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Abstract

The growing trend to use multi-core processors to get more performance is

increasingly present in safety-critical systems. Synchronous dataflow program-

ming is naturally well-suited to parallel execution, thanks to the fact that all

data dependencies are always explicit. MiniSIGNAL is a multi-task code gen-

eration tool for the synchronous dataflow language SIGNAL. The existing Min-

iSIGNAL code generation strategies mainly consider coarse-grained parallelism

based on Ada multi-task model. However, when we applied it to industrial

case studies, this code generation scheme has revealed inefficient: architecture

aspects of the target platform have to be taken into account to achieve fine-

grained parallelism. To generate more efficient target code from industrial cases,

this paper presents a new multi-task code generation method for MiniSIGNAL.

Starting at the level of synchronous clocked guarded actions (S-CGA) which is

an intermediate language for the compilation process of MiniSIGNAL, the trans-

formation consists of two parts: at the platform-independent level, transforming

the S-CGA representation to an abstract multi-task structure (called Virtual

Multi-Tasks, VMT); at the platform-dependent level, adopting the thread pool

pattern concurrent JobQueue to support fine-grained parallel Ada code genera-
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tion from the VMT structure. Moreover, the formal syntax and the operational

semantics of VMT are mechanized in the proof assistant Coq. Finally, the ef-

fectiveness of our approach is illustrated by an application of the real-world

Guidance, Navigation and Control system.

Keywords: Safety-critical systems, Synchronous dataflow language, Multi-task

code generation, Ada, Multi core
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1. Introduction

Safety-critical systems are those systems whose failure could result in loss

of life, significant property damage, or damage to the environment. There are

many well known examples in application areas such as avionics and space sys-

tems. Currently, Model-Driven Development (MDD) is generally accepted as5

a key enabler for the design of the safety-critical systems. For example, in

the guidance of civil avionics software certification DO-178C [1], MDD (DO-

331) and formal methods (DO-333) are considered as vital technology sup-

plements. There are many MDD languages and approaches covering various

modeling demands, such as UML for generic modeling, SysML for system-level10

modeling, AADL [2] for the architectural modeling and analysis of embedded

systems, SCADE 1 and Simulink for functional modeling, and Modelica for

multi-disciplines modeling.

Synchronous languages, which rely on the synchronous hypothesis, are widely

adopted in the design and verification of safety-critical systems. There are sev-15

eral synchronous languages, such as LUSTRE [3] , ESTEREL [4], SIGNAL [5],

QUARTZ [6], PRELUDE [7], SCADE, and so on. SCADE is the industrial ver-

sion of LUSTRE, which is commercialized by ANSYS/ESTEREL TECHNOLO-

GIES. SIGNAL is a kind of polychronous language, and it naturally considers

a mathematical time model, in terms of a partial-order relation, to describe20

1https://www.ansys.com/products/embedded-software/ansys-scade-suite
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multi-clocked systems. Safety-critical systems have evolved to use multi-core

processors to get higher computation performance to implement advanced func-

tionalities, such as autonomous driving in the flight control. Several recent

works focus on multi-task code generation and the scheduling and mapping of

tasks to multi-core processors, with synchronous languages. For instance, the25

mapping of PRELUDE programs to many-core architectures [8], extension of

SCADE code generator to support multi-core platform [9][10], parallel code gen-

eration of LUSTRE synchronous programs for a many-core architecture [11],

compilation of ESTEREL for multi-core execution[12], generating OpenMP-

based multi-threaded code from the intermediate representation of QUARTZ30

[13][14]. In our case, building on our previous works, such as the mechanized

semantics of a subset of SIGNAL in Coq [15], and the sequential code generation

of SIGNAL [16][17], we mainly focus on the SIGNAL language.

