triangles) and R (red for
the T2-T4 triangles). This freedom in the choice of orientation
for each wheel (inside a patch and at each iteration step) allows
to construct an infinite family of different maximally symmetric
phases. To construct a perfect dodecagonal quasicristalline phase,
a specific rule for the choice between B and R has to be applied at
each inflation step which is given in the †ESI file part D.2).32 This
rule leads to the same dodecagonal QC as the so-called modified
Schlottmann rules.32,40 In Figure 13b, the patch obtained after
one inflation step is shown. The Fourier transform for the patch
after two iteration steps exhibits sharp diffraction peaks and 12-
fold rotational symmetry, the signature of a perfect dodecagonal
quasicrystalline order as explained at the end of this section.

Interestingly, if the inflation rule is defined by fixing the orien-
tation of the wheels to be always the same, the resulting qua-
sicrystalline phase (first discovered by Peter Stämpfli37,40) ex-
hibits the hexagonal symmetry in the sense of the local isomor-
phism class26. This symmetry is evidenced by the Fourier trans-
form (Fig. 13c). Lastly, flipping a coin to choose between the two
orientations (B and R) for the dodecagonal wheels at each site
gives rise to a disordered maximally symmetric phase (Fig. 13d).
The diffraction pattern of this phase exhibits the 12-fold symme-
try but with diffuse scattering present along with the Bragg peaks.

Note that the entropy of this particular set of phases S = log(ΩN)

grows linearly with the size of the system, since the number of
B/R configurations of N dodecagons is given by ΩN = 2N .

Fig. 14 Examples of perfect quasicrystalline phases among maximally
symmetric phases. Patches in the plane P (after three inflation steps)
are shown at the top and the corresponding acceptance windows (five
inflation steps) in P⊥ at the bottom. (a) Without rotationnal symmetry
in the selection function (b) 12-fold symmetry for the Schlotmann QC
dodecagonal tiling (also shown in Figure 13b (c) Another example with
12-fold symmetry with a different selection function.

In practice, when an experimental pattern is obtained, two
analysis tools are helpful to assess the type of symmetry: the
diffraction pattern and the plot of the vertices in the plane P⊥
using the lift procedure. These two approaches are sensitive to
the symmetry in different ways. The first approach originated in
the physics of quasicrystals, where according to the common def-
inition, a quasicrystal is characterised by its diffraction pattern,
containing Bragg peaks indexed in a reciprocal space with a di-
mension greater than that of the structure25. In the present case,
the Bragg peaks are indexed by four integers. A dodecagonal
quasicrystal is then defined by the fact that its diffraction pattern
contains Dirac-delta peaks and exhibits a perfect 12-fold symme-
try, as illustrated by Figure 13b. It is worth mentioning here that
the symmetry of the diffraction pattern may differ from that of the
plane PB, as illustrated by the hexagonal symmetry of Figure 13c.
This can be understood from the example of tilings obtained as
cut-and-project models (these phases correspond to the so-called
perfect quasicrystals, characterized by pure point diffraction). For
instance, the acceptance window of Figure 14a has no symmetry,
and therefore the diffraction pattern of the corresponding tiling
should not be symmetric either. This illustrates the fact that the
symmetry of the lifting construction in general does not reflect
the symmetry (or even the nature) of the diffraction pattern, al-
though it is conjectured that the maximally symmetric phases
originated as random tilings exhibit symmetric diffraction pat-
terns with Bragg peaks along with some additional diffuse scat-
tering, as illustrated in Figure 13d34.

The plot of the vertices in the plane P⊥ also gives helpful in-
formation about the symmetry of an experimental pattern.19,27

To illustrate this point, several examples of quasiperiodic phases
are shown in Figure 14. As these examples are constructed by
inflation, the projection of the 4D vertices in the P⊥ is of finite
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width around the origin and it is usually called the acceptance
window in the literature. A remarkable property is that these ac-
ceptance windows have a fractal border (see Figure 14)32,36,41.
For a more disordered maximally symmetric phase (not obtained
by inflation) the projection in P⊥ may be not bounded. This is
related to the fact that, if one considers finite clusters of larger
and larger size R, the number of cluster-types grows with R fol-
lowing a power-law for a perfectly quasiperiodic phase when it
grows exponentially with R for more disordered phases.

In conclusion, it is still an open challenge to establish whether
the dodecagonal phases encountered in soft matter systems cor-
respond to maximally symmetric phases rather than long-range
quasicrystalline order evidenced by pure point diffraction.

6 Grain boundaries: When global uniformity
is absent

The global uniformity condition (see section 4.2) may be too
restrictive for real experimental systems which may contain do-
mains of different compositions. In this section, we shall see how
the “irrotational property” (Eq. 15) leads to constraints on the
coexistence of locally uniform domains. we derive precise rules
for the coexistence of such domains and are able to make some
predictions on their phase behavior. It should be emphasized that
near the domain boundaries a tiling considered in this section still
consists of squares and triangles only and is in this aspect defect-
free. In the conclusion (section 7) we shall discuss the role of
defects in real systems.

6.1 Coexistence of domains with different compositions

Let us start by relaxing the global uniformity condition introduced
in section 2.2 (see Figure 4). Namely, let us consider a possi-
ble not-globally uniform tiling containing two locally uniform do-
mains. More specifically, we shall assume that any sequence of
growing patches Pi satisfying the condition (Eq. 2) is a disjoint
union of two sub-patches

Pi = P ′
i tP ′′

i

also satisfying the condition (Eq. 2) and having a well-defined
limit of the area fractions (Eq. (3)). Let us denote the coordi-
nates of the corresponding points in the composition space by
(X ′,Y ′,Z′) and (X ′′,Y ′′,Z′′) respectively. Inside each domain the
formula (16) still holds, for the matrix B taking the respective
values B′ and B′′. The continuity of the lifting map then yields the
following condition on the boundary between the sub-patches

B′′ ·x−B′ ·x = o(|x|) (24)

where x is a point at the boundary.

Since the boundary between the domains is unbounded, the
condition (24) means that

det(δB) = 0, (25)

where δB = B′′−B′. Let (δX ,δY,δZ) stand for the difference of

Fig. 15 Coexistence of two domains for (a) the H phase (τ = 2
√

3−3 =

0.464...) and (b) aperiodic phases (τ = 1/2) with a striped phase and a
maximally symmetric phase.

the barycentric coordinates of two domains:δX
δY
δZ

=

X ′′

Y ′′

Z′′

−
X ′

Y ′

Z′

 (26)

Then

δB =

(
(δZ +δX) −δY
−δY (δZ−δX)

)
(27)

and the condition (25) reads as

(δZ)2 = (δX)2 +(δY )2 (28)

Therefore, two domains of different composition may be in con-
tact along an infinite frontier only if the difference of the corre-
sponding barycentric coordinates satisfies the condition (28). In
the 3D composition space, this condition can be visualized by a
conical surface like the τ-surface for τ = 1/2 but centered on the
point (X ′,Y ′,Z′) instead of the origin (see Figures 7 and 16a). Any
composition point (X ′′,Y ′′,Z′′) located on this conical surface may
be in coexistence with the composition (X ′,Y ′,Z′).

