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Abstract: This paper aims at presenting an energy management strategy (EMS) based upon optimal
control theory for a battery–supercapacitor hybrid power system. The hybrid power system consists
of a lithium-ion battery and a supercapacitor with associated bidirectional DC/DC converters. The
proposed EMS aims at computing adaptive gains using the salp swarm algorithm and load following
control technique to assign the power reference for both the supercapacitor and the battery while
achieving optimal performance and stable voltage. The DC/DC converter model is derived utilizing
the first-principles method and computes the required gains to achieve the desired power. The fact
that the developed algorithm takes disturbances into account increases the power elements’ life
expectancies and supplies the power system with the required power.

Keywords: battery; supercapacitor; hybrid power system; optimal control; DC/DC converter; energy
management strategy

1. Introduction

Nowadays, with the expansion of the energy crisis and ecological pollution, hybrid
power systems (HPSs) are becoming a strategic solution. Hybrid power systems (HPSs) are
a set of co-operating power sources, and the coordination of their operation is realized using
advanced power electronics systems [1]. Due to its advantages, a HPS can be employed for
Electrical Vehicles (EV) (EV) applications [2–4] or stationary applications [5–7]. This has
resulted in a spark of interest in the research field, with different hybridizations and energy
management strategies having been developed to further reduce emissions and improve
fuel economy [8].

Battery–supercapacitor HPSs are receiving more attention due to their superior per-
formance and simplicity of control. The lithium battery, despite having a high energetic
density, does not yield a high enough power density, while the opposite can be said about
the supercapacitor. A hybridization thus proves suitable to increase both components’
lifetime and improve the overall performance, especially considering storage elements’
states of charge and temperatures. Using the supercapacitor in the case of sudden load
variations is an example. In addition to that, high-frequency disturbances negatively af-
fect the battery’s life expectancy, which can be alleviated by the supercapacitor due to its
characteristics. The main challenge is to provide a suitable energy management strategy
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(EMS) that takes all of these factors into account to provide optimal performance while
considering different constraints.

Various methods concerning the energy management of a hybrid power system have
been reported in the literature [9–11]. They are generally divided into a group of three main
methods: optimization-based methods, rule-based methods, or, more recently, learning-
based methods. Figure 1 showcases the three main categories of energy management
strategies and some of the methods involved.
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Optimization-based methods make use of the tools provided by optimization theory
to solve the problem at hand, the latter being an optimal distribution of the load power
amongst the battery–supercapacitor hybrid system such that it improves upon their life
expectancies given their respective constraints (state of charge and supercapacitor voltage,
for instance). The optimization-based strategies can be subcategorized into two main
groups: offline optimization (global optimization) strategies and online optimization (real-
time optimization) strategies.

Offline optimization strategies are computationally complexed strategies, which re-
quire the pre-knowledge of the load profile. This makes it challenging to implement them in
real-time. The most popular strategies are dynamic programming (DP) [12–14], stochastic
dynamic programming (SDP) [15], and the genetic algorithm (GA) [2,16]. These strategies
are mainly used as a benchmark to evaluate the performance of the other strategies.

The online optimization strategies are applicable in a real-time scenario, such as
computing the optimal distribution of energy amongst a hybrid system given the power
load. In this category, the cost function depends only on the actual state of the system [17].
Methods such as model predictive control (MPC) [18,19], the equivalent consumption
minimization strategy (ECMS) [20,21], and the external energy maximization strategy
(EEMS) [22] can qualify as online optimization methods.

Rule-based methods, on the other hand, can be summed into a series of IF-THEN
scenarios. There are mainly three categories: deterministic rule-based strategies, Boolean
logic strategies, and fuzzy logic strategies. State machine control (SMC) [23,24] is one of the
most used strategies as a deterministic Boolean which is based on the hysteric controller.
It can be easily implemented in a real-time scenario. Another method is to use a fuzzy
logic-based EMS [25,26], which proves quite robust and makes its decision regarding the
power distribution dependent on the output of its membership functions and can be easily
tuned to achieve optimal operation. The main drawback of these methods is that the
elaboration of said rules requires the knowledge and experience of an expert, which is not
always available.

