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Abstract

Air pollution is a public health issue and the toxicity of ambient particulate matter

(PM) is well-recognized. Although it does not mostly contribute to the total mass of

PM, increasing evidence indicates that the ultrafine fraction has generally a greater

toxicity than the others do. A better knowledge of the underlying mechanisms

involved in the pathological disorders related to nanoparticles (NPs) remains

essential. Hence, the goal of this study was to determine better whether the

exposure to a relatively low dose of well-characterized iron-rich NPs (Fe-NPs) might

alter some critical toxicological endpoints in a relevant primary culture model of

human bronchial epithelial cells (HBECs). We sought to use Fe-NPs representative of

those frequently found in the industrial smokes of metallurgical industries. After

having noticed the effective internalization of Fe-NPs, oxidative, inflammatory, DNA

repair, and apoptotic endpoints were investigated within HBECs, mainly through

transcriptional screening. Taken together, these results revealed that, despite it only

produced relatively low levels of reactive oxygen species without any significant oxi-

dative damage, low-dose Fe-NPs quickly significantly deregulated the transcription

of some target genes closely involved in the proinflammatory response. Although this

inflammatory process seemed to stay under control over time in case of this acute

scenario of exposure, the future study of its evolution after a scenario of repeated

exposure could be very interesting to evaluate the toxicity of Fe-NPs better.
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1 | INTRODUCTION

Air pollution still constitutes the major threat to human health,

whereas the adverse impacts and the underlying mechanisms of air

pollution-derived particulate matter (PM) are not clearly defined

(Beelen et al., 2015; Hamra et al., 2014; Jerrett et al., 2017;

Raaschou-Nielsen et al., 2016). PM is a mixture of solid and liquid tiny

particles of different origins, sizes and compositions. Various classifi-

cations and terminologies have been used to define particle size

ranges (Terzano, Di Stefano, Conti, Graziani, & Petroianni, 2010).

Generally, particles are divided into three groups, namely, coarse, fine

and ultrafine particles (UFP) with aerodynamic diameters within a

range between 2.5 and 10 μm (PM10-2.5), <2.5 μm (PM2.5) and

<0.1 μm (PM0.1), respectively (Chen et al., 2016). Ambient PM is most

often characterized by the content of PM10 and PM2.5, as their

concentrations are limited by the air quality guidelines of the World

Health Organization (20 μg/m3 annual mean and 50 μg/m3 24-hour

mean for PM10, and 10 μg/m3 annual mean and 25 μg/m3 24-hour
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mean for PM2.5). The association of pulmonary and cardiovascular

adverse health effects with PM10 or PM2.5 ambient levels has been

already well-described. Although they do not contribute substantially

to total mass of particles, increasing evidence indicates that UFP,

particularly those that originated from human activities, may have

greater impact on human health than the other larger sized fractions

(Kornberg et al., 2017). In contrast to UFP, which are derived from

both natural and anthropogenic sources, nanoparticles (NPs), com-

monly defined as particles having at least one dimension <100 nm, are

prepared deliberately by humans at the nanoscale. Consequently, they

exhibit properties that provide technological advantages compared

with the bulk form of the same material (Stone et al., 2017). The

health effects induced by engineered NPs are similar to those caused

by UFP, as inhalation is the most probable and easiest route for

nanosized particles to enter into the human body (Stone et al., 2017).

The research findings of NPs in nanotoxicology prove that they

behave differently from larger inhalable particles, and their chemical

constituents, which are nontoxic at the micrometer scale, will become

toxic at the nanometer scale (Kornberg et al., 2017). To achieve

engineering for safety goals, it is also urgently needed to understand

the toxicity of NPs better themselves and recognize that toxicological

evaluation is only one part of an overall risk assessment process.

However, it is impossible to determine safer exposure levels and safer

material designs without having first a better knowledge of dose-

specific toxicological effects.

The risk of exposure to NPs is particularly high for people working

within the production sites of engineered NPs. NPs made by transition

metals are widely used in technology and some of them are known to

induce both pro-oxidative and proinflammatory activities (Andersen

et al., 2011; Gustafsson, Lindstedt, Elfsmark, & Bucht, 2011; Jerrett

et al., 2017). For instance, fine/micron-sized iron-rich PM (Fe-PM) is

incidentally released from a number of industrial processes, including

iron ore mining, steel processing, welding and pyrite production

(Kornberg et al., 2017). Moreover, Fe-NPs are naturally present in the

outdoor atmospheres because they may be emitted from building

materials and vehicles, such as cars and train brakes (Gasser

et al., 2009; Wilkinson et al., 2012). The use of more efficient air filters

in industries allowed to retain the fine but not the ultrafine fraction of

emitted PM, the latest still representing an area of toxicology of

emerging concern (Stone et al., 2017). During the exposure, NPs

mainly penetrate into the body by inhalation, and, after deposition

within the lungs, can provoke some severe injuries (e.g., inflammation,

bronchial hyper-reactivity, tissue remodeling) and even contaminate

the bloodstream (Brandenberger et al., 2010; Oberdörster et al., 2004;

