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GRAPHICAL ABSTRACT 

 

PUBLIC SUMMARY 

1. Here we present for the first time the near-real-time Global Gridded Daily CO2 

Emissions Dataset (called GRACED). 

2. GRACED can be updated almost in near-real-time with a spatial-resolution of 0.1° 

by 0.1° and a temporal-resolution of 1-day. 

3. GRACED shows gridded emissions of seven sectors, including power, industry, 

residential consumption, ground transport, domestic aviation, international 

aviation, and international shipping. 

4. Regular updates of GRACED will enable policymakers to more closely monitor 

the effectiveness of climate and energy policies and quickly adapt on various 

spatial scales. 
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ABSTRACT 

Precise and high-resolution carbon dioxide (CO2) emission data is of great importance 

of achieving the carbon neutrality around the world. Here we present for the first time 

the near-real-time Global Gridded Daily CO2 Emissions Dataset (called GRACED) 

from fossil fuel and cement production with a global spatial-resolution of 0.1° by 0.1° 

and a temporal-resolution of 1-day. Gridded fossil emissions are computed for 

different sectors based on the daily national CO2 emissions from near real time dataset 

(Carbon Monitor), the spatial patterns of point source emission dataset Global Carbon 

Grid (GID), Emission Database for Global Atmospheric Research (EDGAR) and 

spatiotemporal patters of satellite nitrogen dioxide (NO2) retrievals. Our study on the 

global CO2 emissions responds to the growing and urgent need for high-quality, 

fine-grained near-real-time CO2 emissions estimates to support global emissions 

monitoring across various spatial scales. We show the spatial patterns of emission 

changes for power, industry, residential consumption, ground transportation, domestic 

and international aviation, and international shipping sectors from January 1, 2019 to 

December 31, 2020. This gives thorough insights into the relative contributions from 

each sector. Furthermore, it provides the most up-to-date and finer-grained overview 

of where and when fossil CO2 emissions have decreased and rebounded in response to 

emergencies (e.g. COVID-19) and other disturbances of human activities than any 

previously published dataset. As the world recovers from the pandemic and 

decarbonizes its energy systems, regular updates of this dataset will enable 

policymakers to more closely monitor the effectiveness of climate and energy policies 

and quickly adapt. 

 

KEY WORDS: Near-real-time; gridded CO2 emission; daily; 2020; global change 
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INTRODUCTION 

Although human emissions of carbon dioxide (CO2) to the atmosphere are the 

main cause of global climate change, detailed and spatially-explicit estimates of such 

emissions are updated infrequently, typically lagging emissions by at least a year. 

However, with the rising ambition of climate policies and mitigation efforts,
1,2

 a 

reliable, spatially-explicit and up-to-date dataset of fossil CO2 emissions is becoming 

increasingly important. For example, such detailed data is necessary to link emissions 

to observable atmospheric concentration signals and constrain regional CO2 fluxes, 

and can help decision makers to more quickly assess both the effectiveness of policies 

and local priorities for further mitigation.
3,4

 

Since the end of 2019, the COVID-19 pandemic has caused major disruptions of 

human activities and energy use. Governments around the world have imposed 

compulsory lockdowns that restrict in-person educational and commercial activities to 

reduce the spread of coronavirus. In turn, industries and factories reduced their 

activities and production, people's local and long distance mobility was reduced, and 

human activities were reduced on a large scale, resulting in a substantial decrease in 

fossil energy consumption and CO2 emissions, albeit with large regional 

differences.
4-6

 As lockdown restrictions have relaxed in many countries and economic 

activities have recovered in some sectors, the effect of the pandemic on CO2 

emissions has weakened, even during large “second waves” of cases. A timely and 

finely-gridded emissions dataset enables quantitative analysis of how temporal and 

spatial changes in CO2 emissions in each country in response to emergencies (e.g. 

COVID-19) and other disturbances of human activities, and helps constraining 

predictions of future trends. 