1.1. Research Problems

In terms of multi-task code generation for SIGNAL, the existing SIGNAL35

compiler Polychrony2 uses micro-level threading which creates a large number

of threads and equally large number of semaphores. Thus, Jose et al. [18] pro-

pose a process-oriented and non-invasive multi-task code generation using the

sequential code generators in Polychrony and separately synthesise some pro-

gramming glue. Moreover, in our previous works such as [19], we propose a novel40

multi-task code generator for SIGNAL, called MiniSIGNAL, which consists of

the front-end (from SIGNAL to the intermediate language S-CGA (Synchronous

Clocked Guarded Action)) and back-end (from S-CGA to target languages). For

the back-end, this paper proposes a platform-independent structure called Vir-

tual Multi-Tasks (VMT) which is defined as a common multi-task structure for45

different target platforms of our compiler.

For a synchronous program, several levels of parallelization are possible,

such as inter-block parallelization (coarse-grained), intra-block parallelization

2http://www.irisa.fr/espresso/Polychrony/
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(fine-grained), and so on. The existing MiniSIGNAL code generation strate-

gies mainly consider coarse-grained parallelism based on Ada multi-task model.50

However, this code generation scheme has revealed inefficient: architecture as-

pects of the target platform have to be taken into account to achieve fine-grained

parallelism, for instance reusing in-cache data is always expected. Moreover,

sometimes the task’s execution time is very short. Hence, creating tasks and

context-switching between them incur significant overhead. To generate more55

efficient target code from industrial cases, this paper presents a new multi-task

code generation method for MiniSIGNAL.

We select Ada as the target language because Ada is an explicit-concurrency

and high-safety programming language which is very popular in the safety-

critical systems, especially in the aerospace industry such as Airbus, ESA, NASA60

and China Aerospace. The Ada language includes support for concurrency as

part of the language standard, by means of Tasks, which are entities that denote

concurrent actions, and inter-task communication mechanisms such as protected

objects or the rendezvous mechanism. This model is targeted to support the

concurrent functionalities that the software should support, providing coarse-65

grained parallelism. Recently, two complementary research lines are tackling

the extension of Ada to support fine-grained parallelism, for instance: 1) The

next revision of Ada standard (Ada 202x) [20] is currently considering a draft

proposal of parallel model. It specifies that an Ada task (a concurrent activity)

can represent multiple logical threads of control which can proceed in parallel70

within the context of well specified parallel regions: parallel blocks and paral-

lel loops. However, it is still not available now. 2) Sara Royuela et al. [21]

proposed the incorporation of the OpenMP parallel programming model into

Ada. However, in OpenMP a structured concurrency is enforced and we do not

always have such a structure. JobQueue is an alternative way to exploit fine-75

grained parallelism. In this paper, we extend the multi-task code generation of

MiniSIGNAL with concurrent JobQueue (i.e., several JobQueues with shared

memory). For instance, one task is created for one core at initialisation time,

a job is a set of data that is processed by a task. Thus the overhead of creat-
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ing/destroying tasks and context switching between them can be reduced. The80

jobs which belong to a task, are stored in a job queue, and workers are employed

by the job scheduler to process the jobs. Efficient job scheduling improves re-

source utilization by automatically load-balancing jobs across workers, thereby

enhancing the overall performance of the computation. Inspired by the work of

[22] and [23], this paper presents a lock-free implementation of the work-stealing85

JobQueue scheduler in Ada.

In addition, the front-end of our compiler prototype has been proven in the

proof assistant Coq 3 [16]. In this paper, the formal syntax and the operational

semantics of VMT are also mechanized in Coq. Invariants are put forward and

allow the proof of an important structural property: when a task is started, its90

required data have already been computed.

1.2. Main Contributions

The main contributions of the paper can be summarised as follows:

• A new multi-task code generation approach is proposed for transforming

S-CGA models to multi-task Ada code. The transformation is divided95

into two parts:

– Platform-independent level. A platform-independent structure, called

Virtual Multi-Tasks (VMT), is defined as a common multi-task struc-

ture for different target platforms of our compiler. The transforma-

tion algorithm from S-CGA to VMT is given.100

– Platform-dependent level. Concurrent JobQueue is adopted for im-

plementing the platform-dependent parallel code to provide fine-grained

parallelization. The transforming algorithm from VMT structures to

multi-task Ada code is also presented.