A remarkable consequence of the constraint (28) is that a lo-
cally uniform domain with τ > 1/2 may not be in contact with
a domain with different barycentric coordinates but having the
same value of τ. Indeed, as follows from (11), equation (28) has
no solution with two different points (X ′,Y ′,Z′) and (X ′′,Y ′′,Z′′)
belonging to the same τ-surface if τ > 1/2 (Figure 16a). There-
fore a square-triangle tiling having a well-defined area fraction of
triangles larger than 1/2 must be globally uniform. On the other
hand, phases with the same value of τ ≤ 1/2 may coexist, as il-
lustrated by Figure 15. This case includes in particular the co-
existence of two domains of aperiodic phases (τ = 1/2) with a
different symmetry, as for instance a maximally symmetric phase
and a striped phase (Figure 15b). Of course, many other situa-
tions of coexistence may be encountered.

6.2 Constraints on the domain boundaries

As follows from Eq. 24, the boundary between two infinite lo-
cally uniform domains is asymptotically close to the straight line
defined by the following equation on x ∈ P:

δB ·x = 0, (29)
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Fig. 16 Coexistence of domains in the 3D parameter space. (a) The
point M′ is on the τ-surface in green with τ > 1/2 (similar representa-
tion as in Figure 7). The conical surface in orange corresponds to the
coexistence condition of Eq. 28. Any composition point M′′ located on
it may give a domain in coexistence with composition M′. Because the
intersection between the two surfaces in green and orange is reduced to
point M′, any square-triangle phase with τ > 1/2 is globally uniform. (b)
Three points A, B and C in the 3D composition space which may form
pair-wise domain boundaries. The two conical surfaces represent the co-
existence condition applied to the vectors B−A and B−C respectively.
The points A, B and C must be colinear.

where δB is given by Eq. 27. Let α stand for the angle between
the unit vector n normal to this line and the direction of the vector
e1:

n =

(
cosα

sinα

)
For a fixed n, we can consider (29) as an equation on δB. With
the parametrization (27), this equation admits solutions of the
form δX

δY
δZ

= c

cos(−2α)

sin(−2α)

1

 , (30)

where c is a real parameter. Equation (30) thus establishes the
one-to-one correspondence between the vector (δX ,δY,δZ) (Eq.
26) in the concentration space and the direction of the corre-
sponding domain boundary.

Let us now consider the situation of pairwise coexistence of
several locally uniform domains. Let us start with the case of
three domains, corresponding to the points A, B and C in the
concentration space. Without loss of generality, we can assume
that following order of Z coordinates of the three phases:

ZA ≤ ZB ≤ ZC.

Then, the condition (28) applied to the phases A and B constrains
the point B to an upward-directed cone with the apex A (see Fig-
ure 16b). The point C must also belong to the same cone. In
the same time, the point B is also constrained to a downward-
directed cone with the apex C. This is only possible if all three
points are colinear. By virtue of equation (30), this leads to the
remarkable result that all three domain boundaries must be par-
allel, which precludes the existence of triple points of contact be-

Fig. 17 Junction point between locally uniform domains : four is the
minimum number of domains as illustrated here.

tween locally uniform domains. Thus, the simplest case of several
domain boundaries joining together corresponds a quadruple junc-
tion as illustrated in Figure 17.

7 Summary and perspectives
The huge diversity of square-triangle phases may be surprising at
first sight considering the simplicity of the two tiles. This work
explains how this very rich phase behavior derives from geomet-
rical rules. Among them, the inherent incommensurability of the
areas of the two tiles is essential. Combined with the fact that
four different types of vertices (see Fig. 3b) provide plenty of
possible ways to assemble the tiles and one can understand better
the rich phase behavior for binary mixtures of squares and trian-
gles. In this paper we propose a classification of these phases by
means of a three-dimensional “composition space”. The key in-
gredient in our approach is the notion of global uniformity, or the
well-definedness of the seven area fractions occupied by tiles of
different shapes and orientation. Fortunately, these quantities are
linked by several constraints, leaving us only with three free pa-
rameters, which we use as the coordinates (X ,Y,Z) in the 3D com-
position space. Fixing the global composition still leaves plenty of
room for local rearrangements of tiles (except of the case of pure
phases) and an infinite number of phases are sharing the same
composition. All periodic phases are globally uniform as the com-
position can be defined in a unit cell, which has a finite exten-
sion. Moreover, global uniformity encompasses more disordered
phases than the phases obtained by cut-and-project methods or
inflation rules. For all cases, the three coordinates in the com-
position space suffice to characterize the global symmetry of a
phase. The 3D composition space allows linking together all pos-
sible type of symmetries for square-triangle phases, in contrast to
previous approaches focusing only on dodecagonal phases.

We introduce the term of maximally symmetric phases when
the tiles are distributed in the most symmetrical way in terms of
orientation. When maximizing the symmetry of the tiles orienta-
tion distribution, all the seven area fractions are fixed (see Eq. 9),
corresponding to the center of the 3D composition space (point
O). One of the most striking geometrical property of square-
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triangle phases is that maximally symmetric phases can’t be pe-
riodic but do offer aperiodic order instead. Maximally symmet-
ric phases include dodecagonal quasicrystalline phases that can
be generated by inflation methods, along with more disordered
phases. Note that so far in soft matter systems, square-triangle
phases are observed as finite patches of rather limited areas, mak-
ing the distinction between a perfect quasicrystalline phase and
a more disordered phase difficult to asses. Maximally symmet-
ric phases also correspond to the maximum of the entropy den-
sity22,23 and it is why it is often argued that they are entropically
stabilised. This argument is correct, except that the overall com-
position of a binary mixture may be fixed at a value different
from τ = 1/2 and that the whole 3D-composition space needs to
be considered, as discussed afterwards.

Moving apart from the center of the 3D composition space
breaks the symmetry in the tiles orientation distribution. Our ap-
proach allows to identify all possible situations for such loss of
symmetry, like a 3-fold symmetry along the OZ axis (Fig. 5b) or
a 4-fold symmetry along the OX axis (Fig. 5c). The Σ phase is
an important peculiar case for which the tiles orientation distri-
bution is partially broken, with only one orientation missing for
square tiles. Striped phases are a 1D limit case when the symme-
try of the tiles orientation is entirely broken (as each tile has only
one orientation) and only incommensurability matters.

In practice, determining the overall composition of an experi-
mental or a numerical square-triangle pattern in terms of the (X ,
Y , Z) coordinates is straightforward and may be performed by
direct image analysis. Providing that all edges in a pattern are
oriented along the ei directions, the tiles orientation distribution
may be calculated for any finite area, providing the values of X ,
Y , Z and τ, allowing to locate the phase in the 3D-composition
space. Global uniformity can be tested doing image analysis at
different length scales, revealing at the same time possible coex-
istence of phases, grain boundaries or composition gradients.

Lifting an observed pattern in the 4D superspace and plotting
its vertices both in the observation plane P and in P⊥ is a power-
ful analysis tool as well. The lift construction is essential if one
wishes to understand more deeply why the composition space has
only three dimensions. Indeed, the central notion in the lifting
scheme is the link between the average composition (X , Y , Z) and
the hyperslope of a 2D-plane (symmetric 2x2 matrix B with three
independent coefficients, see Eq. 17). This fact was introduced in
the first place by C. Henley and coworkers21,30 with the matrix B
under the denomination of global phason strain, a term which is
still largely used in the literature. In this work, we underline that
this geometrical interpretation of the average composition by an
hyperslope is valid in all the 3D composition space and not only
close to its center. Moreover, we use it to derive a demonstration
of the Nienhuis relation (Eq. 6), another way to introduce the
fact that only three parameters are needed.