Existing datasets of global gridded (i.e. spatially-explicit) CO2 emissions include 

the Open-source Data Inventory for Anthropogenic CO2 (ODIAC) that distributes 

national emission totals estimated by the Carbon Dioxide Information Analysis Center 

(CDIAC) in space, using a combination of geospatial proxies such as satellite 

observations of nighttime lights and geolocations of major power plants(CARMA list): 

ODIAC provides maps of monthly CO2 emissions on a 1 km grid for the period 2000 

to 2019, as of today, including emissions from power plant, transportation, cement 

production/industrial facilities, and gas flares over land regions.
7-9

 Similarly, the 

Community Emissions Data System (CEDS) uses data from a number of existing 

inventories to provide a monthly gridded dataset of all emission species for the 

Climate Model Inter-comparison Program (CMIP6) over the period 1750 to 2014 at a 

resolution of up to 0.1°, including sectors of energy transformation and extraction, 

industry, residential, commercial, transportation, agriculture, solvent production and 

application, waste, shipping and “other”.
10-13

 Another prominent example is the 

Emission Database for Global Atmospheric Research (EDGAR). EDGAR estimates 
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emissions based on national CO2 emissions reported by the Global Carbon Project 

(GCP) and emission factors, broken down to IPCC-relevant source-sector levels. 

EDGAR uses spatial geospatial proxies such as point and line source locations at a 

0.1°×0.1° resolution for the period 1970 to 2019, including sectors of agriculture, 

power, transport, residential, industry, manufacturing, and a number of others.
14-17

 

More recently, The Global Carbon Grid (http://gidmodel.org) establishes 

high-resolution maps of global CO2 emissions from fossil fuel combustion and 

cement production based on a framework that integrates multiple data flows including 

point sources, country-level sectoral activities and emissions, and transport emissions 

and distributions. The Global Carbon Grid v1.0 provides global 0.1°×0.1° CO2 

emission maps of six source sectors, including power, industry, residential, transport, 

shipping, and aviation in 2019.
18-20

 

Even the most current of the gridded CO2 emissions datasets described above lag 

emissions by a year or more and do not reflect sub-monthly temporal variations 

related to seasonality, weather, economic activities, or policies. Nassar et al. made a 

first attempt to further downscale these global datasets at the weekly and diurnal scale 

using static local temporal scaling factors.
21

 However, during a normal year, 

day-to-day variations are due mainly to weather impacting heating/cooling demands 

of residences and commercial buildings and the generation of renewable energy, as 

well as weekends and holidays. Since the pandemic began in early 2020, though, daily 

variations have been perturbed by a multitude of other factors, including lockdowns, 

industrial production drops and recoveries, and changes in human behavior. Timely 

and quantitative analysis on the effects of these COVID-related changes on CO2 

emissions using tools such as inversion systems thus requires dynamic knowledge of 

global CO2 emissions. It was this need for data that led to our development of the 

Carbon Monitor, a near-real-time daily dataset of global CO2 emission at the national 

level (https://carbonmonitor.org).
3,4

 Chevallier et al. disaggregated the daily national 

Carbon Monitor totals on a worldwide uniform grid using satellite retrievals of a 

pollutant co-emitted with CO2 as a spatial proxy, without sectoral distinction.
22

 Here, 

we considerably refine the approach by downscaling the daily national emissions 

from Carbon Monitor into a 0.1° × 0.1° grid for each of the seven sectors (power, 

industry, residential, ground transportation, domestic aviation, international aviation, 

and international shipping), using sector-specific geospatial data from the Global 

Carbon Grid (GID) v1.0, the EDGARv5.0_FT2019 database for 2019, and NO2 

retrievals from the Tropospheric Monitoring Instrument (TROPOMI) on board the 

Sentinel-5 Precursor satellite to provide a new spatially-explicit dataset of daily global 

CO2 emissions covering the last two years since January 1, 2019, which we name 

GRACED. The first high-resolution near-real-time gridded fossil CO2 emission 

emissions GRACED we presented will facilitate the adaptive management of 

emissions and the implementation of climate policy, which is of great importance of 

achieving the carbon neutrality around the world. 
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MATERIALS AND METHODS 

Datasets used in the study 

(1) A near-real-time daily dataset of global sectoral CO2 emission from fossil 

fuel and cement production at national level since January 1, 2019 published as 

Carbon Monitor (data available at https://carbonmonitor.org/).
4
 (2) Global sectoral 

CO2 emissions annual data with high-resolution of 0.1° in 2019 based on a framework 

that integrates multiple data flows including point sources, country-level sectoral 

activities and emissions, and transport emissions and distributions released by the 

Global Carbon Grid (http://gidmodel.org).
18-20,23-25

 (3) Global monthly gridded 

emissions at a 0.1°×0.1° resolution in 2019 defined for a large number of IPCC 

sub-sectors provided by the Emission Database for Global Atmospheric Research 

(EDGAR) (https://edgar.jrc.ec.europa.eu/overview.php?v=50_GHG).
16,26

 (4) Daily 

NO2 TCVD retrievals data in 2019 and 2020 from the Tropospheric Monitoring 

Instrument (TROPOMI) on board the Sentinel‐ 5 Precursor satellite, launched in 

October 2017.  