Patil et al., 2012; Petitot et al., 2013; Suliman et al., 2015). Indeed, the

internalization of different types of NPs into various human lung cell

models has already been well-reported (Stone et al., 2017). There is

also a number of underlying mechanisms by which NPs may impair cell

homeostasis, including the occurrence of oxidative and inflammatory

responses (Miller et al., 2013; Nel, Xia, Mädler, & Li, 2006; Stone

et al., 2017). The ability of NPs to induce an overproduction of

reactive oxygen species (ROS), either intrinsically or via different cell

sources, has been well documented and is frequently associated with

other toxic effects (Stone et al., 2017). Although the mechanisms

underlying Fe-NP-induced toxicity are still poorly understood, most

researchers suggested they are largely due to Fe-induced or catalyzed

ROS production (Ghio, Dailey, Richards, & Jang, 2009). Accordingly,

Fe-PM, as wüstite (FeO) and hematite (Fe2O3), has already been

shown as inducing redox and inflammatory responses in a set of

in vitro and in vivo studies (Garçon et al., 2000; Garçon et al., 2001a,

2001b, 2004a, 2004b). More recent studies supported similar results

for Fe-NPs (Bhattacharya et al., 2012; Donaldson et al., 2005; Eom &

Choi, 2009, 2011; Keenan, Goth-Goldstein, Lucas, & Sedlak, 2009;

Kim, Kim, Lee, Oh, & Chung, 2011). However, these effects are likely

to be related to multiple physicochemical characteristics of Fe-NPs

and may include other underlying mechanisms of toxicity such as

direct physical NP-cell interaction and receptor-mediated activation of

specific signaling pathways (Thomassen et al., 2011).

The better knowledge of the underlying mechanisms closely

involved in the pathogenesis of lung disorders related to NPs remains

essential. Hence, we sought to use an original primary culture model

of human bronchial epithelial cells (HBECs) to test the toxicity of a

relatively low dose of well-characterized Fe-NPs, representative of

those encountered in the industrial smokes of metallurgical industries

(Canivet, Denayer, Champion, Cenedese, & Dubot, 2014). After

having verified the effective internalization of Fe-NPs into HBECs,

oxidative, inflammatory, DNA repair and apoptotic endpoints were

also investigated.

2 | MATERIALS AND METHODS

2.1 | Chemicals

All the culture reagents were provided by LONZA. Sigma-Aldrich pro-

vided all the chemical reagents and monoclonal pan-cytokeratin anti-

body (Clone PCK-26). Promega provided CellTiter-Glo® luminescent

cell viability. ThermoFisher Scientific provided Alexa Fluor™ 488 con-

jugated goat polyclonal antimouse antibody, SlowFade Gold Antifade

reagent containing DAPI, 6-carboxy-20,70-dichlorodihydrofluorescein

diacetate (carboxy-H2DCFDA), Pierce™ BCA protein assay kits, and all

the reagents for molecular biology. Qiagen provided RNeasy mini Kits.

Merck-Millipore provided periodic acid-Schiff (PAS) staining kit and

MU5AC antibody (mouse monoclonal MAB2011; Clone CLH2).

2.2 | Iron nanoparticle synthesis and
physicochemical characterization

Metallic iron nanocrystals were produced using a cryogenic melting

gas condensation technique as described by Champion and

Bigot (1996). Briefly, to avoid contamination through reaction with a

crucible, the metal was heated in a radiofrequency levitation furnace.

The analytical methods used to determine the physicochemical char-

acteristics of Fe-NPs have been published elsewhere (Canivet

et al., 2014). Briefly, the shape and the size of Fe-NPs, at their pristine

state or after their suspension in Hanks' balanced salt solution (HBSS)
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or bronchial epithelial cell growth medium, with or with sonication,

were determined by scanning electron microscopy (LEO 1530; Zeiss).

Their surface charge, chemical composition and specific surface

area were determined by dynamic light scattering (Zetasizer II;

Malvern Instruments), X-ray photoelectron spectroscopy (K-ALPHA;

ThermoScientific), and Brunauer, Emmet and Teller (BET) method by

nitrogen adsorption (Micromeritics Type ASAP 2010), respectively.

2.3 | Human bronchial epithelial cell culture and
characterization

HBECs were derived from healthy peripheral bronchial tissues of

patients (n = 3) undergoing surgery for lung carcinoma, as published

elsewhere (Courcot et al., 2012). After surgical resection, macroscopi-

cally healthy areas of lobar bronchi were immediately immersed in

Dulbecco's modified Eagle's medium supplemented with 1% (v/v)

penicillin-streptomycin and 2% (v/v) fungizone, and then stored at

4�C until used. Bronchial segments were rinsed twice with ice-cold

phosphate-buffered saline (PBS) and processed for mucosa isolation.

Small pieces of bronchial mucosa, approximately 2 mm2, were used

as a source of primary cells. They were placed in Petri dishes, pre-

coated with rat tail type I collagen at 0.03 mg/mL for 30 minutes at

37�C, in the presence of 5 mL of a serum-free medium (bronchial epi-

thelial cell growth medium; Lonza) supplemented with 1% (v/v)

penicillin-streptomycin and 2% (v/v) amphotericin B. After an adher-

ence period of 24 hours at 37�C and 5% CO2, 5 mL of supplemented

culture medium were added and, thereafter, changed every 2-3 days

until epithelial cells grown from bronchial explants reached almost full

confluence. After trypsinization, HBECs were gathered, reseeded in

six-well plates, 96-wells plates or LabTeck® chamber Slide™ Systems,

precoated with rat tail type I collagen at 0.03 mg/mL for 30 minutes

at 37�C, and cultured until confluency.

