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ABSTRACT   

The performance of multilayer optics depends on the quality of the buried interfaces between materials, whose 
intermixing strongly affects their behavior. We present an experimental method to determine, in a non destructively way, 
the amount of material intermixing at interfaces of multilayer structures. The reflection mechanism is related to the build 
up in the multilayer of a standing wave field, whose peaks and the valleys move as a function both of wavelength and of 
incidence angle. Exploiting this fact it is possible to modulate the electric field inside the multilayer in order to have 
different parts of the multilayer structure excited at a different extent and in particular the buried interfaces regions. The 
excitation is directly proportional to the intensity of the electric field and to the concentration of a given element in the 
sample. The excitation can be detected with different techniques, f.i. electron core level photoemission, fluorescence, 
luminescence, total electron yield.  

The flexibility of the experimental apparatus of the BEAR beamline (Elettra Trieste, Italy) allowed us to study some 
important classes of layered structures in the soft X-ray energy range, using the above mentioned techniques together 
with the determination of the Bragg conditions through the measurement of the specular reflectivity. We demonstrate the 
possibility of obtaining quantitative information on the width of the intermixing region, strongly related to the interface 
roughness, through the comparison with a phenomenological model of the intermixing and a numerical simulation of the 
standing field inside the multilayer.  

   

Keywords: buried interfaces, multilayer. 
 

1. INTRODUCTION  
The performances of a multilayer mirror depends on the quality of the interfaces including sharpness, roughness and type 
of interface chemical compounds. The reflection mechanism is related to build up in the multilayer of a standing wave 
field; the positions of the peaks and valleys move as a function both of wavelength and of incidence angle [1]. Exploiting 
this fact it is possible to modulate the electric field inside the multilayer in order to have different parts of the multilayer 
structure excited at a different extent and in particular the buried interface regions. 

With this in mind, the experimental setup reported in Figure 1(left) to study the buried interface between Ru and Si in a 
Ru capped [Si41.2Mo39.6]×40 multilayer was arranged at the BEAR beamline [2] at Elettra, by measuring the photo-
electron emission from Ru 3d while scanning in angle through the rocking curve in the vicinity of the Bragg condition 
(~6.1° grazing). In this setup the reflected intensity can be simultaneously measured. Exploiting the fact that at the 
interface the Ru reacts with Si to form silicide [3] (presumably Ru2Si3) and that the binding energies of Ru in the silicide 
are different (lower in case of Ru2Si3 [4]), we are able to get information on the extension of the region of intermixing at 
the buried R-Si interface. In Figure 1 (right) the evolution of Ru 3d photoemission peak at different grazing angles is 
shown. 

In what follows it is shown that through an appropriate modellisation of the emission of photoelectron in a multilayer as 
a function of incidence angle it is possible to fit the experimental data and to determine the parameters that characterize 
the buried Ru/Si interface. 
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where NTOT(z) is the total atomic density. An indicative behavior of # $zNi
~  shown in Figure 2 for example purpose. 

The number of photon absorbed per unit time in the portion of material between z and  z-dz2  is proportional to the 
negative of the Poynting’s vector: 
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Figure 2: relative abundance # $zNi

~
 of an element in a multilayer. The interface regions are described by );erf( +z  with + = 5Å. 

We used the OPAL (Optical Properties for Anisotropic Layers) code [5] to calculate the Poynting vector of the radiation 
in the multilayer. This code has been developed by ourselves and, given the structure of the sample, together with the 
dielectric tensor of the materials for each layer, calculates the electric and magnetic field distribution in the multilayer, 
solving in a self-consistent way the Fresnel equation in each layer. The response of the sample illuminated by radiation 
of given degree of polarization is expressed through products of matrices which takes into account the boundary 
conditions imposed by the geometry and by the incoming electric field. 