The ground resolution of the TROPOMI NO2 retrievals was 7 × 3.5 km
2
 at nadir 

until 5 August 2019 and has been 5.5 × 3.5 km
2
 afterwards, achieving near-global 

coverage in one day. Standard retrievals from the official offline processing with a 

quality assurance value greater than 0.75 were aggregated to daily time scale on a 

regular 0.1° × 0.1° global grid and averaged over 14‐ day averaging periods in order 

to reduce the retrieval noise and limit gaps in the retrievals. 

Spatial gridding methodology 

Grouping the GID and EDGAR sectors into Carbon Monitor categories. Firstly, 

we link the Carbon Monitor emission sectors to GID and EDGAR sectors according 

to Table S1. We consider that GID has the highest accuracy in source location and we 

rely on this database as much as possible. However, for the domestic aviation, 

international aviation, and international shipping sector, GID does not distinguish 

between related domestic and international sub-sectors: we therefore directly use 

EDGAR's monthly spatial patterns for the spatial distribution in these sectors. 

 

Spatially gridding procedure. Secondly, we do spatially gridding procedure. We 

use the global annual spatial patterns of CO2 emission from the GID sub-sectors and 

global monthly CO2 emission spatial patterns from EDGAR sub-sectors for the year 

2019 for spatially downscaling Carbon Monitor daily national-level emissions. We 

assume that the spatial pattern of emissions remained unchanged after the last year of 

GID and EDGAR (2019). The validity of this assumption will depend on the country 

and on the time horizon for the adjustment. While, the sub-national emission may 

change rapidly within a country from 2019 to 2020 as there was a great difference in 
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 7 

the timing and degree of the impact of COVID-19 in various regions. Therefore, for 

large emitters that have a significant impact on global total emissions, we use 

sub-national proxy based on TROPOMI NO2 retrievals data to allocate national 

Carbon Emission totals into regional totals, before doing a second down-scaling at 0.1° 

based on the GID and EDGAR spatial patterns. The analysis can be updated 

consistently with the latest high-resolution emission maps and other spatial proxies 

for each year.  

The spatial disaggregation framework used in the GRACED is shown in Figure 

1. It is a top-down methodology that allocates Carbon Monitor national-level daily 

emissions to finer grid cells using spatial patterns provided by GID and EDGAR and 

sub-national proxy based on TROPOMI NO2 retrievals.  
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 8 

 

Figure 1. The framework of top-down spatially gridding methodology. 

 

The detailed process of the model is presented as follow: 

(1) Firstly, we use the spatial patterns provided by GID to allocate the 

national-level emissions of the four sectors of Carbon Monitor (Power, Industry, 

Residential consumption, Ground transport sector, see Table S1) from Carbon 

Monitor to obtain the daily gridded emissions under GID’s annual spatial patterns. 

We then integrate the monthly spatial patterns of EDGAR for further correction, to 

correct the previous daily gridded emission based on GID’s annual spatial patterns 

under the monthly spatial patterns. For the domestic aviation sector, international 

aviation sector, and international shipping sector, as GID does not distinguish 
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between related domestic and international sub-sectors compared to EDGAR, we 

directly use EDGAR's monthly spatial patterns for distribution. The first version value 

of emission 𝐸𝑚𝑖_𝑣1𝑔,𝑑,𝑠 for grid g, date d and sector s as: 

 

𝐸𝑚𝑖_𝑣1𝑔,𝑑,𝑠1 = 𝐶𝑀𝑐𝑜𝑢𝑛𝑡𝑟𝑦,𝑑,𝑠1 ∗
𝐺𝐼𝐷𝑔,𝑠1

∑ 𝐺𝐼𝐷𝑖,𝑠1
𝑛
𝑖=1

∗
𝐸𝐷𝐺𝐴𝑅𝑔,𝑚,𝑠1

∑ 𝐸𝐷𝐺𝐴𝑅𝑔,𝑗,𝑠1
12
𝑗=1

∗ 12#(1)  

