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The computation of the bivariate Hurst exponent constitutes an important technique to test the
power-law cross-correlation of time series. For this objective, the detrended cross-correlation anal-
ysis method represents the most used one. In this article, we prove the robustness of the detrended
cross-correlation analysis method, where the trend is estimated using the polynomial fitting, to
estimate the bivariate Hurst exponent when time series are corrupted by outliers observations. On
the other hand, we give the exact polynomial order and a regression region for computing a de-
trended cross-correlation function to obtain a least-square estimator of bivariate Hurst exponent.
Our theoretical results are shown by a simulation study on a two-fractional Gaussian noise process
corrupted by outliers observations. Additionally, our results are applied to financial time series.
The empirical findings results are accompanied by interpretations.
Keywords: Power-law cross-correlation, detrended cross-correlation function, bivariate Hurst expo-
nent, two-fractional Gaussian noise process.

1. Introduction

The trajectory and speed of motion of a particle in a fluid evolve randomly. The random
process describing this evolution of the microscopic particles of a fluid under the effect of the
molecules of the fluid is called Brownian motion. In 1968, Mandelbrot and Van Ness proposed
an extension of the Brownian motion by introducing the fractional Brownian motion (fBm),
this stochastic process was already defined in 1940 by Kolmogorov [1]. The fBm is one of
the most popular stochastic fractional process due to its self-similarity properties and the
possible fractals it can allow to build. The fBm is a centered Gaussian process with stationary
increments and have a continuous trajectories almost surely, its covariance function depends
on a parameter H ∈]0, 1[ known as the Hurst parameter, the special case where H = 1/2
allows to find the ordinary Brownian motion. Recall that the fBm noted BH(t), t ∈ R+

admits, for H ∈]0, 1[ and (s, t) ∈ R2
+, the following covariance function:

E[BH(t)BH(s)] =
var(BH(1))

2
(|t|2H + |s|2H + |s− t|2H

)
.

Therefore, BH(t) is characterized by the regularity of its trajectory of order H, which means
that t 7→ BH(t) is Hölder continuous of order strictly less than H.

The fBm offers a suitable modeling framework for non-stationary self-similar stochastic
processes with stationary increments. It has been extensively used to model stochastic phe-
nomena in various fields of research such that queuing networks (see, for instance, [2, 3])
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and mathematical finance [4]. On the other hand, the estimation of the Hurst exponent H

constitutes an important goal in the analysis of the fBm. In this regard, numerous methods
have been proposed. One of these methods is the detrended fluctuation analysis (DFA). The
DFA method is a version, for time series with trend, of the aggregated variance method used
for long-memory stationary process [5]. A straightforward generalization of the DFA method,
in the case of fractal cross-correlated signals, is the Detrended Cross-Correlation Analysis
(DCCA) [6]. However, this method can be used to investigate the power-law cross-correlation
between two simultaneously recorded time series. The DCCA is the first method proposed to
investigate the long-range cross-correlation between two stationary or non stationary time
series [7]. In addition, the DCCA method can be generalized to exhibit the multifractal
characteristics of two cross-correlated signals. The generalization of the DCCA method is a
multifractal detrended cross-correlation analysis method (more details about DCCA method
is given in section 2).

Outliers or observations which are not consistent with the rest of the time series can
exist in different time series such as financial time series. The outliers observations can
be due to measurement equipment error or data entry errors. These anomalies can affect
the model parameter estimates, and then, distort the power of statistical tests based on
biased estimates. Recall that the effect of outliers observations on the estimation of Hurst
exponent of fBm is studied in [8], while the effect of outliers on the estimation of differencing
parameter d (H = d+1/2) of ARFIMA process is studied in [9]. Although the DCCA method
is frequently used in different research fields such as seismology [10], meteorology [11] and
finance [12, 13], at the time of writing of this article we only found the article [14] that is
interested in the DCCA method in the presence of outliers observations. Where, in [14],
authors shows that the outliers observations lead to the spurious results of DCCA method.

The main goal of this article is to study the DCCA method, under presence of outlier
observations, in order to test if outliers observations can affect the power-law cross-correlation
coefficient. For this goal, the studied stochastic process is two-fractional Gaussian noise (2-
fGn) process [15] contaminated by outliers. The 2-fGn process is the increment of size one
of two-multivariate fractional Brownain motion process. Let X(t) and Y (t) the components
of 2-fGn with Hurst index HX and HY respectively and let γXY (h) = E[X(t)Y (t+h)], then

γXY (h) =
σXσY

2
(
wXY (h− 1)− 2wXY (h) + wXY (h + 1)

)
, (1)

where σX =
√

var(X(1)), σY =
√

var(Y (1)) and

wXY (h) =
{

(ρXY − ηXY sign(h))|h|HX+HY , if HX + HY 6= 1;
ρ̃XY |h|+ η̃XY h log(h), if HX + HY = 1.