HBECs ground on LabTeck® chamber Slide™ Systems were fixed

with 1% (v/v) paraformaldehyde for 3 minutes at 37�C and methanol

for 5 minutes at −20�C. Mucus secretion was identified by PAS reac-

tion using the standard protocol recommended by the manufacturer

(PAS staining kit; Merck-Millipore). HBECs were mounted using the

Eukitt® quick-hardening mounting medium. For immunofluorescence

labeling, HBECs were permeabilized for 3 minutes with PBS con-

taining 0.2% (v/v) Triton X-100 and rinsed three times for 5 minutes

with PBS. They were incubated for 1 hour at 37�C with primary anti-

bodies diluted in 3% (v/v) bovine serum albumin, 0.05% (v/v) Tween

and 0.08% (v/v) sodium azide in PBS. MU5AC antibody (mouse mono-

clonal MAB2011; Clone CLH2; Merck-Millipore) and monoclonal pan-

cytokeratin antibody (Clone PCK-26; Sigma-Aldrich) were respectively

diluted at 1/250 and 1/100. After three 5-minute washes in PBS,

HBECs were incubated for 30 minutes at 37�C with a goat polyclonal

antimouse antibody, Alexa Fluor™ 488 conjugate (ThermoFisher

Scientific) diluted at 1/400 in 3% (v/v) bovine serum albumin, 0.05%

(v/v) Tween and 0.08% (v/v) sodium azide in PBS (Leclercq

et al., 2016; Sotty et al., 2019). After three 5-minute washes in PBS,

HBECs were mounted with the SlowFade Gold Antifade reagent

containing DAPI (Life Technologies) and images were acquired on an

EVOS™ FL Cell Imaging System (LifeTechnologies).

2.4 | Human bronchial epithelial cell exposure to
iron nanoparticles

Just before cell exposure, culture media were renewed to eliminate

death cells, and Fe-NPs were extemporaneously suspended in sterile

HBSS (ThermoFisher Scientific) and ultrasonicated (Deltasonic;

Somatherm; frequency: 28 kHz; power source: 120 W) for 5 minutes

before their use. According to Kaur et al. (2017), the effective acoustic

power delivered to the dispersion in the ultrasonic bath was

calculated to be 0.193 W. CellTiter-Glo® luminescent cell viability

assay was carried out in HBECs exposed to increasing concentrations

of Fe-NPs from 0 to 300 μg/cm2 for 24 hours at 37�C and 5% CO2, as

recommended by the manufacturer's instructions (Promega). This

assay system used the properties of a proprietary thermostable

luciferase to enable reaction conditions that generate a stable

“glow-type” luminescent signal. The mono-oxygenation of luciferin

was catalyzed by luciferase in the presence of Mg2+, ATP and molecu-

lar oxygen, and resulted in the emission of light, directly linked to the

ATP concentration and the number of living cells. Accordingly, for the

further study of the other toxicological endpoints, HBECs were there-

after exposed in triplicate to a final concentration of 2 μg/cm2

(or 9.5 μg/mL) of Fe-NPs for 6, 24 and 48 hours.

2.5 | Human bronchial epithelial cell observations by
transmission electron microscopy

HBECs exposed for 24 hours at 37�C and 5% CO2 to Fe-NPs at

2 μg/cm2 (or 9.5 μg/mL) were washed twice with PBS, fixed in 0.5%

(v/v) paraformaldehyde- and 2% (v/v) glutaraldehyde-containing PBS for

20 minutes at room temperature, and then overnight at 4�C after

renewing the fixative solution (Leclercq et al., 2018; Sotty et al., 2019,

2020). After three washes with a solution of 0.22 M sucrose in PBS for

10 minutes, HBECs were post-fixed with 1% (m/v) OsO4 in PBS for

2 hours at room temperature. Fixed samples were thereafter dehydrated

in a series of graded alcohols and embedded in Epon resin. Ultrathin sec-

tions (50-90 nm) were cut with an ultramicrotome (Reichert Ultracut E),

stained with uranyl acetate and lead citrate, and examined with a Zeiss

EM902 transmission electron microscope at 80 kV equipped with the

Orius camera interface (Carl Zeiss France SAS). Numerical images were

acquired with Gatan Microscopy Suite® software.

2.6 | Reactive oxygen species production and
oxidative damage within human bronchial epithelial
cells

To study production of ROS, HBECs were incubated with 20 μM

carboxy-H2DCFDA in HBSS (ThermoFisher Scientific) for 1 hour at

37�C and 5% CO2. Thereafter, HBECs were washed with PBS and

exposed to Fe-NPs at 2 μg/cm2 (or 9.5 μg/mL), 20 μM phorbol ester

myristate (Sigma) as positive controls, or 40 μM N-acetylcysteine
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(ThermoFisher Scientific) as negative controls. Fluorescence (λex:

492-495 nm; λem: 517-527 nm) was monitored at 37�C every

10 minutes for 3 hours with the GloMax®-Multi Detection System

(Promega). Malondialdehyde (MDA) concentrations were determined

in HBECs lysed with 0.1% (m/v) butylated hydroxytoluene ethanolic

solution using high-performance liquid chromatography with fluores-

cence detection, as published by Garçon et al. (2006). Glutathione sta-

tus (i.e., ratio between oxidized and reduced forms: [GSSG]/[GSH])

was determined in HBECs lysed with 10% (v/v) cold metaphosphoric

acid using high-performance liquid chromatography with fluorescence

detection, as published elsewhere (Leclercq et al., 2016, 2017). The

total protein quantification was determined using the Pierce™ BCA

Protein Assay Kit (ThermoFisher Scientific) according to the manufac-

turer's recommendations.