 

𝐸𝑚𝑖_𝑣1𝑔,𝑑,𝑠2 = 𝐶𝑀𝑐𝑜𝑢𝑛𝑡𝑟𝑦,𝑑,𝑠2 ∗
𝐸𝐷𝐺𝐴𝑅𝑔,𝑚,𝑠2

∑ 𝐸𝐷𝐺𝐴𝑅𝑖,𝑚,𝑠2
𝑛
𝑖=1

#(2)  

 

Where 𝐶𝑀𝑐𝑜𝑢𝑛𝑡𝑟𝑦,𝑑,𝑠 means the value of Carbon Monitor for country country which 

grid point g belongs to, day d and sector s. s1 belongs to one of the sectors Power, 

Industry, Residential consumption, and Ground transport. s2 includes International 

aviation, Domestic aviation, and International shipping. 𝐺𝐼𝐷𝑔,𝑠1 means the value of 

GID gridded CO2 emission for grid point g and sector s1. n is the total number of grid 

points within this country. 𝐸𝐷𝐺𝐴𝑅𝑔,𝑚,𝑠 means the value of EDGAR for grid point g, 

month m which date d belongs to and sector s. j is the index of a month. 

(2) For large emitters, subnational emission patterns can vary significantly from 

one year to the next, which has a great impact on the global total emissions. This was 

particularly obvious in 2020 with regional variations in the COVID-19 crisis, for 

instance between eastern and western US, or between eastern and western China. 

Capturing those sub-national emission changes is important to having a competitive 

product that could avoid the negative impact on dataset’s accuracy caused by ignoring 

significant variations of large emitters’ subnational emission patterns, and is not 

addressed by Eq. 1 and Eq. 2 which use a climatological emission pattern. It is 

reported that the global changes in emissions are also consistent with global changes 

in the NO2 inventory from satellite data.
6
 Therefore, we assume that the sub-national 

emission changes follow the pattern of the differences in NO2 column concentration 

between 2020 and 2019. In detail, we calculate an index R of each province in large 

emitters, which is the averaged NO2 concentration of each province, according to 

TROPOMI NO2 retrievals data in year y. 

 

𝑅𝑝,𝑦 = 𝑁𝑂2𝑝,𝑦#(3)  

 

Where p represents province (state); y represents the year. 𝑁𝑂2𝑝,𝑦is the satellite NO2 

concentration averaged temporally over rolling 14 day-period in year y for province 

p(as explained above) and spatially over the 5% grid points within each province(state) 

that have the largest NO2 average over the year. The choice of the 5% largest values 

allows extracting clear patterns very close to emission location. In the following step, 

we remove any negative NO2 value for the 5% grid points over the year 2019 and 
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 10 

2020 that may be generated and attribute the mass gain to the other 5% pixels. Last, 

we calculate index R of each province in 2019(2020) according to TROPOMI NO2 

retrievals data. 

Then we generate 𝐶𝑀𝑝,𝑑,𝑠1,2020, the daily provincial emission in day d and for 

sector s1 adjusted by the TROPOMI NO2 retrievals in day d and for sector s in 2020 

that matches the daily national total from Carbon Monitor following Eq. 4.  

 

𝐶𝑀𝑝,𝑑,𝑠1,2020 =

𝐶𝑀𝑝,𝑑,𝑠1,2019 ∗
𝑅𝑝,2020
𝑅𝑝,2019

∑ 𝐶𝑀𝑝,𝑑,𝑠1,2019 ∗
𝑅𝑝,2020
𝑅𝑝,2019

𝑛𝑝
𝑝=1

× 𝐶𝑀𝑐𝑜𝑢𝑛𝑡𝑟𝑦,𝑑,𝑠1,2020#(4)  

 

Where 𝐶𝑀𝑝,𝑑,𝑠1,2019 means the first version of the emission value of a province in 

day d and for sector s1 in 2019. np is the number of provinces of the country. In detail, 

firstly, we calculate the ratio of change in the R index in 2020 compared to 2019, 

which is 
𝑅𝑝,2020

𝑅𝑝,2019
. Secondly, multiply the provincial emission value aggregated from 

our first version dataset for 2019, 𝐶𝑀𝑝,𝑑,𝑠,2019, to update the provincial emission 

value for 2020. Last, divide the updated provincial emission value by the sum of the 

updated provincial emission value ∑ 𝐶𝑀𝑝,𝑑,𝑠1,2019 ∗
𝑅𝑝,2020

𝑅𝑝,2019

𝑛𝑝
𝑝=1  in 2020 to do the 

normalization processing in the Eq. 4. So, the sum of the updated provincial emissions 

within a country can be consistent with the national-level emission value from Carbon 

Monitor in 2020 after multiplying the national-level emission 𝐶𝑀𝑐𝑜𝑢𝑛𝑡𝑟𝑦,𝑑,𝑠1,2020 

from Carbon Monitor.  

