
HAL Id: hal-03411227
https://hal.science/hal-03411227

Submitted on 5 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Event-B Formalization of Event-B Contexts
Jean-Paul Bodeveix, M Filali

To cite this version:
Jean-Paul Bodeveix, M Filali. Event-B Formalization of Event-B Contexts. 8th International Confer-
ence on Rigorous State-Based Methods (ABZ 2021), Jun 2021, Ulm, Germany. pp.66-80, �10.1007/978-
3-030-77543-8_5�. �hal-03411227�

https://hal.science/hal-03411227
https://hal.archives-ouvertes.fr

Event-B Formalization of Event-B
Contexts

Jean-Paul Bodeveix1 and Mamoun Filali2(B)

1 IRIT-UPS, 118 Route de Narbonne, 31062 Toulouse, France
jean-paul.bodeveix@irit.fr

2 IRIT-CNRS, 118 Route de Narbonne, 31062 Toulouse, France
mamoun.filali@irit.fr

Abstract. This paper presents an Event-B meta-modelisation of an
Event-B project restricted to its context hierarchy which introduces the
functional part of a development through sets, constants, axioms and
theorems. We study the proposal of a new mechanism for Event-B. It
consists in allowing to instantiate in a new context an already proved
theorem in a given context. We investigate the validation of the instan-
tiation mechanism in order to prove the validity of imported theorems.
We also compare the proposal with similar mechanisms available within
some existing theorem provers.

Keywords: Formal methods · Event-B · Meta modelisation

1 Introduction

Event-B [1] is a formal method for the rigorous development of systems. One of
its salient features is the Rodin tool [2] which offers an integrated environment
for developing and proving. The aim of the EBRP (Enhancing Event-B and
Rodin Plus) project1 is to enhance the framework offered by Rodin in order
to better support reuse in Event-B developments thanks to the introduction of
generic theories and data types. This enhancement follows the initial work of
[4,7]. As a first step of the project, a light extension of the Event-B language
and tool has been proposed. In this paper, we investigate an Event-B meta-level
description of this extension. An Event-B model consists in a functional model
made of an acyclic graph of contexts and a dynamic model using the functional
part which consists of successive event-based machine refinements. We focus here
on the new reusability mechanism currently studied by the EBRP project for the
functional model. It consists in reusing (importing) instances of theorems and
axioms considered to be parameterized by the sets and constants declared in their
context. The aim of this paper is to validate this importation mechanism: more
precisely, we wish to establish the validity of an instance of an imported theorem.
For this purpose, we propose a meta-level study of Event-B context structure

1 The project EBRP is supported by the French research agency: ANR.

1. https://doi.org/10.1007/978-3-030-77543-8_5

cFormula

cProject cImport

cStaticcValidity cImportStatic

cSemantics cImportSemantics

Standard Event-B

Extension

Fig. 1. Metamodel architecture

extended with importation clauses. Figure 1 shows the meta modelisation of
a standard Event-B context and its extension with importation/instanciation
clauses.

The rest of the paper is structured as follows: Section 2 presents an Event-
B meta-model of an Event-B project made of contexts. Section 3 extends this
meta-model by the proposed importation mechanism. Section 4 presents similar
mechanisms that can be found in other proof environments. Section 5 concludes
this paper.

2 Event-B Contexts

In this section, we give a meta-level description of a project made of a hier-
archy of contexts. Starting with a high level description of formulas (context
cFormula), we introduce the subset of valid formulas (context cValidity) and
describe the project structure as a set of contexts (context cProject). Semantics
constraints are introduced through the contexts cStatic and cSemantics. The
new importation feature is introduced in the cImport context with semantic
constraints in cImportStatic and cImportSemantics. To summarize, the stan-
dard representation is structured as a set of contexts corresponding to the left
hand side of Fig. 1 and the proposed extension in its right hand side. Moreover,
we illustrate the architecture of these contexts through UML-like diagrams2.

2.1 Formulas

Formulas (see Fig. 2) are modelled at an abstract level. Its free variables are
either sets (acting as base types) or constants. A formula denotes either an
expression or a predicate. Some expressions (left unspecified here) denote types.
The text of a formula is not considered.