Learning-based methods make use of the recent advancements regarding machine
learning (ML) such as reinforcement learning (RL) [27,28], and deep learning (DL) [29,30], a
sub-field of artificial intelligence (AI), which has seen a surge in its use over the last decade.



Energies 2021, 14, 1660 3 of 16

They have proven to yield excellent results in some fields, especially in image classification,
hence their extensive use in some other fields, including energy management. A model
has to be trained using a database, which is not always available. This can prove quite
difficult, notably because not enough research has been conducted in this relatively recent
field. Another drawback is the fact that they have no guarantee to work for data outside
those used for training.

Despite their use in some cases [31,32], none of these strategies combined the advan-
tages procured by the frequency decoupling approach and optimization-based strategies.
The proposed method overcomes some of the drawbacks of the load following technique
while providing the benefits of optimization-based methods, thus improving the overall
HPS performance.

The load following (LF) strategy is a management strategy, which is mainly based
on generating the power references based on the measured load power and the storage
system state of charge. The LF strategy has been widely used for controlling hybrid power
systems such as battery/SC or FC/battery/SC. Bizon et al. [33,34] proposed a real-time
optimized LF strategy using global extremum seeking (GES).

The extremum seeking control (ESC) algorithm is an adaptive search technique for
extremes of a nonlinear function [35]. However, this optimization strategy is very sensitive
to the filter’s parameters. Thus, the design is very difficult.

The proposed method consists of combining the load following (LF) approach with an
optimal control by using a linear quadratic regulator (LQR) in order to compute the control
gains, which will be updated by means of the salp swarm algorithm. Comparing with
the GES, this proposed strategy is very easy where the optimizer will update the control
parameters without designer expertise. The models used in simulations were achieved
through a literature review [36,37].

In order to distribute the required power between the two energy sources, a load
following strategy (LFS) is adopted. The bus voltage will be stabilized by the superca-
pacitor due to its fast dynamics, while the battery will handle the load power and the
supercapacitor required power. The main contribution comes from the usage of both a
lower-level control architecture as well as a higher-level one, which allows improving the
energy quality while diminishing the strains on the power sources, thus achieving a higher
life cycle.

The main contributions of the paper are summarized below:

• Robust control ensures a good energy quality provided to the load side and an ex-
tended Hybrid Energy Storage System (HESS) component lifetime;

• Combination of different methods to achieve an optimal performance.

2. HPS Topology Structure and Modeling

Batteries have the characteristics of a high energy density and relatively low power
density. Moreover, the internal resistance could increase when the battery operates with
high-frequency loads, which leads to its degradation. Supercapacitors have a high power
density with a high number of charging/discharging cycles. Thus, the combination of a
battery and a supercapacitor can provide a complementary advantage to meet the load
demand [38].

In the literature, passive, semi-active, and active topologies have been reported. Each
one has its characteristics. Figure 2 illustrates these topologies.

As displayed in Figure 3a, the configuration of the studied HPS is based on the
fully active topology. The electrical power system is composed of a supercapacitor and a
lithium battery, where each one of them connects the DC bus through bidirectional DC/DC
converters to power the load, as detailed in Figure 3b. In this system, the proposed EMS
is based on the optimal power-sharing method (LQR) that calculates the references to
the low-level controllers in order to satisfy the load demand while a high-level control
minimizes the DC bus overshoots under step loads.
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In this paper, a Li-ion battery was selected as a principal source due to its proven
efficiency and high energy density as opposed to other battery technologies. A model avail-
able in MATLAB’s SPS (SimPowerSystems) Toolbox was considered in order to validate
the proposed EMS by simulation. The battery model depicted in Figure 4 is based on the
Thévenin circuit. This battery model is detailed in [31]. The battery voltage is expressed
as follows:

Vbatt = E0 − K
Q

Q − it
− Rbi + Abe(−Bit) − K

Q
Q − it

i∗ (1)

where Vbatt is the battery voltage, E0 is the battery constant voltage (V), K is the polarization
constant (V/Ah), Q is the battery capacity (Ah), i* is the filtered battery current (A), it is the
actual battery charge (Ah), Ab is the exponential zone amplitude (V), B is the exponential
zone time constant inverse (Ah(−1)), and Rb is the battery internal resistance (Ω). As for
the polarization resistance Polres, which is only present when charging the battery, it is
expressed as follows:

Polres = K
Q

it − 0.1Q
(2)
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The detailed battery scheme is given in Figure 4.
Supercapacitors, despite not being able to withhold as much energy as Li-ion batteries,

are able to release energy at a faster rate due to their high dynamics. The considered model
also comes from MATLAB’s SPS Toolbox, where more details can be found in [4]. The
supercapacitor output voltage VSC is given as follows:

VSC =
QT
CT

− RSCiSC (3)

where QT is the total electric charge (Coulombs), CT is the supercapacitor module capaci-
tance, RSC is the supercapacitor module resistance (Ω), and iSC is the supercapacitor module
current (A). It is dependent on the supercapacitor’s state of charge. The supercapacitor
block is given in Figure 5.
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Two main models are used throughout the literature: the switching model and the
average one. The average model proves sufficient for this case. The switching models
are mainly used for design purposes and to investigate types of pulse width-modulated
schemes with regard to switching harmonics and losses. These models require a low
sampling time to observe all the switching actions, which makes the simulation very
time-consuming, hence the choice of an average model for this paper.

L1
dibatt

dt = Vbatt − Vbusdbatt − Rbattibatt

L2
diSC

dt = VSC − VbusdSC − RSCiSC

Cbus
dVbus

dt = dbattibatt + dSCiSC − ibus

(4)
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3. The Proposed EMS

The proposed EMS is based on the load following strategy (LFS). It possesses two main
components: a lower-level controller and a higher-level one. The power reference for each
source is generated by the higher-level controller, while the lower-level one compensates
for the DC bus current fluctuations, ensuring an optimal performance paired with an
overall better energy quality. The operating control scheme is illustrated in Figure 6.
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At the higher-level EMS, the supercapacitor power regulates the DC bus voltage and
handles the high-frequency power. The DC power reference is generated based on the
DC bus voltage, where an LQR is used to stabilize it. The available bus energy can be
expressed as

dEbus
dt

= PSC + Pbatt − Pload (5)

where Ebus is the bus energy, and Pload, PSC, and Pbatt are the load, supercapacitor, and
battery powers, respectively. The supercapacitor power reference can be obtained as

Pre f
SC =

dEbus
dt

− Pbatt + Pload (6)

where the required power by the bus can be obtained using an LQR controller.
The battery mainly feeds the load and maintains the DC voltage at the reference value.

An LQR controller is used for generating the SC required power. The control law can be
written as

Pre f
batt = Preq

SC + Pload (7)

where the supercapacitor power required is generated by an LQR controller.
The lower level generates the duty cycle for each converter, based on the generated

power references. The current references will be generated and compared with the mea-
sured ones. The regulation process will be achieved using the current LQR. The adaptation
of the controller parameters will be realized by means of the SSA real-time optimizer. The
detailed control scheme is described in Figure 7.

The LQR (linear quadratic regulator) is an optimal controller that is used extensively
due to its solid performances. It relies upon the minimization of the cost function J:

J =
∫ ∞

0

(
xTQx + uT Ru

)
dt (8)

where Q and R are the control parameters, and u is the control signal. A state feedback
control is present by: U = −Kx(t), U being the control input, x(t) the state vector, and
K = R(−1) BT. S is the gain matrix defined as

K = R−1BTS (9)
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While S is the symmetric positive definite solution to the algebraic Riccati equation:

Q + ATS + SA − SB
(

R−1
)

BT = 0 (10)

A and B are the model state space matrices.
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3.1. LQR Controller

Q and R are symmetric positive definite weighing matrices. They are chosen depend-
ing on the desired closed loop performance, with the Q matrix penalizing the states while
the R matrix penalizes the actuators. An augmented system regrouping the battery’s and
the supercapacitor’s voltages and currents is given:

The control law U becomes

U = R−1BTSx = −Kx (11)

where the LQR matrices are provided in the Appendix A.