• The formal syntax and the operational semantics of VMT are mecha-105

nized in the proof assistant Coq. A VMT contains a set of tasks that

3The Coq reference manual: https://coq.inria.fr/distrib/current/refman/
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communicate through shared data and synchronise through a wait/no-

tify mechanism. The Coq formalisation allows to establish an important

property of the VMT structure: once a given number of notifications have

been received, needed data have been computed and the task can run until110

completion.

• A real-world aerospace industrial case, the Guidance, Navigation and Con-

trol (GNC) system, is used to show the feasibility of the method presented

in the paper. It mainly shows three subsystems of GNC which are suit-

able for modelling in SIGNAL: Attitude Determination subsystem, Orbit115

Calculation subsystem and Attitude Control subsystem. The subsystems

are also used for the comparisons to indicate the effectiveness of various

code generation strategies.

This paper is an extended version of our FTSCS 2019 conference paper [24].

The main extended parts can be summarised as follows:120

• In Section 3.1, the details of the task partition approach has been given.

• In Section 3.2, we have enriched the formal definition of VMT (Virtual

Multi Task Structure) in the proof assistant Coq. Compared with the

conference version, we introduce an action language inside the tasks of

VMT in order to make possible the composition of tasks as required by the125

partitioning methods. In addition, we define well-formedness conditions

for VMTs based on conditional write-once and acyclicity properties, and

the operational semantics of VMT as a synchronous transition system.

• In Section 3.3, we have improved the Ada code generation strategy by

using concurrent JobQueue.130

• In Section 4, the prototype tool has been presented.

• In Section 5, we have given a more detailed description of our industrial

case studies. We take CASE C as the running example to illustrate the
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compilation phases step by step. The details of CASE B are still given

(Appendix B).135

1.3. Outline

The rest of this paper is organised as follows. Section 2 briefly introduces

SIGNAL and the intermediate language S-CGA through an industrial case

study. Section 3 presents the multi-task Ada code generation approach which

includes the platform-independent level and the platform-dependent level. The140

prototype tool is presented in Section 4. Section 5 gives a real-world aerospace

industrial case study to show the effectiveness of the proposed approach in this

paper. Section 6 discusses related work and Section 7 provides concluding re-

marks and plans for future work.

2. Preliminaries145

In this section, we first introduce the basic concepts of SIGNAL, and then

give the definition of the intermediate language S-CGA.

2.1. SIGNAL

As declared in the synchronous hypothesis, the behaviours of a reactive

system are divided into a discrete sequence of instants. At each instant, the150

system does input-computation-output, which takes zero time. So a variable

(called signal) in SIGNAL is an infinite sequence, at each instant, a signal may

be present with a value or absent (denoted by ⊥). The set of instants where

a signal x takes a value is the abstract clock (denoted by x̂). Two signals are

synchronous if they are always present and absent at the same instants, which155

means they have the same abstract clock.

SIGNAL provides four primitive constructs to express the relations between

signals:

• instantaneous function y := f(x1, x2, . . . , xn)

• delay y := x $ init c160

7



• undersampling y := x when b

• deterministic merging y := x1 default x2

The instantaneous function and the delay are monoclock operators which

mean all signals involved have the same abstract clock, while the undersam-

pling and the deterministic merging are multiclock operators which represent165

the signals involved may have different clocks.

SIGNAL also provides several extended constructs to express control-related

properties by specifying clock relations explicitly, for example set operators on

clocks (union x1ˆ+x2, intersection x1ˆ*x2, difference x1ˆ-x2). Each extended

construct can be equivalently transformed into a set of primitive constructs.170

In the SIGNAL language, the relations between values and the relations

between abstract clocks, of the signals, are defined as equations, and a process

consists of a set of equations. Two basic operators apply to processes, the first

one is the composition of different processes, and the other one is the local

declaration in which the scope of a signal is restricted to a process.175

Each of the extended constructs can be defined in term of the primitive con-

structs [25], so we just consider the primitive constructs, that is kernel SIGNAL

(kSIGNAL for short). Its abstract syntax is presented as follows:

P ::=x := f(x1, ..., xn) (instantaneous function)

|x := x1 $ init c (delay)

|x := x1 when x2 (undersampling)

|x := x1 default x2 (deterministic merging)

|P |P (composition)

Running Example. We take one of the functions of Eliminate Initial

Deviation in the Guidance, Navigation and Control (GNC) case study (See

Section 5) to show the modelling in SIGNAL.

