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In this paper we derive a formalism allowing us to separate inter-layer contributions to the po-
larizability of a periodic array of 2D materials from intra-layer ones. To this aim, effective profile
functions are introduced. They constitute a tight-binding-like layer-localized basis involving two
lengths, the effective thickness d characteristic of the 2D material and the inter-layer separation
L. The method permits, within the same formalism, either to compute the single-layer dielectric
function from an ab-initio periodic calculation (top-down strategy) or to stack several 2D materials
to generate a finite-thickness van der Waals heterostructure (bottom-up strategy).

Most ab initio codes assume periodic boundary condi-
tions in the 3D space. This framework is inappropriate to
simulate isolated systems, interfaces, defects, amorphous
materials and any non-periodic or partially periodic sys-
tem. Isolated 2D sheets fall in this category, with a crys-
talline structure periodic in one plane (the xy-plane, in
the following) and isolated along the vertical direction
z. Similarly, the simulation of multilayers or van der
Waals heterostructures is often prohibitive because of the
number of atoms involved, even when lattice mismatch
or misalignment between the constituent layers are ne-
glected. In this paper we address both problems within
the same formalism in a fully ab initio approach.

The first problem is about the calculation of single-
layer properties from 3D-periodic ab initio calcula-
tions (top-down strategy). In this framework, fictitious
Coulomb interactions arise between the replicas of the
system. The brute force approach consists in creating
large simulation cells (supercell: SC) enclosing the planar
unitary cell plus an amount of vacuum large enough to
separate the periodic replicas of the system. A vacuum of
∼10 Å is often required to converge regular ground-state
simulations. Though, when it comes to computing the
polarizability χ, for instance in the random phase approx-
imation (RPA), local dipoles are created. These charge
inhomogeneities worsen the convergence problem because
the artifact interactions are unscreened and hence long-
ranged. Furthermore χ is normalized with respect to
the volume of the simulation cell, and hence depends
on the amount of vacuum which is arbitrary [1–3]. In
our opinion, this renormalization problem has been too
much overlooked in the past; mainly because it is ab-
sent in ground-state calculations. As a result, in the SC
scheme, excited state calculations seldom converge with
the amount of vacuum.

However, state-of-the-art calculations are nowadays
done within the Coulomb truncation (CT) scheme [4–
7]. It consists in letting the Coulomb interaction vanish
at a distance L/2 from the sheet, where L is the height
of the simulation cell. This scheme kills by construc-
tion the spurious interactions and permits to reduce L
to values comparable to those needed in SC ground-state

simulations. Though, we want to stress that L is still an
arbitrary quantity even in the CT scheme.

The second problem consists in stacking different 2D
layers to get finite-thickness homo- or hetero-structures
(bottom-up strategy). A solution to the two problems
must rely on the correct description of the inter-layer
interaction and also on the explicit account for the (ef-
fective) thickness of the layers.

In this Letter we present a general formalism allowing
us to separate analytically the intra-layer from inter-layer
contributions to the polarizability X of a periodic array
of layers. This is done by defining profile functions while
computing the polarizability of a single layer. In this way,
the volume-normalization and the fictitious-interaction
problems are treated on the same footing, completing
and generalizing recent developments [3, 8–13] concern-
ing the top-down strategy. Then, we consider the general
case of a finite-thickness heterostructure and we use the
same general framework to implement a bottom-up strat-
egy similar to the Quantum Electrostatic Heterostructure
(QEH) model recently put forward [11, 13–15]. With the
intent of removing any arbitrariness from the calculation,
we also provide a recipe to compute the profile functions
ab initio and use them to calculate the macroscopic di-
electric function of a single layer. This development al-
lows us to demonstrate that for the dielectric function to
be meaningful, it is mandatory to take into account the
finite thickness of the film.

I: Single-layer polarizability We start from the case
of an isolated single layer without any periodicity along
the z axis. We introduce a mixed space representa-
tion

∣∣k‖, z) for which a generic quantity depends on
the in-plane momentum (k‖ = q‖ + G‖, sum of the
crystal momentum q‖ and of a reciprocal lattice vector
G‖ [16]), and on the real-space coordinate z. We pro-
ceed assuming that, we can separate in-plane (ϕ) from
out-of-plane (ξ) components of the Bloch wavefunction:
φiκ‖(r) = ϕiκ‖(ρ) ξ(z), where ρ is the in-plane compo-
nent of r. The irreducible polarizability χ0 is calculated
as usual as a sum over all independent-particle transi-
tions, the oscillator strengths of which involve matrix
elements of the form

∫
φ∗iκ‖

(r)ei(q‖+G‖)·ρφjκ‖+q‖(r) dρ.
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This makes appear the normalized effective profile func-
tions θ0 = ξ2 which are positive, real and even functions
of z and localized around z = 0 (i.e. they vanish for
|z| > d/2 for a given distance d). This leads to the ex-
pression for the irreducible polarizability of the single
layer:

χ0
G‖G

′
‖
(q‖, ω, z, z

′) = θ0(z)χ0
2DG‖G

′
‖
(q‖, ω)θ0(z′) . (1)

The functions θ0 play here the role of effective polariz-
able profiles and they can be associated to the thickness
of the isolated layer through the characteristic length d.
This thickness is defined more precisely below. It turns
out that the numerical extraction of the profile func-
tion shows a mild dependence on the in-plane momen-
tum, and in the following we include such a dependence.
Then, θ0k‖

(z) is characterized by an effective thickness
dk‖ . Since our factorization hypothesis is done at the
wave-function level, we assume no ω-dependence of θ0.

The random phase approximation (RPA) to the polar-
izability of the slab χ satisfies a Dyson equation of the
form χ = χ0+χ0vχ. As a consequence of the θ0 functions
appearing in (1), one can show that χ = θ0χ2Dθ

0 where
the extension in (z, z′) is carried only by the θ0 functions,
while the polarization is embodied in χ2DG‖G

′
‖
(q‖, ω)

which solves the 2D Dyson equation:

χ2D = χ0
2D + χ0

2DV inχ2D . (2)

Here V in is the layer-projected Coulomb interaction;

V in(k‖) =
2π

|k‖|

∫
θ0k‖

(z)e−|k‖| |z−z′|θ0k′
‖
(z′) dz dz′ . (3)

For further details on the entire derivation, see appendix
A of the Supplemental Material.