2.7 | Regulation of gene expression within human
bronchial epithelial cells

Total RNA was extracted from HBECs with the miRNeasy Mini Kit™

(Qiagen) according to the manufacturer's instructions. The yield of the

extracted RNA was determined by measuring the optical density at

260 nm with the BioSpec nanospectrophotometer (Shimadzu). After

reverse transcription of 1 μg of total RNA in single-stranded cDNA

using the High Capacity cDNA Reverse Transcription Kit

(ThermoFisher Scientific), gene expression relative quantitation was

carried out using custom TaqMan™ Low Density Arrays, a 7900HT

Real-Time polymerase chain reaction (PCR) System (ThermoFisher

Scientific), and the Expression Suite Software (ThermoFisher

Scientific). The set of selected genes comprised target genes encoding

proteins involved in oxidative stress regulation (43), inflammatory pro-

cess (223), DNA repair and apoptosis regulation (72), and other

functions (42, including 15 mucin genes) (see Supporting Information).

The mRNA expression levels of the 10 genes exhibiting the highest

differential expressions after Fe-NP exposure were analyzed in

HBECs derived from three independent donors, using reverse

transcription-quantitative PCR. PCR amplifications were conducted

on the Step one plus thermocycler using 50 ng of reverse transcrip-

tion products, TaqMan Gene Expression Master Mix (2×) and specific

TaqMan Gene Expression Assays (20×), according to the protocol

supplied by the manufacturer (ThermoFisher Scientific). The analysis

of gene expression was realized using the RQ Manager 1.3 software

(ThermoFisher Scientific).

2.8 | Statistical analysis

Normality and equality of variances were checked for each data set.

Data were presented as means and standard deviations of triplicate.

Each experimental value was compared with that of the

corresponding negative control at each time point. When the normal-

ity and the equality of variance were checked, one-way analysis of

variance was used to examine the difference between Fe-NP

exposed- and negative control HBECs. Then, a Dunnett's post hoc

test was carried out for pairwise difference, using negative control

HBECs. When normality was skewed, a Kruskal-Wallis test was

performed (followed by Dunnett's post hoc test). The level of

statistical significance was set at P < .05. Analyses were performed

with SigmaStat® 2.03 software (SPSS Inc.).

3 | RESULTS

3.1 | Iron nanoparticle physicochemical
characteristics

The physicochemical characterization of the Fe-NPs under study was

first performed in their pristine state. As shown in Figure 1A and

Table 1, Fe-NPs were associated in bundles but have an individual

spherical shape with a diameter in the range of 20.0-80.0 nm. Accord-

ingly, BET measurements realized with N2 on Fe-NPs gave a specific

surface of 21.72 ± 0.17 m2/g. Assuming a density of 7.87 g/cm3 for

iron, Canivet et al. (2014) estimated a mean diameter of 35.1 nm for

the individual spherical Fe-NPs. These Fe-NPs were also representa-

tive of industrial smoke emitted by metallurgical industries. They were

formed from a metallic iron core with an oxide layer (Fe2+ and Fe3+) of

2.1 nm, as revealed by the Fe2p core level. A layer of hydroxide could

be shown by deconvolution of the O1s peak. Fe-NPs were free from

any impurity. Fe-NPs were magnetic and formed some agglomerates,

with an average size of 700 nm. The sonication of Fe-NP solution

reduced their average size to 200 nm. Their zeta potential and surface

area at their pristine state were −12 mV and 21.72 m2/g, respectively.

The volume-specific surface area (VSSA), understood as a surface area

related to the volume instead of mass, can constitute an additional cri-

terion independent of the size distribution and the density of the

nanomaterial. The VSSA of Fe-NPs (218.27 m2/cm3) allowed us to

state that, even agglomerated, they still had their specific reactivity.

Thereafter, Fe-NPs were characterized 24 hours after their suspen-

sion in HBSS or in supplemented culture medium. Moreover, like

Fe-NPs in their pristine state, Fe-NPs suspended in HBSS and in

supplemented culture medium formed some agglomerates with aver-

age sizes ranging from 600 to 700 nm. Immersion of Fe-NPs in HBSS

only slightly increased the oxide thickness from 0.16 to 2.26 nm,

whereas the hydroxylation surface was higher from those at their pris-

tine state. While HBSS slightly interplayed toward Fe-NP oxidation at

a day scale, on the contrary, supplemented culture medium strongly

interact by increasing the iron oxide layer thickness, up to 2.8 nm

after 24 hours, and up to 3.1 nm, 24 hours later.

3.2 | Characterization of human bronchial epithelial
cells

PAS staining confirmed the capacity of some of the HBECs to secrete

mucus (Figure 1B). Both pan-cytokeratin and MUC5AC protein

expression, highly characteristic for HBECs, were specifically detected

using immunofluorescence labeling of isolated cells (Figure 1C).
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3.3 | Iron nanoparticle internalization by human
bronchial epithelial cells

Figures 2A and 2B revealed the internalization of Fe-NPs into

membrane-bound vesicles, as small aggregates. Fe-NPs entering from

the apical surface could form an endosome, which may cross the cell to

the basolateral surface and thereafter fuse with the plasma membrane,

thereby releasing Fe-NPs into the extracellular fluid on the basolateral

side. Both particle aggregation and agglomeration have been shown to

play a major role in the severity of Fe-NP-induced adverse outcomes.