The GNC system is a core system supporting orbiting operations of space-

crafts, which undertakes the tasks of determining and controlling spacecraft180
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attitude and orbit. The Eliminate Initial Deviation of Attitude Control sub-

system eliminates the angular rate of attitude generated by the separation of

satellites from launch vehicles by calling some three-axis attitude control algo-

rithms of spacecraft. Here we consider the function, that is Satellite Oriented

to Earth. A part of its SIGNAL model is shown as follows, the whole model can185

be found in Appendix A. Here we preserve the line number in the Appendix

A:

1 process Satellite Orient to Earth =

2 (? real x, y;

3 ! integer jet DC, count DC;

4 boolean jet sign;

5 )

6 (| xˆ= yˆ= jet DCˆ= count DC

7 | f := y + 0.05 ∗ x
8 | C1 := (x < −0.5) and (f < −0.25) and (y < 0.15)

| ...//C2

15 | C1 DC := 500 when C1

| ...//C2 DC

21 | jet DC := C1 DC default C2 DC... default 0

| ...//jet sign

26 | tmp DC := count DC $ init 0

27 | add DC := (tmp DC + 1) when C1to6

28 | count DC := add DC default tmp DC

29 |)
30 where

//localdeclaration;

37 end;

This function receives two input parameters: the deviation angle of the

attitude angle x (unit ◦) and the attitude angular velocity y (unit ◦/s). And

it returns three output values: the jet pulse width jet DC (unit ms), the total190

count of jet count DC, and the sign of jet jet sign.

The input variables determine a location in a two-dimensional coordinate

system. Different regions of the coordinate system represent different jet pulse

widths, for instance the jet pulse width of region C1 is 500 (line 15) and the jet

pulse width of the origin is zero. C1, C2, . . . , C6 are used to determine which195

region includes the location. If the location is in one of the six regions, i.e. the

Boolean variable C1to6 is True, the total count of jet count DC is increased
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by 1 (line 26 - line 27) and the sign of jet jet sign is true.

One of the execution traces of the running example Satellite Orient to Earth

is shown in the following table.200

Tick 0 1 2 3 4 5 6 7 8 9

x 0.0 -7.1 ⊥ 6.5 2.2 -1.6 -2.5 ⊥ -5.0 -9.9

y 0.0 -1.0 ⊥ -0.01 0.03 -1.1 2.7 ⊥ 0.05 -0.1

f 0.0 -1.355 ⊥ -0.335 0.14 -1.104 2.575 ⊥ -0.2 0.595

C1 F T ⊥ F F T F ⊥ F T

C1 DC ⊥ 500 ⊥ ⊥ ⊥ 500 ⊥ ⊥ ⊥ 500

. . .

jet DC 0 500 ⊥ -500 -10 500 0 ⊥ 100 500

tmp DC 0 1 ⊥ 1 2 3 4 ⊥ 4 5

add DC ⊥ 1 ⊥ 2 3 4 ⊥ ⊥ 5 6

count DC 0 1 ⊥ 2 3 4 4 ⊥ 5 6

jet sign F T ⊥ T T T F ⊥ T T

Some signals in the table are synchronous, for instance x, y and f , because

the clock synchronisation x ˆ = y explicitly sets synchronisation (line 6) and

the instantaneous function f := y+0.05∗x implicitly expresses synchronisation205

(line 7). In addition, the trace of count DC shows the semantics of deterministic

merging (line 28) which is the ‘sum‘ of the traces of tmp DC and add DC, where

add DC has a higher priority.

2.2. S-CGA

We present the intermediate representation S-CGA which is proposed in the210

MiniSIGNAL. With the same purpose as [26][27], S-CGA provides a common

intermediate format to integrate more synchronous languages such as QUARTZ,

AIF 4 into our compiler. Here we just present the syntax of S-CGA. Its formal

semantics can be referred to [16][19].