II: Periodic array of layers In order to study the
polarizability X of an array of layers with period L
along z, we introduce a layer-projected representation∣∣k‖, n) where n is the index of the layer. We define

XG‖,G
′
‖,nm

(q‖, ω) =
(
k‖, n

∣∣X(ω)
∣∣∣k′‖,m) and the pro-

jection from
(
k‖, z

∣∣∣k′‖, n) =
√
dk‖θ

n
k‖

(z)δG‖G
′
‖
, where

θnk‖
(z) := θ0k‖

(z − nL) is the profile function localized
on the nth layer. Details on the representations can be
found in Appendix B of the Supplemental Material. Since
χ0 does not imply any long-range term, the overlap of
successive layers can be neglected if we further assume
L > dk‖ ∀k‖. So X0 becomes the sum over the periodi-
cally repeated χ0s (equation (1)):

X0
G‖G

′
‖
(q‖, ω, z, z

′) =

=
∑
n

θnk‖
(z)χ0

2DG‖G
′
‖
(q‖, ω)θnk′

‖
(z′) (4)

=
√
dk‖dk′

‖

∑
n,m

θnk‖
(z)X0

G‖G
′
‖,nm

(q‖, ω)θmk′
‖
(z′) ,

depending on the representation employed (mixed-
space above, or layer-projected below). By equating
these two expressions one gets

√
dk‖dk′

‖
X0

k‖k
′
‖ nm

=

δnmχ
0
2D k‖k

′
‖
. Using this equality and by defining

χ̂
(0)
k‖k

′
‖

:=
√
dk‖dk′

‖
X

(0)
k‖k

′
‖
and v̂(k‖) = v(k‖)/dk‖ , one

arrives to the layer-projected Dyson equation:

χ̂nm = χ̂0
nm +

∑
p,s

χ̂0
npv̂psχ̂sm . (5)

We notice that v̂nn(k‖) =
(
k‖, n

∣∣ v̂ ∣∣k‖, n) ≡ V in(k‖) as
in (3). Using the definitions introduced above, the nth
layer term reads χ̂nn = χ0

2D + χ0
2DV inχ0

2D + O(2). We
conclude that χ̂nn ≡ χ2D which is layer-independent and
solves the single-layer equation (2). Note that all matri-
ces are written in G‖ space, so that in-plane local fields
are fully taken into account.

Let us now focus on the off-diagonal elements of (5).
We start splitting the Coulomb interaction v̂nm = V innm+
Voffnm with the definitions V innm = δnmV in, and Voffnm = v̂nm
if n 6= m and 0 otherwise. Equation (5) can now be split
into two equations:

χ2D,nm = δnm

[
χ0
2D

(
1− V in χ0

2D

)−1]
= δnmχ2D (6)

χ̂nm = δnmχ2D +
∑
q

χ2DVoffnq χ̂qm . (7)

The latter equation is the main result: It expresses the
total polarizability of the array (χ̂) in terms of single-
layer polarizabilities (χ2D) interacting through an ef-
fective inter-layer Coulomb interaction (Voff). This re-
sult permits to develop the bottom-up and the top-down
strategies presented previously. The advantage of our ap-
proach is to combine them within a general and concise
formalism based in particular on the profile functions θ0
and their associate polarizable thickness. They are cru-
cial quantities for a correct calculation of the dielectric
function. We will show how to compute them from first
principles, hence removing any arbitrariness in ab initio
calculations of single layers.

With the intent of connecting our derivation to stan-
dard ab initio output, usually expressed in the

∣∣k‖, kz)
representation, we rewrite (7) in reciprocal space. This
is done in detail in Appendix C of the Supplemental Ma-
terial; below we report just the main results for qz = 0.
ω and q = q‖ variables are dropped for notational con-
venience:

XGG′ = L−1ϑk‖(Gz)χ̂G‖G
′
‖
ϑk′

‖
(G′z) (8)

χ2D,G‖G
′
‖

= χ̂G‖G
′
‖
− χ2D,G‖G

′′
‖
Voff(k′′‖)χ̂G′′

‖G
′
‖

(9)

Voff(k′′‖) = 2V in(k′′‖)
[
e|k

′′
‖ |L − 1

]−1
. (10)

In (8), ϑ is the Fourier transform along z of the profile
function θ0. A sum over G′′‖ is understood in (9).
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Here we present the practical implementation of the
top-down method. We keep assuming qz = 0. The first
step is to extract the profile function θ0 from the first-
principle periodic calculation of X. By sampling the col-
umn XG,0(q‖, ω = 0) along Gz at fixed G‖, one can
extract θ0k‖

from first principles:

ϑk‖(Gz) =
XG 0(q‖, 0)

XG‖ 0(q‖, 0)
, (11)

from which we obtain θ0k‖
(z), the Fourier transform of

ϑk‖(kz) which, for large L, can be calculated through a
discrete sum θ0k‖

(z) ' 1
L

∑
Gz
eiGzzϑk‖(Gz). Note that

this direct relation between the profile function and the
polarizability confirms the close relation identified al-
ready by Tian and coworkers [3]. However, our ab initio
method prevents the use of an arbitrary thickness pa-
rameters to be fixed from fitting procedures [12] or from
physical considerations [10].

Once the ϑs extracted, one can invert equation (8)
at ω = 0 thus getting χ̂ from first principles. Next,
we calculate the inter-layer Coulomb interaction Voff
as defined in (10). This can be done numerically
(NUM) relying on (3), or can be approximated. Within
the perfect 2D approximation (2DA), θ0k‖

(z) = δ(z).
In the sharp slab approximation (SSA) θ0k‖

(z) =

d−1 [H (z + d/2)−H (z − d/2)] where H(x) is the Heav-
iside step function and d is an effective momentum-
independent thickness. Depending on the the approxi-
mation chosen,

V in(k‖) =


2π/|k‖| 2DA

4π
|k‖|3d2

(
|k‖|d− 1 + e−|k‖|d

)
SSA

computed as in (3) NUM

Other approximations are possible (for instance the 2D
Ohno potential as in [12]). Putting it into (10) and solv-
ing (9), one finally gets χ2D. We stress that, if X has
been computed in the CT scheme, then Voff ≡ 0 and
χ̂ ≡ χ2D.