2 We could have used the UML-B plugin [9].

Formula

Expression Predicate

Type

Set Constant
ref stes * ref constants *

Fig. 2. cFormula context

However, the relations ref sets and ref csts associate respectively the
referenced sets and constants. Formulas are partitioned into Expression and
Predicate. Note that we have not modeled the type of an expression and typ-
ing constraints. Note also that we could have declared the two relations ref sets
and ref csts as functions to power sets of sets or constants. However, it would
make more difficult to use the relational composition in order to navigate through
the metamodel. These notions are declared through the following labelled (the
‘@’ tag) Event-B axioms3:

@Formula part partition(Formula,Expression , Predicate)
@ref sets ty ref sets ∈ Formula ↔ Set
@ref csts ty ref csts ∈ Formula ↔ Constant

A Type is seen as a special expression which only refers to sets (not con-
stants)4.

@Type ty Type ⊆ Expression // type expressions such as P(A) and A × B

@ref type Type � ref csts = ∅ // A type expression doesn’t reference a constant

An important operation on formulas is substitution (subst): a set can be
replaced by a Type and a constant by an Expression. The main static property of
a substitution: subst ref is that unreferenced sets and constants can be removed
from the substitution domain. This expressed through a domain restriction (�).
We use this property to show that an imported instance of a theorem remains a
theorem5 6 7.

@subst ty subst ∈ (Set �→ Type) × (Constant �→ Expression) × Formula → Formula
@subst ref ∀s,c, f · s ∈ Set �→Type ∧ c ∈ Constant �→Expression ∧ f ∈ Formula ⇒

subst(s �→c�→f) = subst(ref sets [{ f}] � s �→ ref csts [{ f}] � c �→ f)

3 A ↔ B denotes the set of relations from A to B : A ↔ B � P(A × B).
4 � denotes domain restriction: s � r � r ∩ (s × ran(r)).
5 x �→ y denotes the ordered pair (x , y).
6 s � t denotes a partial function.
7 r [s] denotes the relational image by r of the set s: r [s] � ran(s � r).

2.2 Validity

We first introduce a sequent as a pair formed by a set of hypothesis predicates
and a conclusion predicate. Valid sequents are introduced as a subset.

@Sequent def Sequent = P(Predicate) × Predicate
@Valid ty Valid ⊆ Sequent

With respect to our concerns, we consider only two axioms about sequents:
monotony and substitution of free identifiers which are sets and constants. The
first one states that if the hypotheses of a valid sequent are enriched, the sequent
remains valid.

@Valid mono ∀H1,H2,G· H1⊆H2 ∧ H1 �→G ∈ Valid ⇒ H2 �→G ∈ Valid
@subst V ∀H,G,s,c· H�→G ∈ Valid ∧ s ∈ Set �→ Type ∧ c ∈ Constant �→ Expression ⇒

{h·h ∈ H | subst(s�→c�→h)} �→ subst(s�→c�→G) ∈ Valid

2.3 Project

Context

Assertion
Predicate

(from cFormula)

Axiom Theorem

Set
(from cFormula)

Constant
(from cFormula)

extend

*

*1

assertion

*
1 predicate *

1
set*

1
constant*

cProject

Fig. 3. cProject context

A project contains contexts denoted by the set Context linked by the extend
relation extend. extend is declared irreflexive and transitive (Fig. 3).

@extend ty extend ∈ Context ↔ Context // c1 extends c2
@extend irr id ∩ extend = ∅
@extend trans extend;extend ⊆ extend

Sets and constants are defined within contexts. A set or a context is defined
once8. Note that a set or a constant can be present in unrelated contexts (through
the extend relation).
8 r1; r2 denotes relation composition, usually denoted r2 ◦ r1. It is used to navigate in

the metamodel along a chain of links.