F IGURE 1 A, Observation of iron-rich
nanoparticles in scanning electronic microscopy
(magnification ×50 000). B, Periodic acid-Schiff
of human bronchial epithelial cells; fuchsia color
corresponds to polysaccharides (magnification
×600). C, Fluorescence immunostaining of pan
cytokeratin and MUC5AC in human bronchial
epithelial cells. Nuclei are revealed in blue with
DAPI (magnification ×400) [Colour figure can be

viewed at wileyonlinelibrary.com]

TABLE 1 Physicochemical characteristics of iron-rich nanoparticles in their pristine state

Shape Composition Purity
Surface
area (m2/g) Size distribution (nm) Agglomeration (nm)

Zeta
potential (mV)

VSSA
(m2/cm3)

Sphere Core of metallic iron with an

oxide (Fe2+ and Fe3+) and

hydroxide layer of 2 nm

Free of

impurity

21.72 20-80 700 (average of

200 with

sonication step)

−12 218.27
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3.4 | Cell viability of iron nanoparticle-exposed
human bronchial epithelial cells

The viability was reduced in a dose-dependent manner in HBECs

24 hours after their exposure to increasing concentrations of Fe-NPs,

ranging from 0 to 300 μg/cm2 (Figure 3). The inhibitory concentration

at 10% (i.e., 2 μg/cm2) has been chosen to be further applied to study

the other toxicological endpoints.

3.5 | Reactive oxygen species production and
oxidative damage in iron nanoparticle-exposed human
bronchial epithelial cells

No significant difference of intracellular ROS production was

observed between Fe-NP-exposed and negative control HBECs

(Figure 4A). Time-dependent continuous increases of intracellular

ROS levels were reported for both exposed and negative control

HBECs. In this work, to study the possible consequences of Fe-NP-

induced ROS production, glutathione status ([GSSG]/[GSH]) and MDA

levels were assessed (Figure 4B and 4C, respectively). However,

HBEC exposure to the low-dose Fe-NPs for 6, 24 and 48 hours did

not induce any significant modification of glutathione status nor MDA

production, despite slight increases.

3.6 | Modulation of gene expression within human
bronchial epithelial cells

Venn diagrams showed the expression patterns of differentially regu-

lated genes (DRGs; upregulated: relative quantity [RQ] ≥2 or down-

regulated: RQ ≤0.5) within Fe-NP-exposed vs. control HBECs

(Figure 5A and 5B). Most of them were involved in oxidative stress,

inflammation, DNA repair, apoptosis and mucin secretion regulation

(see also Table S1; see Supporting Information). Overall, there is a

time-dependent decrease of the number of DRGs in Fe-NP-exposed

HBECs: after 6 hours, 46 and 32 DRGs were up- and downregulated

whereas after 48 hours, only one and four genes were up- and

downregulated, respectively. Among the genes deregulated after

6 and 24 hours of exposure: nine genes were upregulated

(i.e., CXCR4, interleukin (IL)13RA2, MMP1, IL24, IL17D, FGFR1,

MUC13, IL18, IL1R2) and eight genes were downregulated

(i.e., TNFSF10, CCR10, TLR1, TLR3, IL7, TLR6, TNFSF11, CXCR2). Then,

after 6 and 48 hours of exposure, three genes were upregulated

(i.e., FGF1, LTA, NOS3) and only four genes downregulated

(i.e., CXCL10, BAX, IL27, GPR156). In addition, as shown in Figure S1

and Table S1 (see Supporting Information), among all the DRGs, 55 tar-

get DRGs were highly up- or downregulated as they displayed at least

F IGURE 2 A, B, Observations of human bronchial epithelial cells
exposed to 2 μg/cm2 of Fe-NPs using transmission electronic
microscopy. Confirmation of the presence of Fe-NPs, enclosed in
vesicles (red circle), within human bronchial epithelial cells 24 h after
their exposure to Fe-NPs. Fe-NPs, iron-rich nanoparticles

F IGURE 3 Cell viability, assessed through intracellular adenosine
triphophosphate concentrations of human bronchial epithelial cells
exposed for 24 h to increasing concentration of Fe-NPs. Calculated
inhibitory concentration at 10% (IC10) corresponded to 2 μg/cm2.
Results are expressed as the means ± SD of three independent
experiments conducted in triplicate (n = 9). Fe-NPs, iron-rich
nanoparticles [Colour figure can be viewed at wileyonlinelibrary.com]
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a fourfold difference in their transcript levels (RQ ≥4 or RQ ≤0.25) in

Fe-NP-exposed HBECs. Notably, the highest number of highly DRGs

was reported 6 hours after exposure to HBECs. Thereafter, among

them, a set of 10 DRGs was carefully selected: the eight genes

exhibiting the highest changes after Fe-NP exposure (i.e., four

upregulated genes: MMP3, IL13RA1, MMP1, CSF2 and four down-

regulated genes: GRP156, TNFSF11, CCR10, CASP5), and IL8

and PTGS2 for their known implication in inflammation processes. The

Fe-NP-induced changes previously reported for all these 10 target

genes were confirmed in three independent cell cultures (Table 2).