In the bottom-up method we calculate the global po-
larizability of an heterostructure composed of N layers of
different 2D materials. Equation (7) can be easily gener-
alized to this case and becomes:

χ̂nm = δnmχ2D,n +

N∑
p=1

χ2D,nVoffnp χ̂pm , (12)

with

Voffnm(k‖) =

∫ ∫
θ0k‖

(z−zn)v(k‖, z, z
′)θ0k′

‖
(z′−zm)dzdz′ ,

(13)
where the differences with (7) are that (i) the sum is
limited to N layers, (ii) each layer has its own χ2D,n, and
(iii) the generic layer n centered at zn is not necessary

in a periodic array. The bottom-up equation (12) can be
applied to particular cases. For instance, in a multilayer
made of the same 2D material χ2D,n = χ2D ∀n. Also
the bulk can be reconstructed by adding in the latter
case N = ∞ and zn = nL, which actually boils down in
solving the pristine equation (7).

III: The dielectric function The inverse microscopic
dielectric function of a single layer ε−1 relates the to-
tal potential U tot to an external potential U ext accord-
ing to the definition U tot = ε−1U ext. The macroscopic
average of these fields is obtained through their projec-
tion on the single layer. To do so, we project them on
the

∣∣k‖, n = 0
)
representation (see Supp Mat Appendix

B), getting U jM (q‖, ω) =
√
dk‖

∫
θ0k‖

(z)U j0 (q‖, ω, z)dz,
for j = (ext) or (tot). Next, we define the macroscopic
dielectric function as the ratio εM = U ext

M /U tot
M . If we

assume from the beginning that U ext is macroscopic (i.e.
it vanishes where G 6= 0), we make use of (1) and of
ε−1 = 1 + vχ, we obtain:

εM (q‖, ω) = 1/
[
1 + V in(q‖)χ2D 00(q‖, ω)

]
. (14)

As before, V in can be computed using the profile func-
tions or using some approximations (e.g. 2DA or SSA).
We stop here to stress an important point. The Coulomb
term V in appearing in (14) embodies the interaction be-
tween the electrons of the system and an external charge
confined in the slab. This is a proper definition of the
average internal dielectric constant, adopted also in [8–
10]. This differs from that used by Qiu et al. [17], who
defined it as the ratio between the screened and the
bare interaction between two charges. When describ-
ing energy loss spectra or optical responses, the perti-
nent macroscopic dielectric function couples the genuine
response of the 2D system χ2D 00(q‖, ω) to an external
field. Such a coupling is always 4π/|q‖|2 and not V in(q‖)
as above. In other terms, the correct Coulomb poten-
tial a priori is not the same in (2) and in (14). This
is also discussed by Nazarov in the case of electron loss
spectroscopy [9]. Actually many standard 3D calcula-
tions provide values of ε̃M = 1/(1 + vX), where v is
either 4π/|q‖|2 (in the SC scheme) or its truncated ver-
sion 4π

(
1− e−|q‖|L/2

)
/|q‖|2 (CT). So, instead of solv-

ing the 2D Dyson equation (9), it is then possible to
extract directly the macroscopic polarisability within the
CT scheme using the fact that by definition ϑ(0) = 1,
which implies that LX00(q‖, ω) = χ̂00(q‖, ω) :

χ2D,00(q‖, ω) =
L|q‖|2

4π
(
1− e−|q‖|L/2

) [ 1

ε̃M (q‖, ω)
− 1

]
,

(15)
which can be finally plugged into (14). No additional
approximation has been done with respect to the full ap-
proach presented so far. Instead, some approximations
have to be done when deriving a similar post-processing
treatment for SC data.
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FIG. 1. Profile function at selected parallel momenta for hBN
single layer. A vertical shift is applied to ease the reading.

Taking the macroscopic limit of equation (9), which
becomes hence a scalar equation relating χ2D,00 to χ̂00,
we adopt the 2DA for Voff, and then:

1

χ2D,00(q‖, ω)
≈ 4π

|q‖|2

[
|q‖|

e|q‖|L − 1
+

ε̃M (q‖, ω)

L
(
1− ε̃M (q‖, ω)

)] .
(16)

An equation similar to (9), has been derived by
Nazarov [8, 9] under the 2DA. He then derived the same
post-processing equation (16) and plugged it in the 2DA
version of (14). Our method generalizes Nazarov’s work,
making it applicable to any ab initio scheme (SC or CT)
and extends it beyond the 2DA.

IV: Applications We present here results obtained
by applying the top-down strategy to hexagonal boron
nitride (hBN). All calculations have been done with
ABINIT [18] (wavefunctions), DP [19] (the X0) and an
in-home code implementing our technique. The compu-
tational details are presented in Appendix E.

The profile functions θk‖(z) extracted as in equa-
tions (11) are reported in Figure 1 for some in-plane mo-
menta (on the right of each profile). Oscillations come
from the numerical evaluation of the Fourier transform,
which is the reason for the sharp spike at very small q‖.
We verified however that our results (and in particular
V in) are stable even in presence of these numerical issues.
Notice at low q the dip reflecting the πz-like electronic
density. Just for comparison, we report also the full with
at half maximum of each profile as an estimate of the
effective thickness dk‖ . We see that this is a bit lower

than the inter-layer distance in bulk hBN and shrinks for
larger k‖.

Results of the top-down strategy are plotted in Fig-
ure 2, which reports εM (q, ω = 0) for q = q‖ on the
Γ−M direction of the Brillouin zone.

Let us first discuss the standard methods. In the
lower part of the figure we report ε̃M , i.e. the output
of standard ab initio calculations, in the CT scheme
(downward-pointing triangles) and in the SC scheme
(upward-pointing ones). Calculations have been carried
out in cells with different heights: L = 15 Å (black
curves) and L = 30 Å (red ones). In the CT calculations,
the truncation appears both in X = X0 +X0vX and in
ε̃M = 1 + vX as it is the most common implementation.
The figure clearly shows that the CT reproduces the cor-
rect long-range limit of εM , while in the short range it
coincides with the SC simulation. As a consequence, the
CT results have the expected shape as a function of q. All
these are very well-known properties of the CT scheme.