(2)

If HX + HY 6= 1 there exists (ρXY , ηXY ) ∈ [−1, 1]×R with ρXY = ρY X = corr(X(1), Y (1))
and ηXY = −ηY X . If HX + HY = 1 there exists (ρ̃XY , η̃XY ) ∈ [−1, 1] × R with ρ̃XY =
ρ̃Y X = corr(X(1), Y (1)) and η̃XY = −η̃Y X .

The rest of this article is organized as follows: the DCCA method is recalled in sec-
tion 2. The theoretical results are given in section 3. Section 4 is devoted to Monte-Carlo’s
experiments on the estimation of power law cross correlation coefficient for outliers contam-
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inated 2-fGn process. An application of the estimation procedure to a financial time series
is presented in section 5. We conclude with section 6.

2. Detrended Cross-Correlation Analysis Method

Assume a processes X and Y with zero means and are long-range temporally autocorrelated
with power-law auto-correlations as:

E[X(i)X(i + s)] ∼ s2HX−2 and E[Y (i)Y (i + s)] ∼ s2HY −2, (3)

where HX and HY are the Hurst exponents of X and Y respectively and are assumed to lie
in the range [0.5, 1[. The power-law cross-correlations are defined by the following relations:

E[X(i)Y (i + s)] ∼ As2γ−2 and E[Y (i)X(i + s)] ∼ Bs2γ−2, where (A,B) ∈ R2
+. (4)

The scaling exponent γ characterizes the cross-correlation properties of the processes X and
Y . For estimating γ, the DCCA method [16] is proposed in the presence of non-stationary
trends.

Considering two time series {Xi} and {Yi} where i = 1, . . . , N . Each time series is covered
with ns = [N/s] non overlapping boxes of size s where [.] is a lower integer sign. The profiles
within the v-th box [`v + 1, `v + s], where `v = (v − 1)s, are determined to be:

Xv(k) =
k∑

j=1

X(`v + j) and Yv(k) =
k∑

j=1

Y (`v + j), for k = 1, . . . , s. (5)

Assume that the local trends of Xv(k) and Yv(k) are respectively X̃v(k) and Ỹv(k). We recall
that there are many different methods for the determination of X̃v. For example, the trend
functions could be polynomials [17], or the non parametric detrending procedure based on
the empirical mode decomposition method [18]. The cross-correlation or the local detrended
covariance function for each box [19] is calculated as follows:

fX,Y
v (s) =

1
s

s∑

k=1

(Xv(k)− X̃v(k))(Yv(k)− Ỹv(k)), for v = 1, . . . , ns, (6)

and the q-th order cross-correlation function is calculated as follows:

FX,Y (q, s) =





( 1
ns

ns∑
v=1

(fX,Y
v (s))

q
2

) 1
q

, when q 6= 0;

exp
( 1

2ns

ns∑
v=1

log(fX,Y
v (s))

)
, when q = 0.

(7)

Then, we expect the following scaling relation:

FX,Y (q, s) ∼ sHX,Y (q), (8)

where the Hurst exponent HX,Y (q) characterizes the long-range cross-correlation properties
of processes X and Y . If HX,Y (2) = 0.5 or FX,Y (2, s) oscillates around zero then there is
no cross-correlation. If HX,Y (2) > 0.5 then there is a positive power-law cross-correlation,
which indicates that a large increment in one process is more likely to be followed by a large
increment in the other process. If HX,Y (2) < 0.5 then two processes are anti-correlated.
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3. Main Results

In [16], authors use a stationary linear ARFIMA process to validate the DCCA method. In
this article, the used outliers-contaminated process is given by:

{
Z(t) = X(t) + θX(1−BX(t))NX(t);
W (t) = Y (t) + θY (1−BY (t))NY (t),

(9)

where

• X(t) and Y (t) are the components of 2-fGn.
• BX(t) and BY (t) are independent Bernoulli random variables with parameters pX

and pY and such that cov[BX(j), BX(j′)] = cov[BY (j), BY (j′)] = 0, ∀ j′ 6= j.
• NX(t) and NY (t) are an independent Gaussian random variables with means

respectively µ and ν and variances σ2
X and σ2

Y respectively, and such that
cov[NX(j), NX(j′)] = cov[NY (j), NY (j′)] = 0, ∀ j′ 6= j.