Accordingly, a time-dependent decrease of the number of DRGs was

reported in Fe-NP-exposed cells: after 6 hours, six (i.e., IL8, IL13RA2,

CSF2, PTGS2, MMP3, MMP1) and one (i.e., TNFSF11) DRG were

F IGURE 4 A, Intracellular ROS production in HBECs exposed to
2 μg/cm2 of Fe-NPs. HBECs incubated with 40 mM N-acetylcysteine
or 20 μM phorbol ester myristate served as negative and positive
controls, respectively. Results are expressed as the mean ± SD of
three independent experiments conducted in triplicate (n = 9).
Kruskal-Wallis test with Dunnett's post hoc test with t = 5 min as
reference to see the evolution over time (*P < .05). B, C, Glutathione
status (i.e., ratio between [GSSG]/[GSH] and MDA concentrations
(μg/g of protein) in HBECs exposed to 2 μg/cm2 of Fe-NPs. Values
are depicted as mean and SD (n = 3). Results are expressed as the
means ± SD of three independent experiments conducted in triplicate
(n = 9). One-way ANOVA with Dunnett's post hoc test, *P < .05.
Fe-NPs, iron-rich nanoparticles; [GSSG]/[GSH], ratio between
oxidized and reduced form of glutathione; HBECs, human bronchial
epithelial cells; MDA, malondialdehyde; ROS, reactive oxygen species;

T6, 6 h of exposure; T24, 24 h of exposure; T48, 48 h of exposure
[Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 5 A, Venn diagram representing the expression pattern
of upregulated genes (RQ >2, P < .05) in human bronchial epithelial
cells exposed to 2 μg/cm2 of iron-rich nanoparticles. B, Venn diagram
representing the expression pattern of downregulated genes
(RQ <0.5, P < .05) in human bronchial epithelial cells exposed to
2 μg/cm2 of iron-rich nanoparticles (vs. negative controls). RQ,
relative quantity; T6, 6 h of exposure; T24, 24 h of exposure; T48,
48 h of exposure) [Colour figure can be viewed at
wileyonlinelibrary.com]
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respectively up- and downregulated, whereas after 48 hours, no

DRGs were reported. After 6 hours, four (i.e., IL13RA2, PTGS2, MMP1,

MMP3) and one (i.e., TNFSF11) DRG were significantly up- and down-

regulated, respectively, whereas none were significantly deregulated

after 24 and 48 hours.

4 | DISCUSSION

Despite intensive effort during the last decades, there is still a lack of

information on NPs in environmental science and human health stud-

ies. Interestingly, toxicological studies have shown that nanosized par-

ticles possessed quite different physicochemical properties than the

fine fraction, such as lower mass, higher reactivity and higher surface

area to mass ratio, thereby usually posing more serious adverse effects

on human health than larger sized particles (Stone et al., 2017). A thor-

ough knowledge of NPs, including the issues of sources, composition

and size distribution is essential for the assessment of the potential

health risks and will contribute to the identification of related toxico-

logical effects (Chen et al., 2016). In this study, we investigated the

toxicity induced by well-characterized Fe-NPs in HBECs.

The Fe-NPs under study were representative of those emitted by

metal industries (Canivet et al., 2014). At their pristine state, Fe-NPs

were spherical and ranged from 20 to 80 nm. Assuming a density of

7.87 g/cm3 for iron, Canivet et al. (2014) estimated a mean diameter

of 35.1 nm for the individual spherical Fe-NPs. They were formed

from a metallic iron core with an oxide layer (Fe2+ and Fe3+) of

2.1 nm, with a layer of hydroxide. Fe-NPs were free from any impu-

rity. Fe-NPs were magnetic and formed some agglomerates, with an

average size of 700 nm; their sonication reduced their average size to

200 nm. The VSSA of Fe-NPs (218.27 m2/cm3) was allowed to state

that, even agglomerated, they still had their specific reactivity.

Kreyling, Semmler-Behnke and Chaudhry (2010) noted that NPs with

VSSA above 60 m2/cm3 are characterized by an average size below

100 nm, thereby indicating a high nanomaterial or nanostructure

content. Thereafter, Fe-NPs were characterized 24 hours after their

suspension in HBSS or in supplemented culture medium. Their surface

oxidation was in agreement with those reported by Bhattacharya

et al. (2009). He et al. (2008) noted that Fe-containing NPs tend to

agglomerate when suspended in a low pH solution, the increase of

the agglomerate size being directly proportional to their initial size.

Kumar et al. (2007) noticed biomolecule adsorption on the surface of

Fe-containing NPs, which altered their zeta potential and provoked

their agglomeration. While HBSS slightly interplayed toward Fe-NP

oxidation at a day scale, on the contrary, supplemented culture

medium strongly interact by increasing the iron oxide layer thickness.

According to Canivet et al. (2014), immersion of Fe-NPs in HBSS or

supplemented culture medium led to the formation of an

oxyhydroxide layer containing chlorinated species. The initial passiv-

ated surface oxide layer, mainly Fe2O3 is thus transformed into a

thicker oxyhydroxide layer that has a greater ability to adsorb molecu-

lar ions or ionic biomolecules such as proteins or DNA. More soluble

iron compounds are formed on the NP surface that could be more

easily dissolved after exposition to the intracellular medium. Accord-

ingly, modifications of Fe-NP surface chemistry due to supplemented

culture medium can act on cell cytotoxicity both by direct molecular

adsorption due to a higher surface affinity to biomolecules or by the

induced oxyhydroxide dissolution, which releases toxic iron ions.