However, the figure highlights also that, except for the
q = 0 point, the value of ε̃M does actually depend on L,
which is still an arbitrary quantity even in this simula-
tion scheme. This arbitrariness can spoil, for instance,
the results of quasiparticle GW corrections or excitonic
calculations because it would affect the screening between
the electron and the hole (on this subject see Refs [3, 17]).
Even accepting the argument of an error cancellation be-
tween the GW self-energy and the excitonic kernel (which
is not perfect, anyway) one should conclude that only the
position of the excitonic peak would be right, whereas
both the quasiparticle gap and the excitonic binding en-
ergy would be unreliable. Instead, our method (full cir-
cles) gives results that are independent of the vacuum,
the small discrepancies in the two cells being due to dif-
ferences at the level of the X0, and it does reproduce the
expected limits of εM and has the right functional shape.
The comparison with standard calculations shows that,
even when a reasonable amount of vacuum (L = 15 Å) is
used, the CT gives results that systematically underesti-
mate εM at finite q.

Now, let us discuss the impact of different approxi-
mations in (14). Full circles correspond to results ob-
tained with the full method, which means that we solved
equation (9) and evaluated numerically V in both in (10)
and (14). The empty squares correspond to the 2DA ver-
sion of (14), which is the approximation adopted also by
Nazarov [8, 9]. The same χ2D of the full method has been
used. The inset shows clearly that neglecting completely
the thickness of the layer in (14) leads to unphysical re-
sults with a dramatic divergence at finite q. One may ac-
count for the thickness of the slab by associating a thick-
ness d to the layer in the SSA. The results corresponding
to this approximation are reported in full squares, where
we employed a thickness d = 3.33 Å, which corresponds
to the inter-layer distance in bulk hBN. At small q the
full method and the SSA one give very similar results,
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FIG. 2. Dielectric function of hBN single layer at finite q.
Cell height L=15 Å (black) and L=30 Å (red). Standard
calculations (CT = downward and SC = upward triangles),
compared with (14) evaluated with different approximations
for V in (circles and squares), and using (15) (stars) and (16)
(crosses). Inset: Divergence of (14) in the 2DA.

but they start differing at larger q where the SSA εM
decreases faster, so it systematically underestimates the
dielectric function at large q‖. Besides this, the thickness
used in the SSA is somewhat arbitrary whereas our full
method is completely ab initio.

Let us now discuss the performances of the post-
processing formulae (15) and (16). Results are reported
as stars and crosses respectively and they refer to cal-
culations where the SSA has been adopted in (14) with
d=3.33Å. We preferred to exemplify the performances of
the post-processing formulae with SSA instead of NUM
calculations because in the latter case one should pass
through the extraction of θ0, which some times may re-
quire an involved input-output handling. It is clear that
either approach leads to results that are identical to those
obtained solving the full Dyson equation (9) within the
same approximation, which validates the post-processing
formula in both the SL and CT framework.

Finally, it is worth stressing that equation (16) assumes
the 2DA in (10). This indicates that while this approx-
imation is justified at the χ2D level, it leads instead to
dramatically wrong results when employed in (14), as we
demonstrated above. This observation is related to the
fundamental difference between the V in appearing in (14)
and in (9)-(10) discussed in the previous section.

To summarize, we have derived a series of equations
permitting to split the polarizability of a layered mate-
rial into intra- and inter-layer contributions. An impor-
tant step of this derivation is the definition of the layer-
localized profile functions θn. This introduces two char-
acteristic lengths in the derivation, the effective thickness
d (which is related to the localization of the basis and
can be computed from first principles) and the vertical
periodicity of the crystal (i.e. the height of the simula-

tion cell) L. In the context of the top-down strategy, we
have shown how to obtain the polarizability of an isolated
sheet of matter starting from the polarizability of a peri-
odic array of identical layers as computed with standard
ab initio codes. The case of hBN has been discussed
in some detail. The same formalism can be applied to
the bottom-up strategy, which consists in calculating the
global response of multilayers or even layered bulk mate-
rials from the responses of their constituent films.

Funding for this work came from the European Union’s
Horizon 2020 research and innovation program under
grand agreement N° 881603 (Graphene Flagship core 3).

APPENDIX A: DERIVATION OF THE
SINGLE-LAYER EQUATIONS

We work in the mixed space representation
∣∣k‖, z)

where k‖ = q‖ + G‖ is the planar component of the
crystal momentum, expressed as the sum of a continu-
ous part q‖ defined inside the first Brillouin zone and
a reciprocal lattice vector G‖. Note that, throughout
all derivations, the short wavelength contribution never
changes, i.e. k′‖ = q‖+G′‖ and analogously k′z = qz+G′z.
Instead, the variable z spans the perpendicular direction
in the real space. Working in the mixed space repre-
sentation allows us to let physical quantities such as the
atomic wavefunctions or the polarizability extend per-
pendicularly to the layer without assuming any period-
icity in that direction. The passage from the real-space
representation |ρ, z) to the mix-space one is the in-plane
Fourier transformation:(

ρ, z
∣∣k‖, z′ ) =

1√
A
eik‖·ρ δ(z − z′) ,

where A is the surface of the xy plane, and ρ = (x, y)
groups the in-plane real-space coordinates. In the system
of units we used, 1/4πε0 = ~ = e = 1, so the real-space
representation of the Coulomb interaction is v(r, r′) =
1/|r− r′|. In the mixed space representation, it reads:

v(k‖, z, z
′) =

2πe−|k‖| |z−z′|

|k‖|
. (17)

We now make the assumption that the electronic wave-
functions φiκ‖(r) are separable:

φiκ‖(r) = ϕiκ‖(ρ)ξ(z) . (18)

Note that the crystal momentum is only in-plane because
we are in the framework of the isolated layer. The irre-
ducible polarizability χ0 is calculated as usual as a sum
over all independent-particle transitions.

Owing to the factorization hypothesis (18),the nu-
merator of χ0 is the product of two matrix ele-
ments of the form

∫
φ∗iκ‖

(r)e−i(q‖+G‖)·ρφjκ‖+q‖(r) dρ =
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ξ2(z)Mijκ‖(q‖,G‖). So two profile functions θ0(z) =

ξ2(z) can be factored out from the sum over all tran-
sitions, which leads to the expression :

χ0
G‖G

′
‖
(q‖, ω, z, z

′) = θ0(z)χ0
2D,G‖G

′
‖
(q‖, ω)θ0(z′) . (19)

In evaluating numerically the profile functions θ0(z),
we observed a mild dependence on the in-plane momen-
tum k‖, so we introduce a momentum-dependent profile
function θ0k‖

(z) which will be used from now on. The
profile functions θ0k‖

(z) are defined as positive, real and
even functions of z. They are localized around z = 0,
which means that they are negligible for |z| > dk‖/2
where dk‖ is a sufficiently large distance from the slab.
This characteristic distance will be actually defined more
rigorously in the layer-projected representation (see Ap-
pendix B). Also, we take the profile functions normal-
ized

∫
θ0k‖

(z)dz = 1, which implies that the dimension of
θ0k‖

(z) is the inverse of a length.
The RPA polarizability of the slab χ satisfies a Dyson

equation of the form χ = χ0 + χ0vχ. To better appre-
ciate its structure, let us write down the zeroth and the
first order of it, while making use of definition (19). To
simplify the notation, we will drop all the frequency and
momentum variables, but it is understood that all polar-
izabilities are matrices in the G‖ space and hence all the
in-plane local fields are taken into account. Expanding
the Dyson equation order by order we get:

χ(z, z′) = θ0(z)χ0
2D θ

0(z′)+

+ θ0(z)χ0
2DV inχ0

2D θ
0(z′) +O(2) .