Then, based on the updated provincial emission 𝐶𝑀𝑝,𝑑,𝑠1,2020 in 2020, we use 

GID and EDGAR data as the spatial patterns to distribute the emission data of each 

province for large emitters to obtain our final version gridded emission value 

𝐸𝑚𝑖_𝑣2𝑔,𝑑,𝑠. 

 

𝐸𝑚𝑖_𝑣2𝑔,𝑑,𝑠1 = 𝐶𝑀𝑝,𝑑,𝑠1,2020 ∗
𝐺𝐼𝐷𝑔,𝑠1

∑ 𝐺𝐼𝐷𝑖,𝑠1
𝑛
𝑖=1

∗
𝐸𝐷𝐺𝐴𝑅𝑔,𝑚,𝑠1

∑ 𝐸𝐷𝐺𝐴𝑅𝑔,𝑗,𝑠1
12
𝑗=1

∗ 12#(5)  

 

Where n means the total number of grids within this province. 

After revising the gridded emissions for large emitters Brazil, China, France, 

Germany, India, Italy, Japan, Spain, US, and UK in 2020, GRACED is finally 

generated. 
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RESULTS 

Quarterly mean emissions 

The global daily average emissions from all sectors of GRACED in 2020 is 

shown in Figure 2. GRACED demonstrates fine-grained emission differences 

produced by the allocation of emissions at the sub-national level. Emissions are 

shown at a common 0.1×0.1° resolution. In the figure, the five major global regions, 

including U.S. mainland, Europe, South East Asia, East Africa and Middle East, 

South America, are enlarged and displayed. It is showed that the spatial distribution 

characteristics of daily average emissions throughout 2020 are clustered, concentrated 

in areas such as eastern U.S., western Europe, southeastern China, South Korea, Japan, 

and India, with megacities as hotspots. The daily average total emissions in 2020 are 

approximately 3821 kg of carbon per day (kgC/d) per cell. The cell with the 

maximum emission value is 41320 tC per day per cell. 

 

Figure 2. The fossil fuel and cement CO2 emissions distributions of GRACED in 

2020. The value is given in the unit of kg of carbon per day per cell. 

 

We also calculate quarterly daily average total(Figure S1) and sectoral(Figure 

S2) emissions of 2020. We define January, February, and March as the first quarter, 

and then define other months included in other quarters. The average total emission in 

the first quarter, is the highest with 3969 kgC per day per cell, and the average total 

emission quarter is the lowest in the second quarter, with 3381 kgC per day per cell. 

As about 90% of the world’s population is located in the northern hemisphere, 

the level of human activities in the northern hemisphere dominates the values of 

global emissions. The residential consumption sector and the aviation sectors, 

generate the most emissions in the fourth quarter, resulting in the highest average total 

emissions in the first quarter. Except for the residential consumption, industrial and 
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international shipping sectors, the average lowest emissions from the other sectors all 

appear in the second quarter, which dominates the results of the lowest average total 

emissions in the second quarter. 

 

Difference between weekend and weekday emissions 

We then investigate the difference between weekend emissions and weekday 

emissions in Figure 3. It can be seen that on average, the global CO2 emissions on 

weekends are generally less than the CO2 emissions on weekdays. The global average 

of this difference is -248 kgC per day per grid. It can be further seen that the more 

developed regions have more significant differences between weekdays and weekends 

than that of the less developed regions (shown as the dark blue areas in the figure). 

Moreover, the spatial distribution characteristics of this difference showed an obvious 

linear relationship with the ground transportation sector's emission. It indicates that 

the reduction of human driving activities on weekends has a very important impact on 

the reduction of weekend emissions.  

 

Figure 3. Map of weekend minus weekday emissions in 2020. 