Let’s discuss now some possible perspectives of this work that
could be addressed in the near future for soft matter systems:

• The localisation of the Archimedean periodic Σ phase inside
the 3D composition phase gives clues to understand its sta-
bility. There are many experimental observations of the Σ

phase and it is generally a good sign that a dodecagonal
phase could be stabilised as well in a given experimental
system.42 Our geometrical approach allows to clarify the re-
lationship between the Σ phase with respect to maximally
symmetric phases. Indeed, the Σ phase occurs at a precise
composition τ = 2

√
3− 3 = 0.464, which is slightly different

but quite close to τ = 1/2 = 0.5. Stability of the Σ phase
may be attributed to the maximisation of the tiles orienta-
tion distribution at a fixed value of τ = 0.464 as shown by
the positions of the three composition points (ΣΣΣ1,ΣΣΣ2, ΣΣΣ3) on
the τ-surface with τ = cste = 0.464. A fine tuning of the over-
all composition of a binary system may stabilise the Σ phase
instead of a maximally symmetric phase.

• When τ is different from 1/2, an open question is to deter-
mine if a phase separation between a maximally symmetric
phase and pure phases (made of the excess of triangles or
squares) is favoured or if symmetry breaking takes place in-
stead. Solving this question would be a good test of the en-
tropic stabilisation argument for dodecagonal phases. This
question could be addressed by varying the value of τ exper-
imentally in binary mixtures such as mixtures of spherical
particles with two sizes18 or mixtures of square and triangu-
lar nanoplatelets43. A delicate point would be to make sure
that equilibrium states are reached to avoid such systems to
be trapped in out-of-equilibrium states. More generally, the
intuitive rule that equilibrium states correspond to phases
with a maximal symmetry at a given τ value needs to be
tested. Possible strategies could consist in promoting sym-
metry breaking experimentally. This could be done in many
ways for soft matter systems : confinement or border effects,
anisotropy via surface treatment or application of external
fields. Following the nucleation/growth of square/triangle
phases could also involve symmetry breaking effects.

• So far we consider only phases without defects, but defects
are present and play an important role on the physical prop-
erties of real experimental systems. A first class of defects
are grain boundaries. In this work, we give predictions
about the coexistence of domains that may be confronted
to future experimental observations. The coexistence of two
domains obeys different rules for τ > 1/2 (globally uniform
phase only) and τ ≤ 1/2 (coexistence of domains with the
same τ value). Geometrical rules for the junction of domain
boundaries are predicted, with at least four domains around
a junction point. As a perspective of this work, incorporat-
ing topological defects based on thin rhombus tiles (or shield
tiles) would be a challenging extension of our approach.29

These defects are typical to square-triangle tilings and their
dynamic is related to the so-called “zipper” lines.21 A few
examples of quasiperiodic tilings made of square-triangle-
rhombus tiles are known like the Niizeki–Gähler tiling44,45

or the recent Schaad-Stampfli tiling46. Thin rhombus tiles
are built using two successive edges directions like (e1, e2).
Taking them into account would add six extra tiles, includ-
ing orientation. These tiles are intimately related to square-
triangle tilings because they are already included in the 4D
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lattice. The restriction on the symmetry of the B matrix is
vanishing when thin rhombus tiles are included, leading to
the possibility to have any 2x2 matrix with four different
coefficients for the hyperslope. In other words, the irrota-
tionnal property is lost. Of course, three dimensions for the
composition space wouldn’t be appropriate but the selection
rules in the 4D space may be simplified as any hyperslope
could be accessible. Approaches to incorporate such topo-
logical defects are also stimulated by the recent discovery of
2D inorganic dodecagonal materials.45

In this work we have introduced a number of methods used in
condensed matter physics to describe quasicrystals, but not yet
popular in other fields such as soft matter or material chemistry.
They should help addressing further challenges such as under-
standing the growth process of dodecagonal metamaterials14 or
the 2D self-assembly of binary mixtures of square and triangular
nanoplatelets43. More experimental and numerical simulation re-
sults are now needed to explore the infinitely rich phase behavior
of square-triangle phases.
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A Lift in 4D
A.1 Geometry in 4D
Here are introduced a few useful geometrical features of the Eu-
clidean space in four dimensions. In a 4D orthonormal basis of
four unit vectors, labelled (I,J,K,L), any 4D-vector X has four
coordinates:

X = xI+ yJ+ x⊥K+ y⊥L (31)

A 2D-plane of the 4D space is defined by two non-colinear 4D-
vectors through the origin. To the orthonormal basis, a set of six
2D-planes can be associated: (I,J), (I,K), (I,L), (J,K), (J,L) and
(K,L). Among them, two orthogonal 2D-planes, (I,J) and (K,L)
are selected to play a special role, as they are used to represent
any 4D-vector X by its two projections onto them. It is this projec-
tion scheme that is used in the lift construction, keeping always
the same two 2D-planes. The two sets of coordinates (x,y) and
(x⊥,y⊥) can be represented separately onto two Euclidean planes,
labelled respectively P and P⊥. The four-dimensional Euclidean
space can be defined as the orthogonal direct sum P⊕P⊥ where
the planes P and P⊥ are two embedded 2D orthogonal subspaces.
By extension, the 2D-plane in 4D containing the 4D-vectors of
coordinates (x,y,0,0) is also named P.

Fig. 18 Geometry in 4D: (a) 4D-vector (b) 2D-plane PA and its hypers-
lope (given by a 2x2 matrix A) relative to the plane P.

In general, a 2D-plane PA can be defined by the linear combina-
tion of two non-colinear 4D-vectors of coordinates (a,b,c,d) and
(e, f ,g,h) in the (I,J,K,L) orthonormal basis. A 4D-vector is in
the 2D-plane PA if it is of the form:

X =


x
y

x⊥
y⊥

= λ


a
b
c
d

+µ


e
f
g
h

 (32)

where λ and µ are two linear coefficients. This linear relation
can be expressed equivalently as follows:(

x⊥
y⊥

)
= A

(
x
y

)
(33)

where A is a (2x2) matrix:

A =

(
Ax⊥x Ax⊥y

Ay⊥x Ay⊥y

)
=

(
c f−bg
a f−be

ag−ce
a f−be

d f−bh
a f−be

ah−de
a f−be

)
(34)

The geometrical interpretation of the matrix A is the hyperslope
of the 2D-plane PA with respect to the plane P and it contains 4
coefficients in the general case. In a symmetric matrix, Ax⊥y =

Ay⊥x and only three independent coefficients are present. Such
symmetric matrices are noted B in the main text.

Finally, we introduce a second orthonormal basis, (I′,J′, ′K,L′),
as it may simplify some relations :

I′ =
I+K√

2
,J′ =

I−K√
2

,K′ =
J+L√

2
,L′ =

J−L√
2

(35)

A.2 4D lattice for the lift of square-triangle tilings
The standard construction of the lifting of a square-triangle
tiling of the Euclidean plane P is detailed here following the
literature.21,27 Coming back to the six different orientations for
edges (see Figure 2), one can observe that only four of six vectors
e1, . . . ,e6 ∈ P given by the formula (1) are linearly independent
over Z (for instance, e5 = e3 − e1 and e6 = e4 − e2). Therefore,
any vertex v of a square-triangle tiling is naturally indexed by 4
integers n1, . . . ,n4 :

v =
4

∑
i=1

niei. (36)

as it belongs to the Z-module of rang 4 spanned by the vectors
e1, . . . ,e4. One can associate with the vertex v its counterpart v⊥
in another Euclidean plane P⊥ (the so-called “inner” or “perpen-
dicular” space) :

v⊥ =
4

∑
i=1

niei⊥ , (37)

where the vectors ei⊥ have the following coordinates (in some
fixed orthonormal basis of P⊥):21

ei⊥ = a

(
cos 7π(i−1)

6
sin 7π(i−1)

6

)
(38)

The four-dimensional Euclidean space used for the lift construc-
tion is defined as the orthogonal direct sum P⊕P⊥. This space
contains the planes P and P⊥ as orthogonal two-dimensional sub-
spaces. The “lifted” version of any vertex v is defined as the 4D-
vertex V = (v,v⊥) ∈ P⊕P⊥. Thus, the 4D vertices of the lifted
tiling belong to a lattice spanned by four basis vectors εεε i = (ei,ei⊥)

in P⊕P⊥ :

V = (v,v⊥) =
4

∑
i=1

niεεε i =
4

∑
i=1

ni(ei,ei⊥) (39)

In this way, the lift of any square-triangle tiling is a subset off
the 4D periodic lattice with the basis {εεε1,εεε2,εεε3,εεε4}. It is worth
noting that this 4D lattice is not cubic (for instance, all vectors
εεε i have the norm a

√
2 and the volume of the unit cell is 3a2).