(20)

In the expression above we have introduced a layer-
projected Coulomb interaction

V in(k‖) =

∫ ∫
θ0k‖

(z)v(k‖, z, z
′) θ0k‖

(z′) dz dz′ , (21)

where v(k‖, z, z
′) is defined as in (17). It is easy to con-

vince oneself that every order in v is actually localized
around z = 0 because each order is sandwiched by two
profile functions left out of the integrals. On the con-
trary, all the other profile functions are integrated with
the Coulomb interaction v(k‖, z1, z2) making V in appear
at every order. Following this argument, one can define
the 2D reducible polarizability χ2D such that the RPA
polarizability of the slab reads:

χG‖G
′
‖
(q‖, z, z

′, ω) = θ0k‖
(z)χ2D,G‖G

′
‖
(q‖, ω)θ0k‖

(z′).

(22)
The planar polarizability χ2D solves the RPA Dyson
equation:

χ2DG‖G
′
‖
(q‖, ω) = χ0

2DG‖G
′
‖
(q‖, ω)+

+
∑
G′′

‖

χ0
2DG‖G

′′
‖
(q‖, ω)V in(k′′‖)χ2DG′′

‖G
′
‖
(q‖, ω) , (23)

which depends only on the in-plane components of the
crystal momentum.

APPENDIX B: DIFFERENT
REPRESENTATIONS

In the paper we work mostly with three different repre-
sentations: the mixed space representation (MS)

∣∣k‖, z),
the layer-projected representation (LP)

∣∣k‖, n) and the
standard reciprocal space representation (RS)

∣∣k‖, kz).
Many results require to move from one representation to
the other. In defining the LP basis, we project it on the
MS basis introduced before. We can make the choice of
taking the LP basis functions proportional to the profile
functions θ0k‖

introduced above. If we do this, and we
note that θ0k‖

has the dimension of an inverse length be-
cause of its normalization in space, then we can define

(
k‖, z

∣∣∣k′‖, n) =
√
dk‖θ

n
k‖

(z)δG‖G
′
‖
, (24)

where n ∈ Z is the index of the layer and the basis func-
tions θnk‖

(z) := θ0k‖
(z − nL) satisfy the orthonormality

relations:

1 =

∫
θnk‖

(z)dz and (25)

δnp = dk‖

∫
θnk‖

(z)θpk‖
(z)dz . (26)

With these definitions we create an orthonormal basis of
layer-localized functions, in analogy to the tight-binding
formalism where site-localized atomic wavefunctions con-
stitute the basis for crystal properties. Besides, the last
equation is also the definition of a characteristic length
dk‖ , which can be associate to an effective polarizable
thickness of the layer.

Many ab initio codes assume a periodicity of the sim-
ulation cell in all directions, so they employ the RS rep-
resentation

∣∣k‖, kz). Let us now evaluate its projection
on the other two representations introduced above. Its
projection on the MS is a simple Fourier transformation
on the z variable:(

k‖, z
∣∣∣k′‖, kz ) =

1√
NL

eikzzδG‖G
′
‖

(27)

where N is the number of layers, so NL is the vertical
size of the crystal. Its projection on the LP is:(
k‖, n

∣∣∣k′‖, kz ) =
∑
G′′

‖

∫ (
k‖, n

∣∣∣k′′‖ , z)(k′′‖ , z ∣∣∣k′‖, kz ) dz
=

√
dk‖

NL
δG‖G

′
‖

∫
θnk‖

(z)eikzzdz

=

√
dk‖

NL
δG‖G

′
‖
eiqznLϑk‖(kz) . (28)

In the last passage we used the definition of θnk‖
(z) and

used the fact that eiGznL = 1 for all n ∈ Z. This defines
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ϑ as the Fourier transform of the n = 0 profile function:

θ0k‖
(z) =

1

2π

∫
ϑk‖(kz)e

ikzzdkz ≈
1

L

∑
Gz

ϑk‖(Gz)e
iGzz ,

(29)
which is how the Fourier transform is actually calculated
using standard implementations of the discrete Fourier
transform. This discrete approximation is justified under
the assumption that L is large. To conclude this part, it
is useful to evaluate the Coulomb interaction in the LP
representation:

vnm(k‖) =
(
k‖, n

∣∣ v ∣∣k‖,m) =

=
∑
G′

‖

∫ ∫ (
k‖, n

∣∣∣k′‖, z) v(k′‖, z, z
′)
(
k′‖, z

∣∣∣k‖,m) dz dz′
= dk‖

∫ ∫
θnk‖

(z)v(k‖, z, z
′)θmk‖

(z′)dz dz′. (30)

In the case m = n it easy to show, through some simple
changes of variables, that;

vnn(k‖) = dk‖

∫ ∫
θ0(z)v(k‖, z, z

′)θ0(z′)dz dz′ . (31)

Comparing this result with definition (21) and remem-
bering that v̂nm(k‖) := vnm(k‖)/dk‖ , one demonstrates
that v̂nn(k‖) ≡ V in(k‖).