U1 = kiSC
I
∫ (

ire f
SC − iSC

)
dt + kiSC

P

(
ire f
SC − iSC

)
U2 = kibatt

I
∫ (

ire f
batt − ibatt

)
dt + kibatt

P

(
ire f
batt − ibatt

)
U3 = kVbus

I
∫ (

Vre f
bus − Vbus

)
dt + kVbus

P

(
Vre f

bus − Vbus

)
U4 = kVSC

I
∫ (

Vre f
SC − VSC

)
dt + kVSC

P

(
Vre f

SC − VSC

) (12)

where kiSC
I and kiSC

P are the supercapacitor current controller’s integral and proportional

gains, and ire f
SC and iSC are the supercapacitor’s reference and measured currents; kibatt

I

and kibatt
P are the battery controller’s integral and proportional gains, and ire f

batt and ibatt are
the battery’s reference and measured currents; kVbus

I and kVbus
P are the DC bus controller’s

integral and proportional gains, and Vre f
bus and Vbus are the DC bus’s reference and measured

voltages; kVSC
I and kVSC

P are the supercapacitor voltage controller’s integral and proportional

gains, and Vre f
SC and VSC are the supercapacitor’s reference and measured voltages.

3.2. SSA Optimizer

The salp swarm algorithm (SSA) is a meta-heuristic algorithm created by Mirjalili [39].
This optimizer is inspired by the movement of salps in the ocean. It is mainly characterized
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by its fast resolving and high precision. In the agent set, there are two types of agents:
leader and followers, where the movement of each one can be modeled as

LP(k) =
{

FP(k) + c1((ub − lb)c2 + lb) i f c3 < 0.5
FP(k)− c1((ub − lb)c2 + lb) i f c3 > 0.5

(13)

c1 = 2e−(4k/Tmax)
2

(14)

where LP(k) is the leader position at iteration k, FP(k) is the food position (the target) at
iteration k, and c2 and c3 are random variables [0,1]. ub and lb are the upper and lower
search space limits. The follower’s movement can be modeled as

FPi(k) = 0.5(FPi(k − 1) + FPi−1(k)) (15)

where FPi(k) is the i-th follower position, where it updates its position according to its
position and the precedent agent position.

The objective function is to minimize the voltage reference and ensure safe operating
to the HPS. The objective function can be written as a function of the error as

objFun = min(
∫ t

0
εdt) (16)

For the HPS, there are four errors: the bus voltage error, the supercapacitor error, the
battery current error, and the supercapacitor error.

εVbus = Vre f
bus − Vbus

εVSC = Vre f
SC − VSC

εibatt = ire f
batt − ibatt

εiSC = ire f
SC − iSC

(17)

Based on the measured objective function, which is the integral square error, the SSA
generates the following parameters: kiSC

I , kiSC
P , kibatt

I , kibatt
P , kVbus

I , kVbus
P , kVSC

I and kVSC
P .

4. Simulation Results

In this part, MATLAB-Simulink is used to validate the proposed EMS. The system
parameters are summarized in Table 1, where R1 and R2 are the internal converter resistors
(Ω); L1 and L2 are the converter inductors (mH); VSC ref is the SC voltage reference (V);
Vre f

bus is the (V); CSC and Cbus are the SC and the bus capacitance values, respectively (F);
Cbatt is the battery capacity (Ah).

Table 1. Simulation parameters.

Parameters Value

R1, R2 (Ω) 0.1
L1, L2 (mH) 2

Vre f
SC (V) 200

Vre f
bus (V) 400

CSC (F) 120
Cbus (µF) 2000
Cbatt (Ah) 1500

To validate the performance of the proposed EMS, the load profile illustrated in
Figure 8 is used. The simulation results are given in Figure 9. At the beginning, the load
is positive, which is supplied by the battery, then it will be negative, and the battery will
charge itself. The battery State of Charge (SoC) is given in Figure 10.
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As illustrated in Figure 9, the load is mainly provided by the battery, where the
supercapacitor supplies the transitory power, which means that its average power is zero.
The battery charges the supercapacitor to hold its voltage at the reference value, where the
initial supercapacitor voltage is less than the reference, as illustrated in Figure 11. Thus,
the supercapacitor power is negative to charge itself.
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Figure 11. The supercapacitor voltage.