Instead, this lattice can be considered as a direct sum of regular
triangular lattices belonging to two orthogonal 2D-planes in the
space P⊕P⊥, which we denote by PT13 and PT24 . The 2D-plane
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PT13 is defined by the two 4D vectors εεε1 and εεε3, with vertices
(v,v⊥) = n1εεε1 + n3εεε3. Similarly, the two lattice vectors εεε2 and
εεε4 define the 2D-plane PT24 . In Fig. 19, a scheme illustrates these
relationships, underlining the fact that the two 2D-planes PT13 and
PT24 are orthogonal to each other, but not to P and P⊥.

The coordinates of the 4D-vectors {εεε1,εεε2,εεε3,εεε4} in the
(I,J,K,L) orthonormal basis introduced previously (see A.1)
reads:

(εεε1,εεε2,εεε3,εεε4) = a




1
0
1
0

 ,


√

3/2
1/2
−
√

3/2
−1/2

 ,


1/2√
3/2

1/2√
3/2

 ,


0
1
0
−1


 (40)

As εεε i = (ei,ei⊥), the two first coordinates of εεε i in the orthonormal

Fig. 19 Scheme of the 4D periodic lattice of basis vectors {εεε1,εεε2,εεε3,εεε4}.

basis (I,J,K,L) are the coordinates of ei in P (see Eq. 1) when
the two last ones are the coordinates of ei⊥ in P⊥ (see Eq. 38).

In the second orthonormal basis (I′,J′,K′,L′) introduced in A.1
(see Eq. 35), the basis vectors of the 4D periodic lattice read:

εεε1 = a
√

2I′

εεε2 = a
√

2(

√
3

2
J′+

1
2

L′)

εεε3 = a
√

2(
1
2

I′+
√

3
2

K′)

εεε4 = a
√

2L′ (41)

(εεε1,εεε2,εεε3,εεε4)I′J′K′L′ = a
√

2




1
0
0
0

 ,


0√
3/2
0

1/2

 ,


1/2

0√
3/2
0

 ,


0
0
0
1




(42)

The fact that the 2D-planes PT13 and PT24 are orthogonal to each
other is obtained here as they identify respectively to (I′,K′) and
(J′,L′), two mutually orthogonal 2D-planes generated by basis
vectors of the second orthonormal basis. Morover, in Eq. 42, the
direct sum into two triangular lattices is more obvious than in Eq.

40.

A.3 4D reciprocal lattice for diffraction

Fig. 20 Reciprocal lattice in 4D. (a) Lattice vectors and associated
reciprocal lattice vectors. P∗ and P∗⊥ are the reciprocal planes associated
to P and P⊥. (b) Illustration for the pure phase S1 made of square tiles
generated by the lattice vectors e1 and e4 in the plane P.

The 4D reciprocal lattice is defined by generalising the usual
definitions in 3D :

εεε iεεε
∗
j = 2πδi j (43)

It leads to the following reciprocal lattice 4D-vectors, expressed
in the second orthonormal basis (I′,J′,K′,L′) (see Eq. 35) :

εεε
∗
1 =

2π

a
√

2
2√
3
(

√
3

2
I′− 1

2
K′)

εεε
∗
2 =

2π

a
√

2
2√
3

J′

εεε
∗
3 =

2π

a
√

2
2√
3

K′

εεε
∗
4 =

2π

a
√

2
2√
3
(−1

2
J′+
√

3
2

L′) (44)

The reciprocal 4D-vectors in the orthonormal basis (I,J,K,L)
read:
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(εεε∗1,εεε
∗
2,εεε
∗
3,εεε
∗
4) =

2π

a
√

3



√

3/2
−1/2√

3/2
−1/2

 ,


1
0
−1
0

 ,


0
1
0
1

 ,


−1/2√

3/2
1/2
−
√

3/2




(45)
The associated 2D lattice vectors in P∗ and P∗⊥ are labelled re-
spectively (eee∗1,eee

∗
2,eee
∗
3,eee
∗
4) and (eee∗1⊥,eee

∗
2⊥,eee

∗
3⊥,eee

∗
4⊥). They are plotted

in Figure 20.

B Global uniformity
For the proof of proposition 1 (section 4.2), let us start by proving
the “if” statement. Consider an infinite square-triangle tiling with
an asymptotically linear lifting map of the form (16) and a se-
quence of growing patches (Pi) (see Figure 4) such that the ratio
|∂Pi|2/|Pi| is bounded. Let J(x) stand for the Jacobian derivative
of ϕ:

Jαβ (x) =
∂ϕα (x)

∂xβ
,

where the point x ∈Pi lies in the interior of a tile. This 2×
2 matrix-valued function takes five possible values given by the
matrices BΦ from Table 2. Notably, det(J(x)) equals 1 if x is inside
a triangle and −1 for x lying inside a square. Therefore, the area-
weighted average of det(J(x)) over Pi is given by the formula

〈det(J(x))〉Pi
= |Pi|−1

∫
Pi

det(J(x)) dx = τ(Pi)−σ(Pi). (46)

By Stokes’ theorem, one can express the integral over the patch
Pi in (46) via an integral over its boundary ∂Pi:∫

Pi

det(J(x)) dx =
∫
Pi

dϕ(x)∧dϕ(x) =
1
2

ε
αβ

∮
∂Pi

ϕα (x)dϕβ (x),

(47)
where εαβ is the Levi-Civita symbol and the integration over ∂Pi

is performed counterclockwise. Since one can always choose the
origin of the coordinate system within the patch Pi, we can safely
assume that ‖x‖< |∂Pi| for all points in the path of the integral in
(47). Then, equation (16) gives rise to the following asymptotic
formula:∮

∂Pi

ϕα (x)dϕβ (x) = Bαγ

∮
∂Pi

xγ dϕβ (x)+o(|∂Pi|2). (48)

The asymptotic behavior of the integral in (48) can be obtained
in the same way:∮

∂Pi

xγ dϕβ (x) =−
∮

∂Pi

ϕβ (x)dxγ =−Bβδ

∮
∂Pi

xδ dxγ +o(|∂Pi|2).

(49)
By combining equations (46), (47), (48) and (49), and taking
into account the following identities:∮

∂Pi

xδ dxγ = ε
δγ |Pi|

−1
2

ε
αβ

ε
δγ Bαγ Bβδ = det(B),

we obtain

τ(Pi)−σ(Pi) = det(B)+o
(
|∂Pi|2

)
/|Pi|. (50)

Consider now the area-weighted average of J(x) over the patch
Pi: 〈

Jαβ

〉
Pi

=
1
|Pi|

∫
Pi

Jαβ (x)d2x. (51)

Again, using Stokes’ theorem we get〈
Jαβ

〉
Pi

=
εβγ

2|Pi|

∮
∂Pi

ϕα (x)dxγ

As follows from equation (16), the above integral behaves asymp-
totically as∮

∂Pi

ϕα (x)dxγ =Bαδ

∮
∂Pi

xδ dxγ +o(|∂Pi|2)=Bαδ ε
δγ |Pi|+o(|∂Pi|2).