 

In 2019, on average, the global carbon emission on weekends is generally less 

than the emission on weekdays (Figure S7). The average value of this difference is 

-303 kgC per day per grid globally, which is higher compared with 2020. This is 

mainly because, affected by the COVID-19 in 2020, general human travel has 

generally reduced under the lockdown measures, at the same time, the implementation 

of the home office policy has weakened commuting travel during weekdays, making 

the difference in emissions between weekends and weekdays in 2020 less significant.  
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Emission changes due to COVID-19 

Affected by the COVID-19 pandemics in 2020, compared to 2019, total 

emissions have generally declined worldwide (Figure 4). There were however a few 

regions experiencing an emission increase such as the eastern U.S., the United 

Kingdom, some areas of Europe, southeastern India, Japan’s some provinces, and 

central and western China. For percent change information, please see Figure S8 in 

the Supplemental Information file for the details.  

 

Figure 4. Difference in daily average CO2 emissions between 2020 and 2019 (2020 

minus 2019).  

 

The dates with the maximum reduction and the maximum rebound in different 

regions in 2020 compared to 2019 reflect the sequence of the significant reduction in 

human activities caused by the severe impact of the COVID-19, Figure 5A. In this 

study, we define the date with the maximum rebound as the date appears the biggest 

increase in emissions in 2020 compared to 2019. The dates with the maximum 

rebound in different regions in 2020 compared to 2019 reflect the sequence of the 

largest economic recovery in the later period, Figure 5B. 

In Figure 5A, obviously, some international aviation and international shipping 

were the first to be hit, which is shown in dark blue lines. From a national perspective, 

China's largest decline in 2020 appeared earliest compared to other countries, and 

time wise is closely related to China's first hit by COVID-19. While, the U. S., Spain 

and other countries experienced the largest emission reduction later. Most regions of 

India and Japan experienced this situation soon after. This may be mainly related to 

the late impact of the first wave of the COVID-19 in these countries and the more 

severe impact of the COVID-19's second wave in the later period. 

Judging from the date with the largest rebound (Figure 5B), China, Russia, 

Myanmar, some European countries such as Netherlands, Poland, Italy, and some 
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other countries experienced the largest rebound later, while in India, some states in 

the U.S. and some European countries such as Spain, Belarus and Ukraine, the biggest 

rebound occurred earlier. 

 

Figure 5. The day of the year with (A) the maximum reduction, and (B) the 

maximum rebound of each grid in 2020 compared with 2019. 

 

Sectoral emissions share 

Different sectors exhibit various spatial patterns. The emissions shares of various 

sectors in 2020 are shown in Figure 6A-G. At the grid level, changes in sector share 

between 2020 and 2019 are also observed (Figure 6H-N). Please see the Sectoral 
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emissions share part in the Supplemental Information file for the detailed 

descriptions. 
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Figure 6. Sector share of CO2 emissions in 2020(A-G). Difference in sector share of 

CO2 emissions between 2020 and 2019(2020 minus 2019)(H-N).  

 

Uncertainty analysis 

The uncertainties are from Carbon Monitor, GID, and EDGAR dataset we used. 

The uncertainty analysis of Carbon Monitor was presented in our related paper 

recently published at Nature Communications.
4
. We followed the 2006 IPCC 

Guidelines for National Greenhouse Gas Inventories to conduct an uncertainty 

analysis of the data. First, the uncertainties were calculated for each sector. The 

uncertainties ranges of the Power, Ground transport, Industry, Residential, Aviation, 

International shipping sector are ±14.0%, ±9.3%, ±36.0%, ±40.0%, ±10.2%, and 

±13.0%, respectively. The uncertainty in the emission projection for 2019 is estimated 

as 2.2% by combining the reported uncertainty of the projected growth rates and the 

EDGAR estimates in 2018. Then, we combine all the uncertainties by following the 

error propagation equation from the IPCC. Eq. 5 and calculated that the overall 

uncertainty range of Carbon Monitor is ±7.2%. 