The proposed EMS stabilizes the bus voltage against the high steps in the load power.
The optimal updating mechanism allows the LQR voltage controller to change its param-
eters depending on the error between the measured and the reference voltage, which
enhances the controller performance. The bus voltage is illustrated in Figure 12. The
proposed control method is compared with the classical LF strategy.
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The proposed strategy updates its control parameters depending on the measured
objective function; thus, the system performance is improved, as illustrated in Figure 12.

To emulate the real load behavior, the load profile represented in Figure 13 is used.
The simulation results are given in Figure 14. The battery SoC is presented in Figure 15.
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As given in these figures, the load is principally supplied by the battery power, where
the fast load variations are supplied by the supercapacitor power.

The optimal adaptive LQR controllers successfully stabilize the bus and the superca-
pacitor voltage, as represented in Figures 16 and 17.
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Figure 17. The DC bus voltage.

In this case, which emulates the real load demand, the bus voltage is stabilized where
the maximum overshoot voltage is 5.6 V (1.25%) for significant steps in the load (about
60 A/s). The voltage ripple is minimized by means of the optimal adaptation process
(∆V = 4 V).

The obtained results from Figure 12 prove the ability of the proposed strategy to meet
the load demand under different conditions with excellent quality comparing with the
classical method. Moreover, as illustrated in Figures 11 and 16, the supercapacitor state of
charge is almost fixed at its reference due to the fast response of the management system.
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As given in Figure 9, the reduced stress at the battery system will extend its lifespan, which
is an important issue during the design of the HPS.

In addition to its superior performance, the features of the meta-heuristic optimizer
make the design easier and more flexible because these optimization methods do not
require the exact mixing of optimization parameters.

5. Conclusions

In this paper, a new optimal energy management strategy was designed for a hybrid
power system electrified by a battery–supercapacitor. The motivation behind their choice
was developed, tested, and presented. From the obtained results, it can be concluded that it
is possible to control the converter DC/DC through the proposed strategy, which is based
on the load following control strategy (LFS), and gain optimization by means of LQR–SSA
hybrid optimization. This management strategy enhances the power quality and ensures
the decrease in the bus voltage stress (∆V = 4 V) due to the supercapacitor power. The
system robustness is improved; the overshoot voltage is limited to 1.25% for a load step of
60 A/s. Moreover, this strategy satisfies the load respecting the power source dynamics
and protects the supercapacitor from the deep discharge, therefore resulting in increased
system efficiency and improved power quality. The online updating mechanism improves
the system behavior during unknown load variations; thus, the robustness and reliability
are enhanced.
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Appendix A. LQR Matrices
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x1
x2
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τ2
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U1
U2
U3
U4

 (A1)

Q =



q11 0 0 0 0 0 0 0
0 q22 0 0 0 0 0 0
0 0 q33 0 0 0 0 0
0 0 0 q44 0 0 0 0
0 0 0 0 q55 0 0 0
0 0 0 0 0 q66 0 0
0 0 0 0 0 0 q77 0
0 0 0 0 0 0 0 q88


, R =


r11 0 0 0
0 r22 0 0
0 0 r33 0
0 0 0 r44

 (A2)
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S =



S11 S12 S13 S14 S15 S16 S17 S18
S21 S22 S23 S24 S25 S26 S27 S28
S31 S32 S33 S34 S35 S36 S37 S38
S41 S42 S43 S44 S45 S46 S47 S48
S51 S52 S53 S54 S55 S56 S57 S58
S61 S62 S63 S64 S65 S66 S67 S68
S71 S72 S73 S74 S75 S76 S77 S78
S81 S82 S83 S84 S85 S86 S87 S88


(A3)
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