This gives rise to the following estimate of 〈J〉Pi
:〈

Jαβ

〉
Pi

= Bαβ +o
(
|∂Pi|2

)
/|Pi|. (52)

The integral in (51) can also be computed as a sum of contri-
butions of individual tile species, yielding

〈J〉Pi
= σ1(Pi)BS1 +σ2(Pi)BS2 +σ3(Pi)BS3+

+ τ13(Pi)BT 13 + τ24(Pi)BT 24, (53)

where the matrices BS1, BS2, BS3, BT 13 and BT 24 are given in
Table 2. Since these matrices are symmetric, this equation con-
tains three linear constraints on the area fractions of different tile
species in Pi. Together with (46) and the condition

σ1(Pi)+σ2(Pi)+σ3(Pi)+ τ13(Pi)+ τ24(Pi) = 1

these constraints fix entirely the area fractions in terms of
〈
Jαβ

〉
Pi

and 〈det(J(x))〉Pi
. On the other hand, since |∂Pi|2/|Pi| is as-

sumed bounded, equations (52) and (50) read as

lim
i→∞

〈
Jαβ

〉
Pi

= Bαβ

and
lim
i→∞
〈det(J(x))〉Pi

= det(B).

Therefore, the area fractions σ1(Pi), σ2(Pi), σ3(Pi), τ13(Pi)

and τ24(Pi) have well-defined limits (see eq. (3)) and the con-
sidered tiling is globally uniform.

Let us now prove the “only if” part of Proposition 1. We shall
proceed by reductio ad absurdum. Let us assume that there exists
a globally uniform tiling such that its lifting map ϕ is not asymp-
totically linear. For a globally uniform tiling one can define the
matrix B by the formula

Bαβ = lim
|Pi|→∞

〈
Jαβ

〉
Pi

, (54)

for any sequence of patches Pi, such that the ratio |∂Pi|2/|Pi|
is bounded. By the hypothesis, there should exist a real constant
M > 0 such that one can a vector x∈ P of an arbitrarily large norm
l = ‖x‖ for which

‖ϕ(x)−B ·x‖> Ml. (55)

Let us consider a rectangle R ⊂ P of dimensions l× Ml
2 such that
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Fig. 21 The rectangular region R used in the proof of Proposition 1. The
bold broken line is the boundary of the largest tiling patch P contained
withing R.

the points 0 and x are the centers of its edges of length Ml
2 (see

Figure 21). Denote by nβ the components of the unit vector n =

x/‖x‖. By Stoke’s theorem, we get

nβ
(〈

Jαβ

〉
R
−Bαβ

)
=

nβ εβγ

Ml2

∮
∂R

(
ϕα (x)−Bαδ xδ

)
dxγ (56)

The contribution of the edges of R parallel to x to the right-hand
side of (56) vanishes after multiplication by nβ εβγ . To estimate
the contribution of the remaining two edges, we observe that the
integrand in (56) is Lipschitz continuous with Lipschitz constant
2. Indeed, the spectral radius of the Jacobian derivative J (and
hence also that of the matrix B in (54)) is bounded by 1. There-
fore, taking into account (55), for any two points a and b belong-
ing respectively to the edges of R containing 0 and x (see Figure
21), one has

‖ϕ(a)−B ·a‖ ≤ 2‖a‖
‖ϕ(b)−B ·b‖ ≥Ml−2‖b−x‖

(57)

Formulas (57) provide a lower bound for the integral in (56),
giving rise to the following inequality

‖(〈J〉R −B) ·n‖ ≥ M
4
.

Let now P stand for the largest patch of the tiling contained
within the rectangle R. As the aspect ratio of R is fixed,
|∂P|2/|P| is bounded from above by some constant not depend-
ing on l. For large l, the contribution of the interstice between P

and R to 〈J〉P is negligible and one has

‖(〈J〉P −B) ·n‖ ≥ M
4
+o(1) as l→ ∞. (58)

Since by the assumption the norm of x can be arbitrarily large,
we can construct a sequence of patches Pi, such that the ratio
|∂Pi|2/|Pi| is bounded from above, but ‖〈J〉Pi

−B‖ is bounded
from below, in contradiction with (54). This contradiction proves
the statement.

As now the equivalence between the global uniformity and the
asymptotic linearity of the lifting map is established, to finish the

proof it remains only to observe that (53) in the limit of infinite
tilings gives

B = σ1BS1 +σ2BS2 +σ3BS3 + τ13BT 13 + τ24BT 24. (59)

yielding (17). Similarly, the equation (18) arises as the limit of
(46).

C Special phases
C.1 The Σ phase
C.1.1 Structure factor of the Σ phase

The 32434 vertices have four different orientations depicted in
black, blue, magenta and green in the different figures. The
edge’s size of the centered square unit cell is aΣ = a(1 +

√
3)

where a is the edge’s size of the tiles. It contains eight vertices
when the square primitive unit cell contains four vertices. As
pictured in Figure 9, each set of vertices having the same color
forms a regular square lattice of edge’s size a(1+

√
3)/
√

2, turned
by an angle of π/4 with respect to the centered square unit
cell. Starting from one of these four regular square lattices, the
three other ones can be obtained by translation using the three
translation vectors e1, e3 and e1− e3.
The 2D structure factor of the Σ phase is defined as the Fourier

Fig. 22 Detail of the structure factor of the Σ phase including HK
indices (see also Figure 10). The twelvefold symmetry is only approxi-
mate. The (60) and (53) peaks are not exactly positioned on the same
circle (G∗53/G∗60 = 0.9718) and their intensities are not exactly the same
(I53/I60 = 0.9976).

transform of the points lattice located on the vertices. It can be
calculated taking for example the following coordinates of the
four vertices in the plane P (using unit vectors 1

a e1 and 1
a e4):

(a/2,0) (−a/2,0)
(

0,a
√

3/2
) (

0,−a
√

3/2
)

The 2D structure factor consists in a periodic lattice of diffraction
peaks that can be indexed using two integer indices HK
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G∗HK =
2π

aΣ

(
H

1
a

e1 +K
1
a

e4

)
=

2π

a
(
1+
√

3
) (H

1
a

e1 +K
1
a

e4

)
(60)

and the intensities of the Bragg peaks are IHK = |FHK |2 with:

FHK = 2
[
1+(−1)(H+K)

][
cos
(

π

1+
√

3
H
)
+ cos

(
π
√

3
1+
√

3
K

)]
(61)

The 2D structure factor is shown in Figures 10 and 22. A re-
markable feature is that the modulations in the intensities are not
periodic, as can be seen in the expression of FHK in the cosine
terms due to the presence of irrational terms. This is due to the
irrational coordinates of the lattice points in the square unit cell.
This feature of the structure factor is linked to the intrinsic incom-
mensurability of square-triangle tilings.

In Figure 22, the HK indices are reported for some Bragg peaks.
The set of twelve diffraction peaks with (6,0) and (5,3) indices is
remarkable as it form an approximate figure with 12-fold sym-
metry. But it is only approximate as the peaks are not exactly
positioned all on the same circle (G∗53/G∗60 = 0.9718) and their
intensities are not exactly the same (I53/I60 = 0.9976), with tiny
differences of less than 1 percent.