As for GID and EDGAR, uncertainty is introduced in the magnitude of 

national-level total emissions, the magnitude and location of large point sources, the 

magnitude and distribution of non-point sources, and from the use of proxy data to 

characterize emissions. As pointed out by Hogue et al., the largest uncertainty 

contribution in gridded emission data sets comes from how well the distribution of the 

proxy used for spatial disaggregation represents the distribution of emissions.
27

 So for 

the gridded data from GID and EDGAR used in this research, the largest contribution 

to uncertainty comes from the spatial disaggregation process of national-level 

emissions and the accuracy of the spatial proxy parameters. The subtraction of the 

sum of all precise point sources with little uncertainty from the national total of a 

specific sector leaves a remaining emission composed of smaller sources. Due to lack 

of information, the remaining emission is usually allocated based on e.g. a population 

density proxy. The uncertainties of the point sources and the remaining smaller 

sources are greatly different, which are larger than the uncertainty of the national total 

of a specific sector. The representative information about the selected characteristic 

parameters of the point sources is most critical and needs to be evaluated by 

measurements (such as on-site atmospheric measurement of CO2 emission pollutants), 

but in-depth analysis beyond the scope of this paper would be required.  

 

DISCUSSION 

This research presents for the first time the near-real-time high-resolution 

gridded fossil CO2 emissions from fossil fuel and cement production, which is based 

on the Carbon Monitor project.
4
 In this work, we developed a near real-time global 
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gridded emission dataset called Carbon Monitor-G to provide a high-quality, 

fine-grained dataset since January 1, 2019. This dataset is a daily gridded map with a 

spatial resolution of 0.1°×0.1°. One of the advantages of GRACED is that it can 

support global near real-time carbon emission monitoring on various fine spatial 

scales (such as cities) at sub-national level, which can further improve our 

understanding of the spatio-temporal variability in emissions and human activities. 

Through the long time series of GRACED, we provide important daily-scale input for 

the analysis of emission trends during the COVID-19 pandemics, which will help to 

carry out more local and adaptive management of climate change mitigation in 

post-COVID era. 

We found that carbon emissions are mainly concentrated in eastern U.S., western 

Europe, southeastern China, South Korea, Japan, and India spatially. A sharp decline 

of CO2 emissions in 2020 was identified in the central and eastern U.S., the United 

Kingdom, France, Germany in Europe, India, Japan, South Korea and eastern China. 

Various sectors show different spatial distribution characteristics, which is mainly 

explained by the emission sources.  

In general, the current statistical data cannot fully grasp the fine-grained 

dynamics of CO2 emissions under the COVID-19 pandemics, and further monitoring, 

observation and data collecting are urgently needed. The ability of near-real-time 

fine-grained monitoring of daily emission trends we demonstrate here help to take 

timely local actions in regional, sub-national or urban areas, and have policy 

implications for local climate change mitigation and earth system management. 

GRACED provides the first global near real-time gridded carbon emissions data. 

This globality and timeliness comes at the expense of reduced accuracy due to near 

real-time spatial allocation information. Therefore, it is recommended that potential 

users of GRACED carefully consider these limitations when using this dataset. 

Inevitably, with the updated version of proxy data, the accuracy of emission spatial 

allocation in future versions of GRACED can be further improved. With Carbon 

Monitor national-level data and satellite retrievals data publicly updated in near real 

time, there are no restrictions on continuing to produce updated future versions of 

GRACED products within the same model framework. 
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Figure titles and legends 

 

Figure 1. The framework of top-down spatially gridding methodology. 

 

Figure 2. The fossil fuel and cement CO2 emissions distributions of GRACED in 

2020. The value is given in the unit of kg of carbon per day per cell. 

 

Figure 3. Map of weekend minus weekday emissions in 2020. 

 

Figure 4. Difference in daily average CO2 emissions between 2020 and 2019 

(2020 minus 2019).  

 

Figure 5. The day of the year with (A) the maximum reduction, and (B) the 

maximum rebound of each grid in 2020 compared with 2019. 

 

Figure 6. Sector share of CO2 emissions in 2020(A-G). Difference in sector share 

of CO2 emissions between 2020 and 2019(2020 minus 2019)(H-N).  
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 PUBLIC SUMMARY 

 

1. Here we present for the first time the near-real-time Global Gridded Daily CO2 

Emissions Dataset (called GRACED). 

2. GRACED can be updated almost in near-real-time with a spatial-resolution of 0.1° 

by 0.1° and a temporal-resolution of 1-day. 

3. GRACED shows gridded emissions of seven sectors, including power, industry, 

residential consumption, ground transport, domestic aviation, international 

aviation, and international shipping. 

4. Regular updates of GRACED will enable policymakers to more closely monitor 

the effectiveness of climate and energy policies and quickly adapt on various 

spatial scales. 
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