@set ty set ∈ Context ↔ Set
@constant ty constant ∈ Context ↔ Constant
// a set is defined once in a hierarchy of contexts
@set uniq pred (extend; set) ∩ set = ∅
// a constant is defined once in a hierarchy of contexts
@cst uniq pred (extend;constant) ∩ constant = ∅

In a context, assertions are stated. An assertion is characterized by a pred-
icate. assertion defines the relation between contexts and assertions. Axioms
and theorems define distinct assertions.

@assert ty predicate ∈ Assertion → Predicate
@ass ty assertion ∈ Context ↔ Assertion
@ass ctx assertion −1 ∈ Assertion → Context
@Assert fin finite (Assertion)
@Axiom ty Axiom ⊆ Assertion
@Theorem ty Theorem ⊆ Assertion
@AxThm Axiom ∩ Theorem = ∅

axiom and thm are respectively the restriction of assertion to axioms and
theorems.

@ax ty axiom = assertion � Axiom
@thm ty thm = assertion � Theorem

2.4 Static Correcness

Theorem
(from cProject)

WFC
Formula

(from cFormula)
wd 0..1

cStatic

Fig. 4. cStatic context

The static correctness of a project is introduced in the context cStatic. First, sets
and constants used by an assertion should be visible from the current context
(Fig. 4).

// sets referenced by an assertion are declared
// in the context of the axiom or its ancestry
@sets ext assertion ; predicate ; ref sets ; set−1 ⊆ id ∪ extend
// sets referenced by an assertion are declared
// in the context of the axiom or its ancestry
@csts ext assertion ; predicate ; ref csts ;constant−1 ⊆ id ∪ extend

Second, well-formedness conditions are introduced through the subset WFC
of Theorem. Static correctness is defined by associating through the wd partial
function a wellformedness condition to a formula. It is an assertion to be proven,
i.e. a theorem.

@WFF ty WFC ⊆ Theorem
@WD ty wd ∈ Formula �→ WFC

Furthermore, a WFC is well formed by construction and thus does not appear
in the domain of wd.

@WD WD predicate[WFC] ∩ dom(wd) = ∅

The well-definedness condition of a formula does not reference new sets or
constants with respect to the initial formula.

@sets wd wd;predicate ; ref sets ⊆ ref sets
@csts wd wd;predicate ; ref csts ⊆ ref csts

2.5 Semantics

Assertion
(from cProject)

depends

*

*

cSemantics

Fig. 5. cSemantics context

The soundness of a context is established through the proof of the validity of
its theorems. The proof is abstracted by specifying axioms it uses. We introduce
them through the depends relation (Fig. 5).

@depends ty depends ∈ Assertion ↔ Assertion

An assertion can only depend on assertions that are visible from the cur-
rent context. We also state that an assertion depends on its well-definedness
condition.

@depends extends assertion ;depends ⊆ (id ∪ extend); assertion
@depends WD predicate;wd ⊆ depends

Moreover, the depends relation is supposed to be irreflexive and transitive.

@depends irr id ∩ depends = ∅
@depends trans depends;depends ⊆ depends

A sequent is built from theorems. Its hypotheses are all the assertions on
which the theorem depends. Its conclusion is the predicate associated to the
theorem itself. The semantics of the theorem annotation is thus defined by stat-
ing that this sequent is valid.

@THM V ∀t· t ∈ Theorem ⇒ (depends;predicate)[{t}] �→ predicate(t) ∈ Valid

3 Instantiation of Assertions

This section presents a metamodelisation and the validation of an instanciation
mechanism proposed by the EBRP project. It is structured as a set of contexts
as shown by the right hand side of Fig. 1.

3.1 Informal Presentation

Let us consider a simple generic example with an axiom used to prove a theorem:

context gen
sets T
axioms

@axm1 ∀x,y·x ∈ T∧y ∈ T ⇒ x=y
theorem @th1 T�=∅ ⇒ (∃x·T={x})
end

context instance1
axioms // import th1 with T mapped to Z

@@th Z�=∅ ⇒ (∃x·Z={x}) // gen|T :=Z|th1
end

Within a tool developed by the EBRP project, the proposed syntax to achieve
the instanciation of th1 in context instance1 is given as a comment. It contains
three fields: the context to be imported, instanciation parameters and the name
of the target assertion. The instanciated formula can then be automatically
generated.