Fig. 23 Lift in 4D of the Σ phase. The 4D vertices are located in
four different 2D-planes having the same hyperslope BΣ and which are
translated from each other. In each 2D-plane, the vertices have the same
orientation (same color) and form a regular square lattice.

C.1.2 4D lift of the Σ phase

The lift construction in the 4D space consists in associating to
each vertex in the plane P a 4D lifted vertex. This association can
be done in different ways. Here we choose to place the origin
of the plane P on a black vertex which is lifted to the origin of

the 4D space (see Figure 23). A blue vertex near to the origin is
lifted to the 4D vertex εεε1, a magenta one to εεε3 and a green one to
εεε1− εεε3. In 4D, all other vertices are obtained by translation. All
vertices of the same color are lifted in the same 2D-plane using
the two translation vectors εεε2+εεε3 and εεε3−εεε1+εεε4−εεε2. The black
vertices are embedded in a plane containing the origin when the
three other planes are parallel to this plane and can be deduced by
translation from the origin using εεε1 (blue vertices), εεε3 (magenta
vertices) and εεε1− εεε3 (green vertices).

The expression of the matrix BΣ is given in Eq. 20. Its
expression can be identified to the hyperslope with respect to the
plane P (2x2 matrix A, see Eq. 34) of the plane defined by the
two vectors εεε2 + εεε3 and εεε3− εεε1 + εεε4− εεε2. It can be verified from
the expression of the (εεε1,εεε2,εεε3,εεε4) 4D-vectors in the (I,J,K,L)
orthonormal basis (see Eq. 40), leading to:

εεε2 + εεε3 = a


α

α

−β

β

 ;εεε3− εεε1 + εεε4− εεε2 = a


−α

α

β

β

 (62)

with
α = (

√
3+1)/2;β = (

√
3−1)/2 (63)

Using the general expression of the hyperslope (2x2 matrix A)
with respect to the plane P (see Eq. 34), the identity A = BΣ is
verified.
To construct the projections in the planes P and P⊥ (see Figure
9), we use the four integer indices notation already introduced
in equation 39. The lift construction allows to index each ver-
tex with a unique set of four integers (n1,n2,n3,n4) writing that
(v,v⊥) = n1εεε1 + n2εεε2 + n3εεε3 + n4εεε4. For example, the black 4D
vertices have the following 4D integer coordinates where n,m are
two integers:

(v,v⊥)black = n(εεε2 + εεε3)+m(εεε3− εεε1 + εεε4− εεε2) =


−m

n−m
n+m

m

 (64)

C.1.3 Infinite sequence of phases with the same composi-
tion.

To illustrate the fact that, except for the five pure phases, any
composition point corresponds to an infinite number of phases,
let’s consider the following transformation (Figure 24).

It consists in replacing each triangle and square by four iden-
tical tiles and applying afterwards a scale factor of two to keep
the tile’s dimension. This transformation preserves both the ratio
Nt/Ns and the tiles orientation distribution so the 3D composition
point is fixed. By applying it several times, one can generate an
infinite sequence of other phases located at the same composition
point. Applied at a composition point like ΣΣΣ1, starting from the
Σ phase, an infinite sequence of periodic phases with increasing
unit cell size is obtained. Note that all these periodic phases are
globally uniform and couldn’t be generated by a cut-and-project
method. The infinite limit is a coexistence of domains of four pure
phases around a junction point (see section 6.2).
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Fig. 24 A simple transformation of tiles generating an infinite sequence
of phases at a fixed composition point. The ratio Nt/Ns is preserved as
both tiles number are multiplied by a factor four and the tiles orientation
distribution is the same as well. It is illustrated at the composition point
ΣΣΣ1.

C.2 Structure factor of the H phase
The 2D structure factor of the Archimedean H phase is calculated
in a similar way as for the Σ phase using a rectangular centered
lattice of dimensions a and (2 +

√
3)a with two vertices per

node at positions (0,a/2) and (0,−a/2) (see Figure 8 for the
orientation of the H phase). The 2D structure factor is shown in
Figure 25 and consists in a periodic set of Bragg peaks that can
be indexed by two integer indices HK of intensities IHK = |FHK |2

with:

FHK = 2
[
1+(−1)(H+K)

]
cos
(

πK
2+
√

3

)
(65)

A remarkable feature is the way how the intensities of the

Fig. 25 Structure factor of the H phase. The infinite 1D stripes are
horizontal and the stack direction is vertical like in Figure 8.

Bragg peaks are modulated. The whole structure factor can be

decomposed in two types of infinite vertical lines of Bragg peaks
of intensities I0K with K even and I1K with K odd. Along the
horizontal direction, these lines of Bragg peaks alternate in a
simple periodic fashion. This is expected because the infinite
stripes of tiles along the horizontal direction are periodic (rows
of square or triangles) (see Figure 8). But along the vertical
direction, the intensities are modulated via the cosine term in
eq. 65. Because of the presence of the irrational ratio 2+

√
3, it

is impossible for two diffraction peaks to have exactly the same
intensity. In other words, even if the cosine function is periodic, it
is sampled at irrational values. It comes from the fact the period
of the 1D stack of stripes, here (2 +

√
3)a, is incommensurate

with a.
This aperiodicity in the Bragg peak intensities along the stack
direction is a strong signature of the incommesurability between
the two tiles dimensions, a and a

√
3/2. In a system where the

two tiles dimensions would be in a rational ratio, in the cosine
term, this ratio would appear as a fraction of two integers, and
the Bragg peaks intensities would exhibit periodic modulations
along the stack direction.
One can also notice in Figure 25 that a set of twelve diffraction
peaks show an approximate 12-fold symmetry, but this feature is
much less striking than for the Σ phase (see Figures 10 and 22).
It makes sense as the 3D composition point of the H phase is very
asymmetric.

C.3 Striped phases
C.3.1 Stacking sequence and average slope

The stacking sequence is built using two vectors, e4 for square
tiles and e3 for the triangular tiles. The vertices in plane P have
the form v= n1e1+n3e3+n4e4, with the stripes direction along e1.
The stack of the stripes is given by a sequence of vectors e3 (stripe
of triangular tiles) and e4 (stripe of square tiles) that follows a
straight line which slope b(τ) is related to the composition, as
illustrated in Figure 11a. Simultaneously in P⊥, the associated
vertices are v⊥ = n1e1⊥

+n3e3⊥
+n4e4⊥

. As a result, in the plane P,
the stacking sequence (e3 and e4 lattice vectors) follows a straight
line of slope b(τ). Similarly, in the plane P⊥, the stacking sequence
(made of e3⊥

and e4⊥
lattice vectors) follows a straight line of

slope b⊥(τ). The expression of these two slopes read:

b(τ) =
y
x
=

√
3

τ
,

b⊥(τ) =
y⊥
x⊥

=
√

3
τ−σ

τ
=
√

3
2τ−1

τ
(66)

If only square tiles are present (τ = 0), the average slope in the
plane P is vertical and the striped phase is the S1 pure phase (see
Figure 11a). Similarly, for τ = 1, the slope coefficient is equal
to
√

3 and the striped phase is the T13 pure phase. For all other
compositions, the average slope is in between these two values.
In particular, for τ = 1

2 , b = 2
√

3 (plane P) and b⊥ = 0 (plane P⊥).
This last feature is characteristic of aperiodic order: the stacking
sequence in the plane P⊥ follows the horizontal line along x⊥.
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C.3.2 Staircase

Fig. 26 Lift construction for striped phases. A stacking sequence can
be visualized as a ’3D staircase’. Each ’step’ of the 3D staircase has
a vertical side of height a

√
2 and an horizontal side of width a

√
2
√

3
2 .