• cov[X(j), (1−BY (j′))NY (j′)] = cov[Y (j), (1−BX(j′))NX(j′)] = 0, ∀ j and j′.
• θX and θY are a positive real numbers.

Recall that the model given by Eq. (9) is used, for unidimensional process, in [20] and [21]
to testing the robustness of a proposed estimator of correlation dimension for deterministic
dynamics corrupted by outliers observations. The advantage of the model given by Eq.(9)
is that the outliers observations are added to free process in randomly positions, which is
logical since in reality we do not find successive outliers.

Property 3.1. If B is a Bernoulli random variable with parameter p which is independent
of the normal random variable N with mean µ and variance σ2. Then E[(1 − B)N ] = pµ

and, for ` ∈ N, we have E
[∑k

j=1(1−B(` + j))N(` + j)
]

= kpµ.

Lemma 3.1. Consider a matrix S such that Si,j = ij−1 with i = 1, . . . , s and j = 1, . . . , p+
1. Then P = S(S>S)−1S> is the projection matrix of the p-th order polynomial fitting for
any time series of uniform intervals.

Proposition 3.1. Let fZ,W
v (s) the cross-correlation function of the outliers-contaminated

process, given by Eq. (9), where the trend is computed by P-order polynomial fitting. Then
we have

E
[
fZ,W

v (s)] =
1
s

(
Tr(Acov[Xv, Yv]) + θXθY η>Y AηX

)
, (10)

where A = Is − S(S>S)−1S>, Is is a s-identity matrix, S is a matrix such that Si,j = ij−1

with i = 1, . . . , s and j = 1, . . . ,P + 1, Xv is the the vector of profiles within the v-th box,
ηY = (pY ν, 2pY ν, . . . , spY ν) and ηX = (pXµ, 2pXµ, . . . , spXµ).

Corollary 3.1. Let FZ,W (q, s) the q-th order cross-correlation function of the outliers-
contaminated process, given by Eq. (9), where the trend is computed by P-order polynomial
fitting. If P = 2, HX + HY 6= 1 and s is large enough, then

E[FZ,W (2, s)2] =
σXσY ρXY

2
sHX+HY O(1) +

σXσY ρXY

2
s. (11)
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Remark 3.1. The dimension of the matrix P = S(S>S)−1S>, where S is given in lemma
3.1, is s× s for all values of P, so the calculation of Pi,j , if s is large enough, is very difficult.
However, using numerical computations, we notice that for s > 75 and P > 4 and for s > 350
and P > 3 the matrix S>S is not invertible, then A = Is − S(S>S)−1S> is not defined. On
the other hand, for s > 2 and P = 3, η>Y AηX is very near to zero and is independent of s.

4. Estimation of Power-law Cross-correlation Exponent

According to corollary 3.1 and Eq. (8), for outliers-contaminated process given by Eq. (9),
if s is large enough, we assume that

FZ,W (2, s)2 =
σXσY ρXY

2
sHX+HY O(1) +

σXσY ρXY

2
s. (12)

Then

FZ,W (2, s)2

s
=

σXσY ρXY

2
sHX+HY −1O(1) +

σXσY ρXY

2
= sHX+HY −1

(O(1) +
σXσY ρXY

2
s1−HX−HY

)
,

so log
(

FZ,W (2,s)2

s

)
= (HX + HY − 1) log(s) + log(O(1) + σXσY ρXY

2 s1−HX−HY ). Thus,

if s is large enough and HX+HY > 1, we have log
(FZ,W (2, s)2

s

)
= (HX+HY−1) log(s)+log(O(1)).

(13)
From Eq. (13), we have FZ,W (2, s) = s

HZ+HW
2 O(1), while from Eq. (8), with q = 2, we have

FZ,W (2, s) ∼ sHZ,W (2), then we can conclude that the bivariate Hurst exponent HZ,W (2) ∼
HZ+HW

2 . On the other hand, according to Eq. (13), the slope obtained by least square
regression method of log

(
FZ,W (2, s)2

)
over log(s) can be given an estimator of HX + HY .