Theorem th1 can be proved in context gen using axiom atm1. th is a (con-
sidered correct) instance of th1. However, while it is expected that importing a
theorem should give a theorem, actually th is not a theorem. For the assertion
“imported theorems are valid” to be valid, a sufficient condition can be that all
previous axioms should be imported before as theorems (to be proved), and with
the same instance parameters. This is illustrated by the context instance2 (see
Fig. 6).

context instance2
axioms // import axm1 and th1

theorem @@PO ∀x,y·x ∈ Z∧y ∈ Z ⇒ x=y // gen|T :=Z|axm1
@@th Z�=∅ ⇒ (∃x·Z={x}) // gen|T :=Z|th1

end

So imported axioms appearing before imported theorems should become
proof obligations (thus marked as theorems). Imported theorems should not be
proved again and thus appear as axioms.

Here, the theorem PO cannot be proved. It follows that unsoundness of the
context instance2 is clearly pointed out, which is the expected behavior. To
sum up, instance1 should be rejected because an axiom preceding th1 has not
be imported as theorem; instance2 is accepted by the static type checker but
cannot be validated by the user. instance3 is an example satisfying the static
rules and for which the proof obligation for atm1 instance can be discharged.

context instance3 // a correct instance of gen
sets Unit
constants void
axioms

@part partition (Unit, {void})
theorem @@atm1 ∀x,y·x ∈ Unit∧y ∈ Unit ⇒ x=y // gen|T :=Unit|axm1
@@th Unit �=∅ ⇒ (∃x·Unit={x}) // gen|T :=Unit|th1

end

axm1: Axiom

th1: Theorem

axm1 th1
proved by user

@@po: Obligation

@@th: ImportedThm

@@po @@th
valid by construction

depends depends

imported Assertion

[T := Z]

imported Assertion

[T := Z]

importing context
instance2

source context
gen

Fig. 6. Imported theorem

3.2 Importation of External Assertions

Import

Axiom
(from cProject)

ImportedAxiom ImportedTheoremObligation

Assertion
(from cProject)

importedAssertion1

cImport

Fig. 7. cImport context

Importation points are added to standard Event-B assertions inside contexts.
An importation point is a reference to an assertion of a remote context. Three
kind of importations are distinguished: imported axioms, imported theorems
and obligations (Fig. 7).

axioms
@Import ty Import ⊆ Assertion
@imports ty imports = assertion � Import
@obl ty Obligation ⊆ Import
@ImportedThm ty ImportedTheorem ⊆ Import
@ImportedAxm ty ImportedAxiom ⊆ Axiom

Obligations should be proved by the importing context and are thus declared
as a subset of Theorem. An ImportedTheorem is valid by construction. An
ImportedAxiom is an instance of an axiom that remains axiomatic in the import-
ing context.

Note that imported theorems should not be proved again. Either their cor-
rectness are guaranteed by a meta-level argument (Transformation verification
approach), or a proof can be automatically generated and checked (translation
validation approach).

@Import part partition (Import, ImportedAxiom, ImportedTheorem, Obligation)
@importedAssertion ty importedAssertion ∈ Import → Assertion
@importedContext def importedContext = importedAssertion;assertion−1

@isObligation importedAssertion [Obligation] ⊆ Axiom
@isTheorem importedAssertion[ImportedTheorem] ⊆ Theorem ∪ ImportedTheorem

Last, a substitution of remote sets and constants is associated to each impor-
tation point. Sets are substituted by type expressions and thus only refer to sets.
Constants are substituted by any expression of compatible type and may refer
to sets or constants9.

@isAxiom importedAssertion[ImportedAxiom] ⊆ Axiom
@importedContext present importedContext−1;importedAssertion ⊆ axiom
@set subst ty set subst ∈ Import × Set �→ Type
@cst subst ty cst subst ∈ Import × Constant �→ Expression
// formal set parameters are declared in the source context
@setp decl dom(set subst) ⊆ ran(imports ⊗ set)
// formal constant parameters are declared in the source context
@cstp decl dom(cst subst) ⊆ ran(imports ⊗ constant)

Referred sets and constants should be visible by the importing context. All
remotely accessed sets and constants should be substituted.