Vertical portions (in red) correspond to the S1 pure phase when horizontal
ones (in blue) correspond to the T13 pure phase. The plane defined by
the two vectors (εεε3, εεε4) forms a square lattice of parameter a

√
2 and its

intersection with the plane P is a line depicted in light green color.

For striped phases, the lift construction in the 4D space is made
using only three vectors (εεε1,εεε3,εεε4) instead of 4 in the general
case. The stacking sequence is expressed onto the two 4D lattice
vectors εεε3 and εεε4. The lifted version of a striped phase can be
visualised as a “staircase’ (Figure 26). To do so, one can define
a 3D subspace of the 4D space by taking all components along J′

equal to zero. In this 3D subspace, all vectors have three com-
ponents in an orthonormal basis (I′3D,K

′
3D,L

′
3D) which is derived

from the second 4D orthonormal basis (Eq. 42) and the lattice
vectors read:

εεε1,3D = a
√

2I′3D

εεε3,3D = a
√

2(
1
2

I′3D +

√
3

2
K′3D)

εεε4,3D = a
√

2L′3D

(εεε1,3D,εεε3,3D,εεε4,3D)I′3DK′3DL′3D
= a
√

2


1

0
0

 ,

 1/2√
3/2
0

 ,

0
0
1



(67)

The steps of the ’3D-staircase’ (see Figure 26) are along L′3D
(with a vertical edge of height a

√
2) and along K′3D with a width

a
√

2
√

3
2 , corresponding to the coordinate of εεε3,3D along K′3D. Em-

bedded in this 3D subspace, the plane P is constructed with
the two vectors basis (I′3D, K′3D + L′3D) and the plane P⊥ with
(I′3D, K′3D −L′3D). P and P⊥ are still orthogonal to each other
and are turned by an angle of π/4 along I′3D. The intersec-
tion between the plane P and the plane (εεε3,3D,εεε4,3D) is along

the direction (1,
√

3,
√

3). The irrational slope
√

3
2 (see Eq. 22)

is obtained writing that this direction is along the 3D-vector
2( 1

2 I′3D +
√

3
2 K′3D)+

√
3L′3D. The plane defined by the two vectors

(εεε3,3D, εεε4,3D) form a square lattice of parameter a
√

2. Note that
this plane is tilted by an angle of π/3 along the vertical direction
L′3D, where (I′3D, K′3D, L′3D) is a 3D orthonormal basis. The plane

P is inclined at an angle of π/4 along the direction K′3D+L′3D. The
intersection of the plane P with the plane (εεε3,3D, εεε4,3D) is a line
shown with a light green color.

D Inflation constructions
D.1 Striped phases: 1D aperiodic order
Starting from some initial “seed", a longer sequence is constructed
by using the following substitution rules: 1) each stripe s is re-
placed by a copies of s and four stripes t and 2) each stripe t is
replaced by 3 stripes s and a copies of t, where a≥ 0 is an integer.
Upon iteration, these substitution rules generate periodic phases
with bigger and bigger unit cell, and one approaches a perfect
1D quasiperiodic structure at the limit of an infinite number of
iterations. An example of the first three steps of a construction
corresponding to a = 3 is shown in Fig. 12b.

If the number of s strips, N(i)
s , and the number of t stripes N(i)

t
at the ith step are known, their number at the i+1th step can be
readily found, since the substitution rules imply that

µi+1 =

(
a 4
3 a

)
µi (68)

where µi = {N
(i)
s ,N(i)

t }.32 The maximal eigenvalue (called the
Perron root) of the 2 by 2 matrix of this equation and its
corresponding eigenvector provide information on, respectively,
the rate of growth of the tiling, and on the relative proportion
of s and t type strips. This eigenvalue is (a+2

√
3), for all values

of the integer parameter a, and the corresponding eigenvector is
{
√

3/2,1}. This shows that the ratio of triangles to squares tends
towards the value

√
3/2.

D.2 Maximally symmetric phases
The initial seed is a dodecagonal wheel (see Figure 13). Its com-
position is maximally symmetric. It contains the same number
of T1/T3 (blue color) and T2/T4 (red color) triangles (Nt12,0 =

Nt34,0 = 6), and the same number for each of the three kinds
of squares (Ns1,0 = Ns2,0 = Ns3,0 = 2). For the seed, the ratio
Nt,0/Ns,0 = 12/6 = 2 has a rational value. After an infinite number
of iterations tends, this ratio in tiles number reaches the irrational
value Nt/Ns = 4/

√
3.

Initial conditions are Nt,0 = 12 and Ns,0 = 6. If we denote
by Nt,i and Ns,i the number of triangles and squares at inflation
step i, after the next inflation step, these numbers are given
by Nt,i+1 = 7Nt,i + 3Ns,i and Ns,i+1 = 16Nt,i + 7Ns,i. This is en-
coded in the following transfer matrix form to compute the vector
νi = {Nt,i,Ns,i} :

νi+1 =

(
7 3

16 7

)
νi (69)

To the Perron root (7+4
√

3) of this matrix corresponds an eigen-
vector {

√
3/4,1}. It is easily checked that the limiting value of the

ratio of tiles is Nt/Ns = 4/
√

3.
To obtain the dodecagonal QC phase shown in Fig. 13a, the

following rule is followed.32 If there are a majority of blue bonds
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Fig. 27 Selection stripes for i) the periodic sequence of B-tiles (S1,
θ = π/2) ii) the periodic sequence of A-tiles (S2, θ = 0) and iii) the
Fibonacci quasiperiodic sequence (S3, θ = arctan(1/λ1)). Selected points
are projected onto the “physical" x axis, giving rise to a sequence of A
and B tiles.

emanating from the ’parent’ site then the dodecagon contains a B
hexagon, and otherwise it contains the R hexagon. Note that in
this construction, it is impossible to get four squares around a site
during the inflation process, so the rule can always be applied,
in the interior of the patch. For the sites located on the border
of the patch at a given iteration step, one needs to examine the
environment of that after the next iteration step. This is the rule
applied to obtain the patch after one inflation step.

E Diffraction
In this section we discuss some properties of the structure fac-
tor, S(~q), a physical quantity which is measurable by a diffraction
experiment and useful to distinguish between different types of
spatial organization of particles. It is defined by V S(~q) = |ρ(~q)|2

where V is the volume of the sample and ρ(~q) is the Fourier
transform of the spatial density. We will consider the simplest
situation in which unit point masses are located at each vertex,
ρ(~r) = ∑ j δ (~r−~R j) where δ (~r) is a delta-function and ~R j are the
positions of the N particles j = 1, ....,N.

E.1 The Fibonacci sequence
To explain how one can compute the structure factor of a qua-
sicrystal and its periodic approximants, it is convenient to begin
with a one dimensional example, the Fibonacci sequence. This
1D quasicrystal is an infinite sequence built of two kinds of tiles
(line segments) called A and B. This quasicrystal can be lifted
to a square grid in a 2D space by using the following rules: ev-
ery A tile corresponds, in 2D, to a horizontal displacement a~uX ,
and each B tile to a vertical displacement a~uY . This results in a
broken path in 2D (see Fig.27) linking vertices that lie inside a
stripe having a slope equal to λ

−1
1 where λ1 =

1+
√

5
2 is the golden

mean. Note that the same construction can be done for any other
irrational slope like

√
3/2 (see section 5.3). The x axis is paral-

lel to the strip, and represents the physical direction while the
y axis (not shown) is the perpendicular direction. The lengths
of the A and B tiles are xA = acosθ and xB = asinθ respectively.