APPENDIX C: REWRITING IN RECIPROCAL
SPACE

Our main result is the Dyson equation describing the
array polarizability χ̂ as generated by the inter-layer in-
teractions between the single layers, namely :

χ̂G‖G
′
‖nm

(q‖, ω) = χ2D,G‖G
′
‖nm

(q‖, ω) +
∑

G′′
‖ ,p,s

χ2D,G‖G
′′
‖np

(q‖, ω)Voffps (q‖ + G′′‖)χ̂G′′
‖G

′
‖sm

(q‖, ω) . (32)

In the latter equation, χ2D,G‖G
′
‖nm

is defined as the so-
lution of the Dyson equation:

χ2D,nm = χ̂0
nm +

∑
pq

χ̂0
npV inpq χ2D,qm (33)

resulting from the splitting of the Coulomb interaction
into an intra-layer contribution V innm = δnmV in and an
inter-layer one. We also recall that χ̂0 is a sum over pe-
riodically repeated single-layer contributions, so χ̂0

nm =
δnmχ

0
2D. This observation, together with definition of

V innm, allow us to simplify equation (33) as:

χ2D,nm = δnm
[
χ0
2D + χ0

2DV inχ2D

]
, (34)

which then becomes diagonal in the layer-projected basis,
and actually layer-independent.

Let us now turn back to equation (32). Its solution is
solved by inverting the Dyson equation, which gives:

χ̂G‖G
′
‖,mn

(q‖, ω) =

=
∑
G′′

‖

M−1G‖G
′′
‖nm

(q‖, ω)χ2DG′′
‖G

′
‖
(q‖, ω) , (35)

with

MG‖G
′
‖nm

(q‖, ω) =

= δG‖G
′
‖
δnm − χ2DG‖G

′
‖
(q‖, ω)Voffnm(q‖ + G′‖) .

(36)

To make a connection between this result and the output
of a standard ab initio simulation XGG′(q, ω), we shall

switch to the reciprocal-space representation
∣∣k‖, kz):

XG,G′(q) =
(
k‖, kz |X|k′‖, k

′
z

)
=

=
∑

G′′
‖G

′′′
‖

∑
m,n

(
k‖, kz

∣∣∣k′′‖ ,m)Xk′′
‖k

′′′
‖ ,mn

(
k′′′‖ , n

∣∣∣k′‖, k′z ) .
Using the projection (28) and remembering that :

Xk‖k
′
‖mn

=
√
dk‖dk′

‖
χ̂k‖k

′
‖mn

,

one finally arrives to:

XG,G′(q) =
1

L
ϑk‖(kz)χ̂G‖G

′
‖
(q‖, qz)ϑk′

‖
(k′z) , (37)

where we have introduced the definition:
χ̂G‖G

′
‖
(q‖, qz) =

=
1

N

∑
m,n

e−iqzmLχ̂G‖G
′
‖,mn

(q‖)e
iqznL .

(38)

The latter quantity is basically a discrete Fourier trans-
form of (35). Since χ2D is layer-independent, the solu-
tions (35) and (36) projects simply as:

χ̂G‖G
′
‖
(q‖, qz, ω) =

=
∑
G′′

‖

M−1G‖G
′′
‖
(q‖, qz, ω)χ2DG′′

‖G
′
‖
(q‖, ω) (39)

and
MG‖G

′
‖
(q‖, qz, ω) =

= δG‖G
′
‖
− χ2DG‖G

′
‖
(q‖, ω)Voff(q‖ + G‖, qz) .

(40)
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The last step to complete the connection with the
reciprocal-space representation is the expression of
Voff(q‖+G‖, qz). Remembering its definition in the layer-
projected basis (it vanishes for m = n), one writes

Voff(k‖, qz) =
1

N

∑
m

∑
n 6=m

e−iqzmLv̂mn(k‖)e
iqznL ,

and v̂nm(k‖) = d−1k‖
vnm(k‖) where vnm(k‖) is defined

in (30). Because of the localization of the θn functions,
if n < m then |z − z′| > 0 and vice versa. It is there-
fore convenient to split

∑
n 6=m =

∑
n<m +

∑
n>m. Next,

inside the first sum, we change variables z − mL = ζ
and z′ − nL = ζ ′, while inside the second one, we put
z−mL = −ζ and z′−nL = −ζ ′. Rearranging all terms,
using the parity of the θ0(z) functions and the identity
v̂00 = V in, we get

Voff(k‖, qz) =

= V in(k‖)
1

N

∑
m

[∑
n<m

e−(iqz+|k‖|)(m−n)L+

+
∑
n>m

e−(iqz−|k‖|)(m−n)L

]
.

Since both sums depend only on the difference p = m−n,
we can change the index and cast them in the form∑∞
p=1 e

−(|k‖|±iqz)Lp =
(
e(|k‖|±iqz)L − 1

)−1
. The result-

ing expression for the inter-layer Coulomb interaction
reads

Voff(q‖ + G‖, qz) = V in(q‖ + G‖)×

×
(

1

e(|q‖+G‖|+iqz)L − 1
+

1

e(|q‖+G‖|−iqz)L − 1

)
,
(41)

which, evaluated at qz = 0, gives the result reported in
the main text.

APPENDIX D: THE DIELECTRIC FUNCTION

In the layer-projected representation

The definition of the microscopic dielectric function in
terms of the total and external fields is:

U tot
G‖

(q‖, ω, z) =

=
∑
G′

‖

∫
ε−1G‖G

′
‖
(q‖, ω, z, z

′)U ext
G′

‖
(q‖, ω, z

′)dz′ . (42)

We split now the total potential into an external and an
induced part, and assume the latter to be the classical
Hartree potential, then the equation above leads to the
definition:

ε−1G‖G
′
‖
(q‖, ω, z, z

′) = δG‖G
′
‖
δ(z − z′)+

+

∫
v(k‖, z, z

′′)χG‖G
′
‖
(q‖, ω, z

′′, z′)dz′′ ,
(43)

where χ is defined as in (22).
We introduce now the macroscopic average of the

fields, i.e. theG‖ = 0 component projected on the single-
layer. To this aim, we refer to the projection (24), where
we take n = 0 and N = 1 since we are working on the
single-layer framework. Then, for α =(tot) or (ext),

UαM (q‖, ω) =
√
dq‖

∫
θ0q‖

(z)Uα0 (q‖, ω, z)dz , (44)

and we define U tot
M (q‖, ω) = U ext

M (q‖, ω)/εM (q‖, ω). We
can now plug (42) into (44) and assume that U ext is
macroscopic, which means that the only non-vanishing
term is the G‖ = 0 one. From the definitions (43)
and (22), we get the relation:

U tot
M (q‖, ω) =

√
dq‖

∫ ∫
θ0q‖

(z)

[
δ(z − z′) +

∫
v(q‖, z, z

′)θ0q‖
(z′′)χ2D,00(q‖, ω)θ0q‖

(z′)dz′′
]
U ext
0 (q‖, ω)dz′dz , (45)

which eventually leads to the single layer macroscopic
dielectric function:

1

εM (q‖, ω)
= 1 + V in(q‖)χ2D,00(q‖, ω) ; (46)

In the reciprocal-space representation

Let us now repeat the derivation in the
∣∣k‖, kz) repre-

sentation. This will allow us to show that our approach
reproduces some results obtained by other authors in the

sharp slab approximation [10], but actually permits to
go beyond them generalizing their method. Similarly to
what done xbefore, we use (28) with n = 0 and N = 1.
Furthermore we set from the beginning G‖ = 0, we as-
sume U ext to be macroscopic, and we drop the frequency
variable for notational convenience. We get:

U tot
M (q‖) =

√
dq‖

L

∫ ∑
Gz

ϑq‖(kz)U
tot
(0,Gz)

(q‖, qz)dqz

U ext
M (q‖) =

√
dq‖

L

∫
ϑq‖(qz)U

ext
(0,0)(q‖, qz)dqz .
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We can do the additional assumption that the integrands
depend weakly on qz and hence fix qz = 0 and replace∫
f(qz)dqz ≈ Lf(0)/2π in both expressions. We get the

two definitions:

U tot
M (q‖) ≈

√
dq‖L

2π

∑
Gz

ϑq‖(Gz)U
tot
(0,Gz)

(q‖, 0) (47)

U ext
M (q‖) ≈

√
dq‖L

2π
U ext
(0,0)(q‖, 0) , (48)

where we have used the fact that ϑq‖(0) = 1∀q‖ as a
consequence of its normalization in real space.

In the
∣∣k‖, kz) representation, the microscopic di-

electric function is defined according to the relation
U tot
G (q) =

∑
G′ ε

−1
GG′(q)U ext

G′ (q). Inserting this defini-
tion into (47), using (48), and using the fact that U ext is
macroscopic, one gets:

U tot
M (q‖) =

∑
Gz

ϑq‖(Gz)ε
−1
(0,Gz),(0,0)

(q‖)U
ext
M (q‖) ,

from which one defines:

1

εM (q‖)
=
∑
Gz

ϑq‖(Gz)ε
−1
(0,Gz),(0,0)

(q‖) . (49)

This result is a generalization of the quasi 2D dielectric
function derived by Latini et al. [10]. Their result can be
retrieved within the sharp slab approximation, which in
the reciprocal space gives ϑq‖(Gz) = (Gz

d
2 )−1 sin(Gz

d
2 ).

Let us now show that (49) leads to the same expression
we derived in the main text. First of all, let us recall
that the dielectric function in the

∣∣k‖, kz) representation
reads:

ε−1GG′(q, ω) = δGG′ + v(q + G)χGG′(q, ω) (50)

and that the single layer polarizability is:

χGG′(q, ω) =
1

L
ϑk‖(kz)χ2D,G‖G

′
‖
(q‖, ω)ϑk‖(k′z) , (51)

in analogy to (37). Actually, in equation (37), L is the
period of the periodic array, and NL the height of the
crystal. In expression (51) L has to be interpreted as the
size of the box of integration, and N = 1. However, in
practice, it still corresponds to the height of the simula-
tion cell. In any case, at the end of the calculation this
factor will cancel out, in agreement with the physical re-
quirement that the single-layer dielectric function does
not depend on the size of the simulation cell.

Using (50) and (51), and remembering that ϑk‖(0) = 1,
equation (49) becomes:

1

εM (q‖, ω)
= 1 +

χ2D 00(q‖, ω)

L

∑
Gz

ϑ2q‖
(Gz)v(q‖, Gz) .

Finally, to complete the demonstration, we shall evaluate the term
∑
Gz

. This is done by projecting successively
on the different representations (remember N = 1). We get:

∑
Gz

ϑ2q‖
(Gz)v(q‖, Gz) =

=
L

dq‖

∑
GzG′

z

(
q‖, n = 0

∣∣q‖, Gz ) (q‖, Gz∣∣ v ∣∣q‖, G′z) (q‖, G′z∣∣q‖, n = 0
)

=
L

dq‖

∑
GzG′

z

∫ ∫ (
q‖, 0

∣∣q‖, z ) (q‖, z ∣∣q‖, Gz ) (q‖, Gz∣∣ v ∣∣q‖, G′z) (q‖, G′z ∣∣q‖, z′ ) (q‖, z′ ∣∣q‖, 0) dzdz′ .
We use definitions (24), (27) and (28) and arrive to the expression;

∑
Gz

ϑ2q‖
(Gz)v(q‖, Gz) =

∑
GzG′

z

∫ ∫
θ0q‖

(z)eiGzz
4π

|q‖ + ẑGz|2
δGzG′

z
e−iG

′
zz

′
θ0q‖

(z′)dz dz′ . (52)

If we notice that v(q‖, z, z
′) = 1

L

∑
Gz
v(q‖ + ẑGz)e

iGz(z−z′) is a Fourier transform at qz = 0 and N = 1, then we are
left with L times the definition (21), so the result becomes:∑

Gz

ϑ2q‖
(Gz)v(q‖, Gz) = LV in(q‖) , (53)

which completes the demonstration.
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APPENDIX E: COMPUTATIONAL DETAILS

In this section we give the details of the simulations of
the hBN monolayer.

All ground state calculations have been carried out
with the ABINIT simulation package [18]. The parame-
ters of the simulation cell are a = 2.5 Å for the in-plane
lattice parameter and L = 15 Å or L = 30 Å for the
height of the simulation cell. In all cases, the local density
approximation (LDA) was used to model the exchange-
correlation potential of the Kohn-Sham Hamiltonian and
the cutoff energy defining the basis set was 30 Ha. The
k-point grid used to sample the electronic density was
15 × 15 × 1, instead for the wavefunction calculations,
necessary to compute X0, a denser grid of 36 × 36 k-
points in the (x, y)-plane was employed. Both grids were
centered in Γ. No Coulomb truncation has been used in
the ground state calculations.

The wavefunctions have been successively passed to the
DP [19] simulation package with which we computed only
the irreducible polarizability X0 of the periodic array.
The sum over all transitions included 30 bands in the
L = 15 Å calculations, and 60 in the L = 30 Å ones.
The cutoff energy for the representation of the matrix
elements was 400 eV, and it was 100 eV for the dimension
of the XGG′ . No scissor operator has been applied, so
the resulting gap was the LDA one.