Thereafter, to contribute to a better knowledge of the underlying

mechanisms involved in Fe-NP toxicity, a relevant primary culture

model of HBECs was used. The isolation procedure from healthy

peripheral bronchial tissues of patients undergoing surgery for lung

carcinomas ensure that they exhibited a phenotype very similar to this

observed in vivo (Bérubé, Prytherch, Job, & Hughes, 2010; Boublil

et al., 2013; Leclercq et al., 2016, 2017; Leclercq et al., 2018; Pezzulo

et al., 2011; Sotty et al., 2019). Accordingly, PAS staining confirmed

the capacity of some of them to secrete mucus, whereas, pan-

cytokeratin and MUC5AC protein expression, highly characteristic for

epithelia and bronchial cells, respectively, were specifically detected

using immunofluorescence labeling of HBECs. Bhowmick and Gappa-

Fahlenkamp (2016) showed that HBECs displayed the highest similari-

ties with bronchial mucosa in terms of transcript profiling and seemed

to be one of the most relevant in vitro models for studying the toxicity

of inhaled NPs.

According to Bhattacharya et al. (2009, 2012) and Könczöl

et al. (2011), Fe-NPs were internalized into membrane-bound vesicles,

as small aggregates. Fe-NPs entering from the apical surface could

form an endosome, which may cross the cell to the basolateral surface

and fuse with the plasma membrane, thereby releasing Fe-NPs into

the extracellular fluid on the basolateral side. Particle aggregation and

agglomeration have been shown to play a major role in the severity of

Fe-NP-induced adverse outcomes. As mentioned by Kornberg et al.

(2017), it is generally accepted that smaller-sized particles are able to

induce more toxicity on a per mass basis due to increases of both

surface area and particle number. However, if NPs are agglomerated,

their adverse outcomes may be different, because they will be recog-

nized by the cells as a larger-sized structure. However, to date, the

mechanisms involved in the absorption of Fe-NPs are not well-

TABLE 2 Relative quantities of the 10 selected target gene
expressions in human bronchial epithelial cells exposed to 2 μg/cm2

of iron-rich nanoparticles for 6, 24 and 48 h

Gene name

Relative quantity

6 h 24 h 48 h

TNFSF11 0.35* 0.50 0.67

CASP5 0.63 0.62 0.67

GPR156 0.80 0.94 0.63

CCR10 0.99 1.64 1.06

IL8 2.73 1.01 1.02

IL13RA2 3.56* 2.42 1.09

CSF2 3.74 2.46 1.66

PTGS2 4.44* 1.57 1.25

MMP3 9.38* 1.39 0.85

MMP1 9.79* 3.90 1.05
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identified. Four pathways are described for endocytosis of NPs:

caveolar-mediated endocytosis dependent upon clathrin, phagocyto-

sis, micropinocytosis and pinocytosis (Forman & Finch, 2018). Only

few studies used HBECs to investigate NP toxicity (Åkerlund

et al., 2018; Ekstrand-Hammarström et al., 2013; Herzog et al., 2009;

Herzog et al., 2009; Zhang et al., 2011). Most studies have also been

conducted using lung cell lines such as immortalized HBECs: BEAS-2B

(Ekstrand-Hammarström et al., 2012; Eom & Choi, 2011; Gilbert

et al., 2012) and 16HBE cells (Belade et al., 2012; Keenan et al., 2009;

Otero-González, Sierra-Alvarez, Boitano, & Field, 2012) or cancer-

derived cell lines: A549 (Choi, Oh, & Choy, 2009; Khan et al., 2012).

Hence, many apparently contradicting results have been reported due

to the use of different cell types and the test of a variable range of

concentrations (Liu, Gao, Ai, & Chen, 2013).

The inhibitory concentration at 10% (i.e., 2 μg/cm2) has been cho-

sen to be further applied to study the other toxicological endpoints.

This concentration is among the lowest used in the literature. It is

always very important to reduce particle exposure as much as possible

to keep a sufficient dose to study the underlying mechanisms of

action while contributing to the effort to be as close as possible to

human exposure levels (Leclercq et al., 2016). In exposed Balb/c mice

by whole body inhalation to Fe3O4 NPs (i.e., 19.9 mg/m3 over

4 hours), Teeguarden et al. (2014) reported target tissue doses in the

bronchial (about 1 μg/cm2) and the alveolar (0.003-0.13 μg/cm2)

regions. The Fe-NP dose of 2 μg/cm2 we applied on to HBECs was

also in the same order of magnitude as that deposited in the bronchial

region of this in vivo model.

Over time, exposure to Fe-NPs only produced a relatively low

levels of ROS without any significant oxidative damage, as carried out

by glutathione status ([GSSG]/[GSH]) and MDA production. Feng

et al. (2018), who exposed human ovarian cancer SKOV-3 cells and

murine RAW 264.7 macrophages to relatively high concentrations of

various Fe-containing NPs, noticed time-dependent intracellular ROS

production. Liu et al. (2013) indicated that the most toxicities from

Fe-containing NPs derived from ROS overproduction, which can

thereafter damage cells by peroxidizing lipids, injuring DNA and pro-

teins, modulating gene transcription, and altering the physiological

function and regulated cell death. However, in this work, the relatively

low ROS production induced by the low-dose Fe-NPs applied on to

HBECs seemed not able to overwhelm the antioxidant defenses nor

the repair capacities of HBECs (Garçon et al., 2000, 2001b, 2006).

Bhattacharya et al. (2009) showed that a same dose of Fe-containing

NPs (Fe2O3, 50 nm), also roughly comparable with this used by

Teeguarden et al. (2014), induced an almost similar decrease in cell

viability but higher ROS production in human bronchial fibroblasts.