The “selection strip" (so-called for evident reasons) has a width
of W = a(cosθ + sinθ) along the y-axis. The “composition space"
for this and related binary structures is a line segment, where the
two extremities represent periodic crystals: at one extremity is
a tiling consisting only of A-tiles, and at the other only B-tiles.
In the select-and-project method, these correspond to selection
stripes with the angle θ equal to 0 and π/2, respectively (namely
the stripes S2 and S1 in Fig.27). The periodic approximants of
the Fibonacci sequence are obtained by stripes with the rational
slopes Fn−1/Fn where the Fn are the Fibonacci numbers, obey-
ing the recursion relation Fn = Fn−1 +Fn−2 with F0 = F1 = 1. The
sequence ABABABAB, for example, is a periodic approximant of
slope F0/F1 = 1 (θ = π/4), the next approximant is the sequence
ABAABAABA... and has a selection stripe of slope F1/F2 = 1/2,
and so on, the lengths of the approximants increasing with n, re-
sulting in the Fibonacci sequence when n goes to infinity.

Thanks to this 2D representation of the quasicrystal it is simple
to compute the Fourier transform (FT) of the Fibonacci sequence.
We will assume the spatial distribution ρ(x) = ∑ j δ (x− xn) where
xn is the coordinate of the nth site. In the 2D representation, the
mass density can be expressed as a product, as follows

ρ(~R) = ρsl(~R) χ(~R)

ρsl(~R) = ∑
m,n

δ (~R−~Rmn) (70)

where ρsl denotes the square lattice mass density, with ~Rmn =

ma~uX + na~uY are the vertices. The function χ takes the value 1
if ~R lies inside the strip, i.e if the projection 0 < ~R.~uy < W and 0
otherwise. It follows from the relation 70 that the FT of the se-
quence is given by a convolution of the FTs of the square lattice,
ρsl(~Q) – non-zero for ~Q = ~Gh,k =

2π

a (h~uX + k~uY ) – and that of the
function χ, defined by

χ(~Q) =
∫

d~R ei~Q.~R

∼V δ (qx)
∫ W

0
dyeiqyy

χ(qy) (71)

In the second line above we have changed the integration vari-
ables in the rotated basis, where

qx =
2π

a
(hcosθ + k sinθ)

qy =
2π

a
(−hsinθ + k cosθ) (72)

The resulting S(qx) has Bragg peaks along the qx-axis at posi-
tions indexed by h,k. Their intensities are given by |χ(qy)|2 =
4sin2(qyW/2)

q2
y

. The projections of the 2D reciprocal lattice points

gives rise to a dense set of Bragg peaks along the qx axis. However
the intensities for most of the peaks are negligibly small, and only
a subset of the peaks corresponding to small qy values are observ-
able (see Fig.28). For approximants, the analysis proceeds along
similar lines. The principal difference arises due to the fact that
the stripe has a rational slope. As a result, the Bragg peaks are
spaced regularly with ∆q = 2π/L, where L is the length of the ap-
proximant. Their intensities are given by the FT of the χ function
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Fig. 28 Structure factor S(q) plotted versus (physical space wave vector
q (in units of 2π) for the perfect Fibonacci sequence. The indices above
each peak indicate the corresponding 2D reciprocal lattice vector ~Gh,k

Fig. 29 Structure factors for three successive approximants of number
of sites equal to 5 (blue), 8(green) and 13 (orange).

defined with respect to the appropriate selection strip. The right-
hand side of Fig.28 shows the structure factors of three approx-
imant sequences to illustrate the manner in which the structure
factor of approximants approach that of the infinite quasicrystal.

E.2 Square-triangle approximant phases
We can now extend these ideas to a perfect dodecagonal qua-
sicrystal (ie, with no disorder) using the lift construction in the
4D superspace (see section A. In that case, the lifted vertices lie
within an infinite stripe whose orientation is parallel to the phys-
ical axes. Their projections onto the perpendicular space P⊥ lie
within a selection window W of finite extent and having a 12-fold
symmetry (see Figure 14). As for the Fibonacci sequence, the
mass density is a product of the 4D periodic lattice and a function
χ. Thus the FT of the tiling is given by the convolution of two
structure factors. The first is that of the 4D reciprocal lattice, (see
section A.3), whose basis vectors project onto a star of 12 vectors
in the physical plane P. These are given by28

G∗n =
2π

a
√

3
(cos

(n−1)π
6

,sin
(n−1)π

6
) (73)

where a is the edge length of the tiles. As was already noted
in the real space description, only four of the twelve reciprocal
lattice vectors G∗n are rationally independent. They are labelled
(eee∗1,eee

∗
2,eee
∗
3,eee
∗
4) (see Figure 20 in section A.3). Thus, there are Bragg

peaks at~q‖ positions which can be indexed by the integers h,k, l,m
representing linear combinations of these four reciprocal lattice
vectors. The intensities of each peak depends on these indices via
the FT of the window W , and again, the observable peaks cor-
respond to perpendicular space coordinates ~q⊥ which are small
(aq⊥ ≤ 1).

Fig. 30 (left) The sigma phase structure showing a unit cell outlined
in blue. Its composition is given by X = −0.268... and Y = Z = 0 with
τ = 0.464.... (right) Structure factor of the sigma phase in the (qx,qy)

plane. Circles have radii corresponding to the peak intensity. Black dots
indicate peak positions for the perfect quasicrystal showing the shifts due
to finite global phason strain.

Turning next to the sigma phase shown in Fig. 30, the lift pro-
cedure yields a stripe which is inclined with respect to the plane
P. This is encoded by the global phason strain B (see section 5.2).
For this periodic approximant, the stripe has a rational direction
in the 4D superspace. One can once again define a selection win-
dow by a region W in the plane perpendicular to the strip. As
seen before for the approximants of the quasicrystal, the peaks
in the reciprocal space ~q‖ lie on a grid of spacing 2π/L where L
is the period of the crystal. Fig.30 shows the structure factor –
the radius of the red circles is proportional to the intensity of the
peak. We note that these peaks are shifted with respect to the po-
sitions quasicrystal (shown by black dots) because the projection
axes are slightly rotated with respect to the perfect QC.

A similar argument applies in the case of a bigger square ap-
proximant phase, of larger periodic length L based on repeating
dodecagonal wheels as illustrated in Fig. 31. The structure fac-
tor of this phase is shown superimposed upon that of the sigma
phase, showing the small shifts that occur when going from one
approximant to the next. In the limit of the stripe becoming hor-
izontal, one converges to the structure factor of the perfect qua-
sicrystal.

Several comments are now in order. 1) in contrast to the Fi-
bonacci sequence the window W has a fractal structure for the
square triangle dodecagonal QC. As a result, Bragg peaks scale
as a fractional power in the system size rather than linearly. It
would however be probably very difficult to experimentally mea-
sure this type of scaling. 2) The discussion given above can be
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Fig. 31 (left) A periodic square approximant phase with the unit cell
outlined in blue. Its composition is given by X = 0.1436... and Y = Z = 0
with τ = 0.4897.... (right) The structure factor shown by blue circles. At
each peak position the circle size is proportional to the intensity.

extended to random tilings, for which the selection stripe has an
irregular “wavy" form in 4D. The analysis in this case predicts a
structure factor with broadened peaks of diminished intensity due
to a disorder-induced Debye-Waller type factor, and in addition a
diffuse background.28
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