In order to validate the theoretical results, the used outliers-contaminated process is given
by:

{
Z(i) = X(i) + θX(1−BX(i))NX(i);
W (i) = Y (i) + θY (1−BY (i))NY (i),

(14)

where NX(i) and NY (i) are i.i.d. standard Gaussian random variables and BX(i) and BY (i)
are independent Bernoulli random variables with parameters pX = pY = 0.2. This means
that the expectation of the number of contaminated observations, in a signal of length N ,
is N × 20%. θX and θY are chosen such that the contaminated observation achieves a given
Signal Noise Rate (SNR), that is such that SNR = 10 log10(

1
θX

) = 10 log10(
1

θY
) so θ2

X =
θ2

Y = 10−
SNR
10 . X(i) and Y (i) are the components of 2-fGn process with Hurst parameters

HX and HY respectively. The simulation of 2-fGn process is done for ρXY = ρY X = 0.8
and ηXY = ηY X = 0 using the R software functions of the articles [15, 22], this corresponds
to the long-range interdependent case (see, for instance, [15]). To obtain an estimator of
HX + HY , we use the model given by the Eq. (13) for s in the interval [exp(2), exp(4)] with
equidistance step in logarithmic scale equal to 10−1. Figure 1 illustrates the evolution of
log(FZ,W (2, s)2/s) onto log(s) for free (blue curve) and outliers-contaminated (red curve)
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2-fGn process of length N = 80000 where SNR = 5, HX = 0.6 and HY = 0.7, where we
remark the similarity behavior of evolutions of log(FZ,W (2, s)2/s). On the other hand, the
behavior of the error between evolutions of log(FZ,W (2, s)2/s) wish tends to zero is illustrated
by Figure 2. The results of estimation for 1000 independent replications using SNR equal
to 5 and 10 are detailed in tables 1 and 2. The estimation results reveal the convergence of
the least square estimator to the true value HX + HY for all tested values N . As well, the
decline, from N = 1000, of the standard deviation (std) and the mean square error (mse) to
zero.

2.0 2.5 3.0 3.5 4.0

−
3.

6
−

3.
4

−
3.

2
−

3.
0

log(s)

log(F(2, s)2 s)

Fig. 1. Evolution of log(FZ,W (2, s)2/s) versus log(s) of
free (blue curve) and contaminated (red curve) 2-fGn
process.

2.0 2.5 3.0 3.5 4.0

0.
00

5
0.

00
6

0.
00

7
0.

00
8

0.
00

9
0.

01
0

0.
01

1

log(s)

E
rr

or

Fig. 2. Error between evolutions of log(FZ,W (2, s)2/s).

5. Application to Financial Time Series

Recall that the interbank rates are the interest rates traded in the interbank market by
agents and financial institutions. In this section, the analyzed data was the conditional
stochastic volatilities time series of interbank rates of Russia and China. These interbank
rates are named TIRUSSIA and SHIBOR respectively. TIRUSSIA and SHIBOR time series
are collected in the period time from January, 11, 2016 until November, 31, 2020 as a 1204
observations and are downloaded from the web sites http://www.cbr.ru/eng/hd base/

mkr/mkr base/ and http://www.shibor.org/ respectively. The interbank rates time series
comprising the sample are all annual daily overnight rates (for 252 working days) and were
transformed into daily rates per working day (used as the daily return), calculated as follows:

yt = (1 + xt)
1

252 − 1,

where yt represents the interbank rate of a working day and xt the overnight interbank
rate. We focused on this study on the analysis of the conditional stochastic volatility of

http://www.cbr.ru/eng/hd_base/mkr/mkr_base/�
http://www.cbr.ru/eng/hd_base/mkr/mkr_base/�
http://www.shibor.org/�
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Table 1. Estimation results of HX + HY for different N .