Dwivedi et al. (2014) showed that a low dose of Fe-containing NPs

(Fe3O4, 174 nm agglomerate) induced a decrease of cell viability and

oxidative damage, including lipid peroxidation and glutathione oxida-

tion, in cancer-derived A549 cells. The apparent discrepancy between

the data arising from the current literature and the original data from

this work might rely on the use of different Fe-containing NPs, with

their own physicochemical characteristics, and the use of different cell

models, primary vs. transformed cells, from different target human

lung tissues. This closely reinforced the importance of using a relevant

in vitro model, which could also help to reflect the normal human

bronchial epithelium better.

To the best of our current knowledge, the studies dealing with

the effect of Fe-containing NPs on DRG in the lungs are limited

(Arenz, Hellweg, Stojicic, Baumstark-Khan, & Grotheer, 2006;

Brandenberger et al., 2010; Foldbjerg et al., 2012; Monteiller

et al., 2007; Park, Choi, Park, & Park, 2008). Hence, to go further

ahead, DRG profiles of a set of selected target genes encoding pro-

teins closely involved in oxidative stress, inflammation, DNA repair,

apoptosis and other mechanisms such as mucus secretion were stud-

ied. Accordingly, oxidative stress, inflammation and cell cycle deregu-

lation were among the main adverse cell outcomes reported as

activated by a single short-term exposure of lung cells to Fe-

containing NPs (Chen et al., 2016; Huang, Cambre, & Lee, 2017;

Kornberg et al., 2017; Loxham et al., 2015; Stone et al., 2017). Indeed,

IL-8 was first described as a chemoattractant cytokine, which plays an

important physiological role in the biology of leukocytes and other cell

types by controlling tissue homeostasis, cell recruitment and activa-

tion and guiding leukocyte movements under basal and inflammatory

state mediators (Russo, Garcia, Teixeira, & Amaral,2014). IL-13RA2 is

a receptor for IL-13, which is a major inducer of fibrosis in many

chronic infectious and autoimmune diseases (Fichtner-Feigl, Strober,

Kawakami, Puri, & Kitani, 2006). Described primarily as a decoy,

IL-13RA2 acts as a scavenger receptor, a potent antagonist of IL-13

activity in epithelial cells, and would be a potentially critical mediator

of IL-13 clearance in humans (Kasaian et al., 2013). Granulocyte

macrophage-colony stimulating factor (granulocyte macrophage-CSF),

also known as CSF2, is an important survival, proliferation and differ-

entiation factor of the progenitor cells for neutrophils and macro-

phages (Park et al., 2015). Shoeb et al. (2017), studying the toxicity of

a complex welding-generated aerosol of incidental NPs and metals,

such as Fe, in RAW264.7 cells, indicated elevated expression of

prostaglandin-endoperoxide synthase 2 (PTGS2), also known as cyclo-

oxygenase 2 (COX-2), thereby corroborating the development of a

proinflammatory response. Cheng et al. (2012) showed dose- and

time-dependent increases of PTGS2 in 1,2 naphthoquinone-exposed

BEAS-2B cells whereas Ahn et al. (2008) demonstrated its significant

increases, at both transcriptional and protein levels, in DEP-treated

cells. In addition to proteolytic degradation of the lung parenchyma,

matrix metalloproteinase (MMP)-associated activity also participates

in a number of other processes, including the inflammatory response,

mucus hypersecretion, vascular apoptosis/proliferation and profibrotic

pathways (Navratilova, Kolek, & Petrek, 2016). During inflammation,

proprotein MMP are activated through a cascade of proteolytic cleav-

age to yield active MMP that in turn activate cytokines (e.g., IL-8)

and/or modify the binding interaction between some chemokines and

their receptors (Foley et al., 2012, 2014). Lindner et al. (2012) noted

alterations of MMP1 and MMP3 gene expression in lung cells under

proinflammatory conditions. Even if there are only very few studies in

lung cells about the possible role of TNFSF11 gene, also called the

receptor activator of nuclear factor-κB ligand (RANKL), an increasing

body of evidence suggested that this receptor and its ligand play a
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role in apoptosis (Rao, Cronin, Sigl, & Penninger, 2018; Sigl, Jones, &

Penninger, 2016). A decrease of TNFSF11 expression could also

decrease the activation of anti-apoptotic protein, as a mechanism of

defense towards HBEC exposure to Fe-NPs (De Castro et al., 2015).

Taken together, the regulation of all these target genes in HBECs in

response to their exposure to relatively low doses of Fe-NPs

suggested a rapid activation of proinflammatory processes, without a

clear ROS overproduction.

In this work, aiming to contribute to a better knowledge of the

underlying mechanisms involved in the pathogenicity of lung disorders

related to Fe-NPs, we developed a relevant primary culture model of

HBECs to test the toxicity of well-characterized Fe-NPs generally typ-

ifying Fe-rich NPs emitted by metal industries. Applying this relatively

low dose of Fe-NPs on to HBECs allowed us to obtain results that

would be most representative for the deposited in vivo dose. HBECs

were also able to produce relatively low levels of ROS, without evi-

dent oxidative damage, but to regulate quickly the transcription of

some target genes closely involved in the proinflammatory response.

Although this inflammatory process seemed to stay under control

over time, in the case of this acute scenario of exposure, the future

study of its evolution after a scenario of repeated exposure could be

very interesting to evaluate the toxicity of Fe-NPs better.
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