// constants of actual parameters for constants are visible by the importing context

@cs rc (imports⊗(Context×Constant));cst subst; ref csts ⊆ (id∪extend);constant
// sets of actual parameters for constants are visible by the importing context

@cs rs (imports⊗(Context×Constant));cst subst; ref sets ⊆ (id∪extend);set
// sets of actual parameters for sets are visible by the importing context
@ss rs (imports⊗(Context×Set));set subst; ref sets ⊆ (id∪extend);set
// all sets used by the imported axiom are substituted

@sr subst importedAssertion ; predicate ; ref sets ⊆ dom(set subst)

9 r ⊗ s � {x �→ (y �→ z) | x �→ y ∈ r ∧ x �→ z ∈ s}.

Note that the model could be refined to introduce typing conditions and con-
strain expressions to be used by substitutions.

3.3 Static Verification of Importations

In order to guarantee the validity of imported theorems, we link the dependency
relation and importation clauses: all dependent assertions on which the imported
assertion depends should also be imported. The importing clause should depend
on these imports. Derived imports should use compatible substitutions, i.e. com-
mon sets or constants should be substituted by the same expressions.

@import depends ∀ctx,imp·
ctx �→imp ∈ imports ∧ importedAssertion(imp) ∈ Theorem ∪ ImportedTheorem ⇒

(∀ax· importedAssertion(imp) �→ ax ∈ depends ⇒
(∃impa· ctx �→impa ∈ imports ∧
imp �→ impa ∈ depends ∧
ax = importedAssertion(impa) ∧
(∀s· imp �→s ∈ dom(set subst) ∧ impa �→s ∈ dom(set subst) ⇒

set subst (imp�→s) = set subst(impa�→s)) ∧
(∀c· imp �→c ∈ dom(cst subst) ∧ impa�→c ∈ dom(cst subst) ⇒

cst subst (imp�→c) = cst subst(impa�→c))
))

3.4 Correctness of Theorem Instantiation

We first define the semantics of an imported assertion as the assertion obtained
by applying the substitution declared in the importation clause to the imported
assertion:

@importPredicate ∀imp· imp ∈ Import ⇒
predicate (imp) = subst({s�→t | (imp �→s)�→t ∈ set subst} �→

{c�→e | (imp �→c)�→e ∈ cst subst} �→ predicate(importedAssertion(imp)))

The correctness theorem states that the sequent formed by assertions on
which the import depends and imported statement is valid. The imported state-
ment can be itself an instance of another distant statement. We thus suppose
that the union of the dependency and importation graphs is acyclic. The base
case of the result is then given by the following theorem:

theorem @ImportValid ∀ctx,imp·ctx�→imp ∈ imports ∧
importedAssertion(imp) ∈ Theorem ⇒

(depends;predicate)[{ imp}] �→ predicate (imp) ∈ Valid

Given a context ctx and an importation point imp,

– let th=importedAssertion(imp) and suppose it is a theorem. By axiom
THM V of cSemantics (Sect. 2.5) the following sequent is valid:

(depends;predicate)[{th}] �→ predicate(th)

– Using the set and constant substitutions (S ,C) declared in importation
point imp, we have predicate(imp) = subst(S,C,predicate(th)) through
axiom importPredicate of Sect. 3.4.

– Using axiom subst V of Sect. 2.2, we can instanciate the sequent to get a new
valid sequent Sq2: subst(S,C)[(depends;predicate)[{th}]] �→ th.

– Thanks to axiom import depends of Sect. 3.3, antecedents of the imported
theorem have been imported before with compatible substitutions, i.e. imp
depends on these importation points.

– Thanks to axiom subst ref of Sect. 2.1, applying substitutions (S ,C) gives
the same result.

– Thus, thanks to the monotonicity of validity (axiom Valid mono of Sect. 2.2),
the sequent concluding on th and containing its dependencies contains enough
hypotheses to be valid.