SNR = 5 SNR =10

N mean std mse

HX = 0.55, HY = 0.6 N = 500 1.148 0.130 0.130
HX + HY = 1.15 N = 1000 1.153 0.088 0.088

N = 2000 1.159 0.063 0.064

HX = 0.55, HY = 0.65 N = 500 1.195 0.127 0.127
HX + HY = 1.2 N = 1000 1.207 0.089 0.089

N = 2000 1.206 0.065 0.065

HX = 0.55, HY = 0.7 N = 500 1.244 0.128 0.128
HX + HY = 1.25 N = 1000 1.252 0.094 0.094

N = 2000 1.257 0.065 0.066

HX = 0.55, HY = 0.75 N = 500 1.296 0.132 0.132
HX + HY = 1.3 N = 1000 1.299 0.090 0.090

N = 2000 1.306 0.066 0.066

HX = 0.55, HY = 0.8 N = 500 1.349 0.128 0.128
HX + HY = 1.35 N = 1000 1.355 0.091 0.091

N = 2000 1.356 0.063 0.064

HX = 0.55, HY = 0.85 N = 500 1.396 0.125 0.125
HX + HY = 1.4 N = 1000 1.402 0.091 0.091

N = 2000 1.406 0.060 0.060

HX = 0.55, HY = 0.9 N = 500 1.409 0.156 0.161
HX + HY = 1.45 N = 1000 1.424 0.111 0.114

N = 2000 1.432 0.080 0.082

HX = 0.55, HY = 0.95 N = 500 1.488 0.157 0.158
HX + HY = 1.5 N = 1000 1.480 0.108 0.110

N = 2000 1.489 0.073 0.073

mean std mse

1.146 0.123 0.123
1.154 0.087 0.088
1.160 0.060 0.061

1.191 0.127 0.128
1.204 0.087 0.087
1.207 0.060 0.060

1.249 0.134 0.134
1.259 0.092 0.093
1.257 0.067 0.067

1.295 0.127 0.128
1.304 0.092 0.092
1.307 0.064 0.065

1.345 0.125 0.125
1.357 0.089 0.089
1.359 0.066 0.067

1.399 0.123 0.123
1.408 0.089 0.089
1.409 0.063 0.064

1.427 0.158 0.160
1.434 0.109 0.110
1.439 0.079 0.080

1.476 0.151 0.153
1.492 0.108 0.108
1.496 0.076 0.076

such time series yt. To estimate the stochastic volatility, we use the stochastic volatility
model with moving average innovations (SVM-MA) [23], using that there are different studies
that reject the use of ARCH or GARCH models to estimate volatility time series (see, for
instance, [24,23,25]). We remind that the SVM-MA model is given by:

{
yt = µ + εy

t ;
εy
t = ut + ψut−1,

(15)

where ut is a Gaussian random variable with zero mean and having exp (ht) as a variance,
u0 = 0 and |ψ| < 1. On the other hand, the log-volatility ht is assumed to follow the
autoregressive process as:

ht = µh(1− φh) + φhht−1 + εh
t , (16)

where the error term εh
t is a Gaussian random variable with zero mean and variance w2

h,
and also independent of the error term εy

t . The estimation method for fitting model given
by Eq. (15) and Eq. (16) is detailed in [23]. Estimated volatilities time series are illustrated
in figures 3 and 4, and some of their descriptive statistics are given in Table 3.

The augmented Dickey-Fuller (ADF) unit root test [26] and Phillips-Perron (PP) test [27]
are used to explore the stationarity characteristics of conditional stochastic volatility time
series. We used both tests in order to check the robustness of the results. One advantage of the
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Table 2. Estimation results of HX + HY for different N , in the case where HX = HY .

SNR=5 SNR=10

N mean std mse

HX = HY = 0.55, N = 500 1.100 0.128 0.128
HX + HY = 1.1 N = 1000 1.102 0.088 0.088

N = 2000 1.107 0.062 0.063

HX = HY = 0.6, N = 500 1.194 0.133 0.133
HX + HY = 1.2 N = 1000 1.209 0.089 0.090

N = 2000 1.207 0.063 0.063

HX = HY = 0.65, N = 500 1.292 0.137 0.137
HX + HY = 1.3 N = 1000 1.305 0.093 0.093

N = 2000 1.306 0.068 0.068

HX = HY = 0.7, N = 500 1.396 0.139 0.139
HX + HY = 1.4 N = 1000 1.390 0.102 0.102

N = 2000 1.407 0.070 0.071

HX = HY = 0.75, N = 500 1.490 0.146 0.146
HX + HY = 1.5 N = 1000 1.496 0.097 0.097

N = 2000 1.501 0.072 0.072

HX = HY = 0.8, N = 500 1.588 0.146 0.147
HX + HY = 1.6 N = 1000 1.601 0.104 0.104

N = 2000 1.606 0.071 0.071

HX = HY = 0.85, N = 500 1.686 0.151 0.151
HX + HY = 1.7 N = 1000 1.701 0.104 0.104

N = 2000 1.708 0.075 0.076

HX = HY = 0.9, N = 500 1.785 0.147 0.147
HX + HY = 1.8 N = 1000 1.796 0.108 0.108

N = 2000 1.802 0.077 0.077

HX = HY = 0.95, N = 500 1.878 0.158 0.160
HX + HY = 1.9 N = 1000 1.899 0.106 0.106

N = 2000 1.896 0.079 0.079

mean std mse

1.103 0.123 0.123
1.111 0.085 0.086
1.110 0.060 0.061

1.196 0.133 0.133
1.208 0.088 0.088
1.206 0.064 0.064

1.300 0.130 0.130
1.304 0.093 0.093
1.305 0.068 0.068

1.390 0.139 0.139
1.403 0.096 0.096
1.406 0.069 0.069

1.498 0.140 0.140
1.505 0.105 0.105
1.505 0.071 0.071

1.597 0.147 0.147
1.599 0.102 0.102
1.607 0.070 0.070

1.684 0.147 0.148
1.707 0.104 0.104
1.707 0.076 0.077

1.794 0.159 0.159
1.802 0.106 0.106
1.807 0.076 0.077

1.888 0.160 0.160
1.907 0.113 0.113
1.910 0.077 0.077

Table 3. Descriptive statistics of studied time series.