The Poynting vector is defined as  
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Since we deals only with plane waves, that is with infinite front, the divergence of the Poynting vector reduces to the ! 
derivative 
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The behavior of the Poynting vector and of its divergence can be calculated once we know the electric field # $zE
"

 and 

the magnetic field # $zH
"

 inside the multilayer, and it is shown in Figure 3 for the Ru capped Si/Mo multilayer at the 
Bragg condition (&in = 84.1°) and out of Bragg condition (&in = 87°).  

Assuming constant both the transmission function of the analyzer and the geometrical function G, eq. (1) for the intensity 
of the photoemission signal gives 

                                                 
2 In our modellisation we assume the axis ! oriented perpendicular to the surface with the positive direction above the surface of the 
sample. 
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In absence of analytical expressions for the function # $zNi
~  empirical forms are generally used [5] including the error 

function erf(z) – see also Figure 2 – defined as 
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We are interested mainly at what happens at the interfaces, where we can have an intermixing of materials and, in case, 
the formation of compounds. 

   
Figure 3: (left) z component of the Poynting vector for the multilayer Ru/[Si/Mo]×40 considered in this work at two different 

incidence angles; (right) energy absorbed by the multilayer as function of depth.  
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Figure 5: Calculation of the peak intensities (in arbitrary units) of the signal from “metallic” Ru and from Ru in the silicide. 

The calculations have been performed for two different values of " which characterize the interface. It is evident that 
there is a correlation between the distance of the two minima and the value of ". 

These results contain two important indications: (i) there is a correlation between the distance of minima: the higher the 
distance, the smaller the " of the interface; (ii) the not reacted Ru contribution – pure metal – has the minimum at lower 
angles. However a more sophisticated simulation code, including also detector collection and electron deviation at the 
interface and a more precise calculation of electric field intensity at smooth interfaces, is being developed providing the 

# $zNi
~  as well as + as fitting functions and parameter. Results obtained for other systems are in close agreement with the 

above (i) and (ii) conclusions [6]. 

 

3. EXPERIMENTAL RESULTS AND DISCUSSION 
Some measurements have been made to characterize the interface in a Si/Mo multilayer capped with Ru. The multilayer 
was made by 40 periods of Si (41.2Å)/Mo (39.6Å). A capping layer of 15Å of Ru was on top. The measurements have 
been made on the BEAR beamline at Elettra (Trieste). The particular configuration of the beamline and of the 
experimental chamber is particularly suited [7] for this kind of measurements. 

We chose to fix the energy of the radiation illuminating the sample and to change the incidence angle of the light 
according to a rocking curve around the Bragg peak (see Figure 6).  
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Figure 8: area of photoemission peaks (from top): carbon, Ru 3d in silicide, and Ru 3d not reacted vs rocking grazing angle. 

In Figure 8 the areas of photoemission peaks of C 1s, of Ru 3d in silicide, and of not reacted Ru 3d (from top to bottom) 
are reported. We stress the overall qualitative agreement with the results of the model calculation of the previous section. 
Moreover it is possible to observe that the two minima of Ru peaks are shifted, allowing a rough estimation of the 
interface extension of about + D 1 nm (compare the distance of the minima in Figure 8 with the minima in Figure 5 
(left)). 

 

4. CONCLUSIONS 
A technique for the study of buried interfaces in multilayer was presented. The technique is based on the measures of the 
modulation of intensity of the photoemission peaks while scanning the rocking curve through the Bragg peak. This 
method was applied to the study of the buried Ru/Si interface of a Ru capped [Si41.2Mo39.6]×40 multilayer stemming from 
the photoemission from Ru 3d core levels. The advantage of photoemission is related with the sensitivity both to 
chemical species and chemical shifts due to compound formation. 

Other interfaces have been studied including Mo/Si and Cr/sc in the corresponding multilayer structures. Results will be 
presented elsewhere. 

The comparison of the model calculation with the experimental data indicates a sensitivity of the model to concentration 
profiles at the interfaces with possible sensitivity to the gradation of interface compounds.  

One possible extension, from the experimental point of view, is to use the same pattern of excitation but different kind of 
emission (fluorescence). 
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