4 Related Concepts

In this section, we review modularity constructs that can be found in various
theorem provers. We reuse the same example to illustrate their features and
compare them with respect to some key features.

4.1 Section Mechanism in Coq

Variables or hypotheses can be declared in a Coq [10] section and used freely in
the rest of the section.

Section Gen.
Variable T: Type.
Hypothesis axm1: forall (x y: T), x=y.
Theorem th1: (exists x:T, True) → exists x:T, (forall y:T, x=y).
intros. destruct H as [x _]. exists x; auto.

Qed.
End Gen.

When the section is closed, variables or hypotheses used by definitions or
theorems are made parameters. Here th1 is now seen as a function parameterized
by a type T, a proof of axm1 property, and a proof that T is inhabited. An instance
of th1 can be obtained through a partial call of th1 with a type and a proof,
leading to th definition.

Section Instance.
Inductive unit: Type := One.
Lemma unit_eq: forall (x y: unit), x=y.
intros; destruct x; destruct y; auto.

Qed.
Definition th := th1 unit unit_eq.

End Instance.

Note that it is not necessary to introduce the lemma unit eq before instan-
tiating the theorem th1: a proof obligation could be generated through the use
of Program Definition.

4.2 Module Mechanism in Coq

The theorem th1 is now proved inside a parameterized module (or functor). Its
parameter is typed by the module type tGen declaring T and axm1.

Module Type tGen.
Parameter T: Type.
Parameter axm1: forall (x y: T), x=y.

End tGen.
Module Gen(U: tGen).
Theorem th1: (exists x:U.T, True) → exists x:U.T, (forall y, x=y).
intros. destruct H as [x _]. exists x. apply U.axm1.

Qed.
End Gen.

In order to use the contents of Gen, it must be instanciated by passing a
module compliant with tGen. We introduce the module U defining a one-element
type and proving the required property. Then Gen can be instanciated, which
leads to the module instance I.

Module Instance.
Module U <: tGen.
Inductive unit: Type := One. Definition T := unit.
Lemma axm1: forall (x y: unit), x=y.
intros; destruct x; destruct y; auto.

Qed.
End U.
Module I := Gen U.
Definition th := I.th1.

End Instance.

4.3 Locales in Isabelle/HOL

Locales [3] introduce a module system in the theorem prover Isabelle [11]. In the
following, the locale gen is parameterized by the variable T typed as a set over
the polymorphic type ’a and states the assumption atm1 over the variables of
the set T. Thanks to this assumption, the theorem th1 is then proved.

locale gen =
fixes T :: ”’a set”
assumes atm1: ”∀ x ∈ T. ∀ y ∈ T. x=y”

begin
theorem th1: shows ”T �= ∅ → (∃x ∈ T. T={x})”
proof using atm1 by blast
qed

end

The constant S is then defined as the singleton {1}. The latter set is used
to give an intepretation to the locale gen. Then, this intepretation requires to

discharge the assumptions of the locale considered as proof obligations. After
unfolding the definition of S and thanks to the powerful tactic auto these obli-
gations is automatic.

definition ”S = {1}”
interpretation i : gen ”S” unfolding S def by unfold locales auto

4.4 Clones of Why3

In why3 [5], a theory can declare abstract types and axioms which are used to
prove theorems:

theory Gen
type t
axiom axm1: ∀ x y:t. x=y
goal th1: (∃ x:t. �) → ∃ x:t. ∀ y:t. x=y

end

The theory can be instanciated by given values to abstract types. Then
axioms automatically become proof obligations. Proof attempts are then per-
formed by the tool, and the contents of the instantiated theory become available
to check remaining declarations of the Instance theory. The mechanism is less
heavy but similar to Coq modules.

theory Instance
type u = Unit
clone Gen as G with type t = u (* axm1 instance is a proof obligation *)

end

4.5 Modules of TLA+

In TLA+ [8], modules can state assumptions and use them for proofs.