Time series Mean Standard deviation Skewness Kurtosis

Volatility of SHIBOR 0.0144 1.122e-05 -0.025 2.85
Volatility of TIRUSSIA 0.014 1.113e-05 0.065 2.918

PP test over the ADF test is that the former is robust to general forms of heteroscedasticity
in the error term. On the other hand, Akaike information criterion was used to select the lag
length in the ADF test, while Newey-West Bartlett kernel is used to select the bandwidth
for the PP test. Instead, a robust version of Jarque Bera (JB) test [28] and Shapiro-Wilk
(SW) test [29] are applied to test the normality of stochastic volatilities time series. The
results of stationarity and normality tests are illustrated in Table 4. According to Table 4,
the stochastic volatilities time series are stationary and distributed according to the normal
distribution.

Recall that many methods for detecting outliers have been proposed. These methods
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fitting.

include, for example, Z-score method, box-plot method, statistical measures, and asymmetric
winsorized mean method. In this study, in order to detect outliers in volatilities time series,
we applied Tietjen-Moore (TM) test [30] for all windows of length 30, using that TM test is
recommended for a small time series [30]. The results of TM test is given in the last column
of Table 4 where the value between parenthesis indicates the 5%-quantile value of 10000
values of TM statistical test of simulated normal random vector having the same length as
the studied stochastic volatility time series. The results of TM test reveals that the volatility
of SHIBOR rate have 7 outlier observations, whereas for the volatility of TIRUSSIA rate
there are 5 outlier observations.
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Table 4. Results of stationarity, normality and outliers tests for studying time series.

Time series Stationarity tests Normality tests TM test
ADF test PP test JB test SW test

Volatility of SHIBOR -3.435(1)∗∗∗ -3.435(2)∗∗∗ 1.194∗∗∗ 0.998∗∗∗ 0.573(0.588)∗∗

Volatility of TIRUSSIA -3.435(1)∗∗∗ -3.435(9)∗∗∗ 1.161∗∗∗ 0.999∗∗∗ 0.237(0.242)∗∗

Note: (∗∗∗) and (∗∗) denotes the p-value statistical significance at 1% and 5% respectively.

For studied volatilities time series, the evolution of log(FZ,W (2, s)2/s) onto log(s) for
s ∈ [exp(2), exp(4)] is illustrated in Figure 5 with blue points, whereas the least square line
is presented in red curve where the estimator of HX + HY is equal to 1.145. This result
indicates a positive power-law cross-correlation of studied time series, which indicates that a
large increment in one volatility time series is more likely to be followed by a large increment
in the other volatility, which implies some dependence between volatility of interbank rates.
This dependence can be interpreted as a consequence of general monetary policy of BRICS
group and some individual interbank relationship between China and Russia.

There is a general effect that could explain the interbank dependence between BRICS
countries. Recall that the Brazilian development bank, the state bank for development and
foreign economic affairs of Russia, the export and import bank of India, the development bank
of China and development bank of Southern Africa established an interbank cooperation
mechanism in April 2010. This interbank cooperation mechanism would serve as a useful
instrument for cutting trading costs and enhancing intra-BRICS trade and investment. In
addition, at the Durban summit in 2013, the BRICS countries signed two agreements in
the framework of interbank cooperation. One of these agreements is for the co-financing
of infrastructure in Africa and the second one for financing the green economy and for
controlling climate change. Also, in 2014, the BRICS group announced the creation of the
new development bank (NDB) and the Contingent Reserve Arrangement (CRA). The BRICS
governments promoted the NDB and the CRA respectively as alternatives to the World Bank
and the International Monetary Fund.

On the other hand, China and Russia enhance inter-bank cooperation. China develop-
ment bank and sberbank bank of Russia have signed an agreement that will advance financial
cooperation between both countries. Recall that sberbank is the largest bank in Russia and
eastern Europe, and the third largest in Europe. In addition, China development bank is one
of China’s three policy banks, and is primarily responsible for raising funding for large in-
frastructure projects. Under the five-year accord, China development bank and sberbank will
cooperate in financing Russia’s large-scale government projects and infrastructure projects,
international settlement and trade financing, correspondent banking, custody services, per-
sonnel training and experience exchanges that have a total value of some 2 billion dollars. The
agreement gives priority to Chinese-funded projects in oil and gas, electricity, infrastructure,
metal mining, telecommunications, agriculture, and forestry.