All the RPA algorithms connecting X0 to X and ε̃M ,
with and without Coulomb truncation, as well as all the
manipulations proper to our method have been imple-
mented in a home-made code which takes X0 in input.

[1] P. Cudazzo, I. V. Tokatly, and A. Rubio, Physical Re-
view B - Condensed Matter and Materials Physics 84,
085406 (2011).

[2] L. Sponza, J. Goniakowski, and C. Noguera, Physical
Review B 93, 195435 (2016).

[3] T. Tian, D. Scullion, D. Hughes, L. H. Li, C.-J. Shih,
J. Coleman, M. Chhowalla, and E. J. G. Santos, Nano
Letters 20, 841 (2020).

[4] S. Ismail-Beigi, Physical Review B - Condensed Matter
and Materials Physics 73, 1 (2006).

[5] C. A. Rozzi, D. Varsano, A. Marini, and E. K. U. Gross,
Physical Review B , 1 (2006).

[6] F. Hüser, T. Olsen, and K. S. Thygesen, Physical Review
B 87, 235132 (2013).

[7] P. Cudazzo, L. Sponza, C. Giorgetti, L. Reining, F. Sot-
tile, and M. Gatti, Physical Review Letters 116, 066803
(2016).

[8] V. U. Nazarov, F. Alharbi, T. S. Fisher, and S. Kais,
Physical Review B - Condensed Matter and Materials
Physics 89, 195423 (2014).

[9] V. U. Nazarov, New Journal of Physics 17, 73018 (2015).
[10] S. Latini, T. Olsen, and K. S. Thygesen, Physical Review

B 92, 1 (2015).
[11] K. S. Thygesen, 2D Materials 4, 022004 (2017).
[12] L. Meckbach, T. Stroucken, and S. W. Koch, Physical

Review B 97, 035425 (2018).
[13] M. N. Gjerding, L. S. R. Cavalcante, A. Chaves, and

K. S. Thygesen, The Journal of Physical Chemistry C
124, 11609 (2020).

[14] K. Andersen, S. Latini, and K. S. Thygesen, Nano Let-
ters 15, 4616 (2015).

[15] L. S. R. Cavalcante, A. Chaves, B. Van Duppen, F. M.
Peeters, and D. R. Reichman, Physical Review B 97,
125427 (2018).

[16] Note that in this notation, the continuous part never
changes. So if k‖ = q‖ + G‖, then k′

‖ = q‖ + G′
‖ and

analogously k′
z = qz +G′

z.
[17] D. Y. Qiu, F. H. da Jornada, and S. G. Louie, Physical

Review B 93, 235435 (2016).
[18] X. Gonze, F. Jollet, A. A. F., D. Adams, B. Amadon,

T. Applencourt, C. Audouzec, J.-M. Beuken, J. Bieder,
A. Bokhanchuk, E. Bousquet, B. F., D. Caliste, M. Côté,
F. Dahm, F. Da Pieve, M. Delaveau, M. Di Gen-
naro, B. Dorado, C. Espejo, G. Geneste, L. Genovese,
A. Gerossier, M. Giantomassi, Y. Gillet, D. Hamann,
L. He, G. Jomard, J. Laflamme Janssen, S. Le Roux,
A. Levitt, A. Lherbier, F. Liu, I. Lukačević, A. Mar-
tin, C. Martins, M. Oliveira, S. Poncé, Y. Pouillon,
T. Rangel, G.-M. Rignanese, A. Romero, B. Rousseau,
O. Rubel, A. Shukri, S. M, M. Torrent, M. Van Setten,
B. Van Troeye, M. Verstraete, D. Waroquiers, J. Wik-
tor, B. Xu, A. Zhou, and J. Zwanziger, Comput. Phys.
Commun. 205, 106–310 (2016).

[19] https://etsf.polytechnique.fr/Software/Ab_
Initio.

http://dx.doi.org/10.1103/PhysRevB.84.085406
http://dx.doi.org/10.1103/PhysRevB.84.085406
http://dx.doi.org/10.1103/PhysRevB.84.085406
http://dx.doi.org/10.1103/PhysRevB.93.195435
http://dx.doi.org/10.1103/PhysRevB.93.195435
http://dx.doi.org/ 10.1021/acs.nanolett.9b02982
http://dx.doi.org/ 10.1021/acs.nanolett.9b02982
http://dx.doi.org/10.1103/PhysRevB.73.233103
http://dx.doi.org/10.1103/PhysRevB.73.233103
http://dx.doi.org/ 10.1103/PhysRevB.73.205119
http://dx.doi.org/10.1103/PhysRevB.87.235132
http://dx.doi.org/10.1103/PhysRevB.87.235132
http://dx.doi.org/ 10.1103/PhysRevLett.116.066803
http://dx.doi.org/ 10.1103/PhysRevLett.116.066803
http://dx.doi.org/ 10.1103/PhysRevB.89.195423
http://dx.doi.org/ 10.1103/PhysRevB.89.195423
http://dx.doi.org/10.1088/1367-2630/17/7/073018
http://dx.doi.org/10.1103/PhysRevB.92.245123
http://dx.doi.org/10.1103/PhysRevB.92.245123
http://dx.doi.org/10.1088/2053-1583/aa6432
http://dx.doi.org/10.1103/PhysRevB.97.035425
http://dx.doi.org/10.1103/PhysRevB.97.035425
http://dx.doi.org/10.1021/acs.jpcc.0c01635
http://dx.doi.org/10.1021/acs.jpcc.0c01635
http://dx.doi.org/10.1021/acs.nanolett.5b01251
http://dx.doi.org/10.1021/acs.nanolett.5b01251
http://dx.doi.org/10.1103/PhysRevB.97.125427
http://dx.doi.org/10.1103/PhysRevB.97.125427
http://dx.doi.org/10.1103/PhysRevB.93.235435
http://dx.doi.org/10.1103/PhysRevB.93.235435
https://etsf.polytechnique.fr/Software/Ab_Initio
https://etsf.polytechnique.fr/Software/Ab_Initio

	Proper ab-initio dielectric function of 2D materials and their polarizable thickness
	Abstract
	 Appendix A: Derivation of the single-layer equations
	 Appendix B: Different representations
	 Appendix C: Rewriting in reciprocal space
	 Appendix D: The dielectric function
	 In the layer-projected representation
	 In the reciprocal-space representation

	 Appendix E: Computational details
	 References