1 module gen
2 constants T
3 assume atm1 Δ= ∀ x , y ∈ T : x = y
5 theorem th1 Δ= T = {} =⇒ (∃ x ∈ T : T = {x})
6 1 qed by atm1
8

In order to instantiate a module, one has to provide the constants (and the
variables) that are used in this module. It is also possible to inherit the theo-
rems of this instantiated module. However, each such theorem has an additional
hypothesis consisting of the assumptions of the instantiated module. Otherwise
stated, the reuse of a theorem is possible once the assumptions of its module
have been discharged.

1 module instance
3 constant Z
5 theorem PO Δ= ∀ x , y : x ∈ Z ∧ y ∈ Z =⇒ x = y
7 i Δ= instance gen with T ← Z
9 theorem th Δ= Z = {} =⇒ (∃ x ∈ Z : Z = {x})

10 1 qed by i !th1, PO
12

4.6 Summary

In this section, we summarize some features offered by the module systems of
the different proof environments. We have considered three criteria:

– The instantiation syntax: is it possible to extract a single theorem from a mod-
ule? How formal parameters are given? Do they take implicit values (effective
parameter with the same name as the formal parameter)?

– Interaction with provers: is it possible to prove obligations before instantiating
the module, during module instantiation, or does the parameter property
become a hypothesis of the extracted theorem?

– Extensibility of generic modules: is it possible to extend the generic theory
by adding new parameters or new theorems?

Coq Sections Coq Modules Isabelle Why3 TLA Rodin

Theorem import � �

Named parameters � �

Implicit parameters � �

Type param. synthesis � � � � � �

Anticipated proof � � � � �

Proof obligation � � � �

Axioms as assumptions � �

Extensibility � � � � �

As said in the introduction, the current integration of these features is inves-
tigated as a light extension of the Rodin tool. Ticks in the Rodin column indicate
in-development features. Extensibility is by nature present through Rodin con-
text extension. The other features presented in the table have no impact on the
meta-level analysis and will be reflected by the choices done in the final IDE of
the tool under construction.

5 Conclusion

In this paper, we have tried to put forward the meta level description of an
extension currently studied within the EBRP project. The aim of this meta-
modelisation is to validate the expected properties of theorem instantiation. It

has been done using current Event-B contexts. This axiomatic formalization
could be considered as the formal specification of a static semantic checker of
(extended) Event-B models. Also, an interesting evolution of this work could be
to take into account the enhancements that are currently being implemented
within the EBRP project, as well as some features already available within the
plugin theory [7] (inductive types, definition by cases, . . .). It would be an inter-
esting validation of these enhancements. A more ambitious aim would be to
standardize the syntax and semantics of Event-B [6] through Event-B. It would
need to take into account machines, refinements, types,

Acknowledgement. We thank the anonymous reviewers for their helpful comments.

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York (2010)

2. Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Tech-
nol. Transf. 12(6), 447–466 (2010)

3. Ballarin, C.: Locales: a module system for mathematical theories. J. Autom. Rea-
son. 52(2), 123–153 (2014)

4. Butler, M., Maamria, I.: Practical theory extension in Event-B. In: Liu, Z., Wood-
cock, J., Zhu, H. (eds.) Theories of Programming and Formal Methods. LNCS, vol.
8051, pp. 67–81. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39698-4 5

5. Filliâtre, J.-C., Paskevich, A.: Why3—where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-37036-6 8

6. Hallerstede, S.: On the purpose of Event-B proof obligations. Formal Aspects Com-
put. 23(1), 133–150 (2011)

7. Hoang, T.S., Voisin, L., Salehi, A., Butler, M.J, Wilkinson, T., Beauger, N.: Theory
Plug-in for Rodin 3.x. CoRR, abs/1701.08625 (2017)

8. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, Boston (2002)

9. Snook, C., Butler, M.: UML-B: a plug-in for the Event-B tool set. In: Börger,
E., Butler, M., Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, p. 344.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87603-8 32

10. The Coq Development Team. The Coq Proof Assistant, January 2021
11. Wenzel, M., Paulson, L.C., Nipkow, T.: The Isabelle framework. In: Mohamed,

O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 33–38.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71067-7 7