According to the empirical finding results about the behavior of volatilities time series, a
vectorial ARFIMA process [31,32] can be applied to modeling the dynamics of such volatil-



November 2, 2021 10:6 WSPC/INSTRUCTION FILE HAL

(Robustness of Detrended Cross-correlation Analysis Method Under Outliers Observations) 11

ities. Additionally, we can propose a vectorial version of SVM-MA model given by Eq. (15)
under hypothesis that log-volatilities time series have a vectorial ARFIMA structure as a
new model for interbank interest rates. These proposed econometrics models can be applied
to confirm the detected long-range dependence between stochastic volatilities, and can be
applied to other stochastic volatilities of interbank interest rates for other countries of BRICS
group.

6. Conclusion

This paper is interested in the problem of power-law cross-correlation under outlier obser-
vations. Where we prove the robustness of a detrended cross-correlation analysis method,
where the trend is estimated using polynomial fitting, on the estimation of the coefficient
characterizing the power-law cross-correlation. We give a polynomial order and a regression
region permits to obtain a good least square estimator of the power-law cross-correlation
coefficient. We confirm our theoretical results by a simulation study on a 2-fGn process cor-
rupted by a outlier observations. An application of our theoretical results, to financial time
series, is also conducted.
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Appendix A. Appendix

Proof of Property 2.1. Let B is a Bernoulli random variable with parameter p and N a
normal random variable with mean µ and variance σ2. If two random variables X and Y are



November 2, 2021 10:6 WSPC/INSTRUCTION FILE HAL

(Robustness of Detrended Cross-correlation Analysis Method Under Outliers Observations) 13

independent, then E[XY ] = E[X]E[Y ]. Since B and N are independent, then

E[(1−B)N ] = E[(1−B)]E[N ] = pµ, (A.1)

and

E
[ k∑

j=1

(1−B(` + j))N(` + j)
]

=
k∑

j=1

E[(1−B(` + j))N(` + j)]

=
k∑

j=1

E[(1−B(` + j))]E[N(` + j)]

=
k∑

j=1

pµ

= kpµ.

Proof of lemma 2.1. Let

ỹi = a0 + a1xi + a2x
2
i + · · ·+ apx

p
i and

yi = a0 + a1xi + a2x
2
i + · · ·+ apx

p
i + ei.

Now, for ~y = (y1, y2, . . . , ys), X = (xj−1
i ) with i = 1, . . . , s and j = 1, . . . , p + 1 and

~a = (a0, a1, . . . , ap), we have

~̃y = X~a and

~y = X~a + ~e.

Then, using that span{X} ⊥ span{e} so X>~e = 0, we have

X>~y = X>X~a + X>~e = X>X~a. (A.2)

So

(X>X)−1X>~y = ~a (A.3)

and

X(X>X)−1X>~y = X~a = ~̃y. (A.4)

Thus X(X>X)−1X> is the projection matrix of ~y on X. If ~y is a time series of uniform
intervals, we can set xi = 1, 2, 3, . . . , s without loss of generality. That is P = S(S>S)−1S>

is the projection matrix of the p-th order polynomial fitting for any time series of uniform
intervals where Si,j = ij−1 with i = 1, . . . , s and j = 1, . . . , p + 1.

Proof of Proposition 2.1. Let Z(t) and W (t) the stochastic processes generating ac-
cording to Eq. 9. The trend, obtained by P-order polynomial fitting, of the vector Zv =
(Zv(1), . . . , Zv(s))> is given by Z̃v = PZv where P is given by lemma 2.1 with p = P. Then,
the detrended covariance function of such outliers-contaminated processes can be written as:

fZ,W
v (s) =

1
s
Z>W where Z = Zv − PZv and W = Wv − PWv. (A.5)
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Using that Zv = Xv + θXµX
v and Wv = Yv + θY µY

v where µX
v = (µX

v (1), . . . , µX
v (s))>,

µY
v = (µY

v (1), . . . , µY
v (s))>, µX

v (k) =
∑k

j=1(1−BX(`v+j))NX(`v+j) and µY
v (k) =

∑k
j=1(1−

BY (`v + j))NY (`v + j). So Z = AXv + θXAµX
v and W = AYv + θY AµY

v where A = Is − P

and Is is a s-identity matrix. Then

E[fZ,W
v (s)] =

1
s
E[Z>W]

=
1
s
E[(AXv + θXAµX

v )>(AYv + θY AµY
v )]

=
1
s
E[(X>

v A> + θXµX
v

>
A>)(AYv + θY AµY

v )]

=
1
s
E[X>

v A>AYv + θY X>
v A>AµY

v + θXµX
v

>
A>AYv + θXθY µX

v

>
A>AµY

v ]; A> = A and A2 = A

=
1
s
E[X>

v AYv + θY X>
v AµY

v + θXµX
v

>
AYv + θXθY µX

v AµY
v ]

=
1
s
E[X>

v AYv] +
1
s
θXθY E[µX

v

>
AµY

v ]; cov(Xv, µY
v ) = cov(Yv, µX

v ) = 0 and E[Xv] = E[Yv] = 0

=
1
s

Tr[Acov(Xv, Yv)] +
1
s
E[Xv]>AE[Yv] +

1
s
θXθY Tr[Acov(µX

v , µY
v )] +

1
s
θXθY E[µX

v ]>AE[µY
v ]

=
1
s

(
Tr(Acov[Xv, Yv]) + θXθY η>Y AηX

)
; cov(µX

v , µY
v ) = 0.

Proof of Corollary 2.1. Let P = 2, a =
∑s

k=1k and b =
∑s

k=1 k2 then

(S>S)−1 =
(
sb − a2

)−1
(

b −a

−a s

)
and η>Y IsηX = µνpY pXb. After computation we ob-

tain η>Y S(S>S)−1S>ηX = µνpY pXb. Then, according to proposition 2.1 and using that
A = Is − S(S>S)−1S>, we have

E[fZ,W
v (s)] =

Tr(Acov[Xv, Yv])
s

. (A.6)

Let λ(?) denotes the eigenvalues ?, by theorem 2 in [33], we have

− 1
2
λmax(−2A)Tr(cov[Xv, Yv]) ≤ Tr(Acov[Xv, Yv]) ≤ 1

2
λmax(2A)Tr(cov[Xv, Yv]), (A.7)

where λmax is the largest eigenvalue. Using that − 1
2λ(−2A) = 1

2λ(2A) = λ(A) and that all
eigenvalues of A are either 0 or 1, so Tr(Acov[Xv, Yv]) = Tr(cov[Xv, Yv]). Then

E[fZ,W
v (s)] =

Tr(cov[Xv, Yv])
s

. (A.8)
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On the other hand, we have

cov[Xv(`), Yv(`)] = cov
[∑̀

j=1

X(`v + j),
∑̀

j′=1

Y (`v + j′)
]

=
∑̀

j=1

∑̀

j′=1

γXY (j′ − j)

=
`−1∑

k=1

(`− k)(γXY (k) + γXY (−k)) + γXY (0)`,

then

Tr(cov[Xv, Yv]) =
s∑

`=1

`−1∑

k=1

(`− k)
(
γXY (k) + γXY (−k)

)
+ γXY (0)

s∑

`=1

`. (A.9)

By Eq. A.8 and Eq. A.9, we have

E[fZ,W
v (s)] =

1
s

s∑

`=1

`−1∑

k=1

(`− k)
(
γXY (k) + γXY (−k)

)
+

σXσY ρXY

s

s∑

`=1

`. (A.10)

Let α = HX + HY 6= 1. For k ≥ 1, we have sign(k − 1) = sign(k) = sign(k + 1) = 1, then

γXY (k) =
σXσY

2
kα(ρXY − ηXY )B(k) where B(k) = (1− 1/k)α − 2 + (1 + 1/k)α. (A.11)

On the other hand, sign(−k − 1) = sign(−k) = sign(−k + 1) = −1, then γXY (−k) =
σXσY

2 kα(ρXY + ηXY )B(−k). Using that B(−k) = B(k), we have γXY (k) + γXY (−k) =
σXσY ρXY

2 kαB(k), so

E[FZ,W (2, s)2] =
σXσY ρXY

2s

s∑

`=1

`−1∑

k=1

(`− k)kαB(k) +
σXσY ρXY

s

s∑

`=1

`. (A.12)

If s is large enough, the principal term in s of E[FZ,W (2, s)2] is given by σXσY ρXY

2s

∑s
k=1(s−

k)kαB(k) + σXσY ρXY

2 s. Using that kαB(k) = (k − 1)α − 2kα + (k + 1)α, then

1
s

s∑

k=1

(s− k)kαB(k) = sα+1
(∫ 1

0

(1− x)
(
(x− 1

s
)α − 2xα + (x +

1
s
)α

)
dx +O(s−1)

)
. (A.13)

If s is large enough, the integral
∫ 1

0
(1−x)

(
(x− 1

s )α−2xα +(x+ 1
s )α

)
dx tends to zero. Thus

E[FZ,W (2, s)2] =
σXσY ρXY

2
sαO(1) +

σXσY ρXY

2
s. (A.14)