4Averest Intermediate Format, http://www.averest.org/
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Definition 1 (S-CGA) An S-CGA program is a set of guarded actions

〈γ ⇒ A〉 defined over a set of variables X. The Boolean condition γ is called the

guard and A is called the action. Intuitively, the semantics of guarded actions

is that A is executed if γ holds. Guarded actions can be of one of the following

forms:

(1) γ ⇒ x = τ (immediate)

(2) γ ⇒ next (x) = τ (delayed)

(3) γ ⇒ assume (σ) (assumption)

(4) γ ⇒ read (x) (input)

(5) γ ⇒ write (x) (output)

where,215

• γ and σ are Boolean conditions over the variables of X, and their clocks.

For a variable x ∈ X, we denote:

– its clock x̂,

– its initial clock init(x̂), and the initial clock ticks only at the first

instant of a signal.220

• τ is an expression over X

The form (1) immediately writes the value of τ to the variable x. The form

(2) evaluates τ in the given instant but changes the value of the variable x at

its next instant of presence. The form (3) defines a constraint which has to hold

when γ is defined and true. The form (4) shows x that gets a value provided by225

the environment while the form (5) indicates the environment gets a value x if

γ is defined and true. Guarded actions are composed by the parallel operator

||.
S-CGA models can be structurally generated from kSIGNAL programs by

generating each construct separately, the details are introduced in [16]. Here we230

show the S-CGA model generated from the running example:
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1 || true⇒ Read x

2 || true⇒ Read y

3 || true⇒Write jet DC

4 || true⇒Write count DC

5 || true⇒Write jet sign

6 || x̂⇒ f := y + 0.05 ∗ x
7 || x̂⇒ C1 := (x < −0.5)&&(f < −0.25)&&(y < 0.15)

|| ...
14 || ̂C1&&C1⇒ C1 DC := 500

|| ...
20 || true⇒ jet DC := ̂C1 DC?C1 DC : ... : 0

24 || ̂C1to6&&C1to6⇒ add DC := tmp DC + 1

25 || true⇒ count DC := ̂add DC?add DC : tmp DC

27 || init (true)⇒ tmp DC := 0

|| ...
29 || true⇒ next (tmp DC) := count DC

For instance, the instantaneous function f := y+0.05∗x is transformed into

the immediate action x̂ ⇒ f := y + 0.05 ∗ x, the delay construct tmp DC :=

count DC $ init 0 is translated into init(true) ⇒ tmp DC := 0 and true ⇒
next(tmp DC) := count DC, and the nested structure of deterministic merging235

(line 21 in the running example) is also transformed into the nested ternary

operator (line 20).

3. Approach

The multi-task Ada code generation approach MTCodeGen adopts a mod-

ular architecture, which is shown in Fig.1:240

• Normalization: All extended constructs of the input SIGNAL programs

are transformed into primitive constructs, and the normalisation result

complies with the kSIGNAL syntax.

• kSIGNAL2SCGA: The normalized programs are transformed into the

intermediate format S-CGA which is defined as a common representation245

for synchronous languages.
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• Clock Calculus: The clock calculus contains several steps [28], for in-

stance construction of an equation system over clocks and resolution of

the system of clock equations.

• Dependency Analysis: The Data Dependency Graph (DDG) is con-250

structed by read-write dependency relations.

• Partition Method: The Virtual Multi-Tasks (VMT) structure can be

generated from the DDG and the initial/delayed information of S-CGA

models by different partition methods. Such an abstract structure is ex-

pected to support some purposes, such as generating simulation code (e.g.255

Simulink), verification (e.g. UPPAAL), and specific-platform code gener-

ation.

• VMT2Ada: The platform-dependent target executable code is generated

from VMT by considering concurrent JobQueue.

Figure 1: Multi-task Ada code generation approach MTCodeGen.

3.1. Dependency Analysis and Task Partitioning260

In the sequential code generation scheme, guarded actions are associated to

each clock equivalence class of the clock tree, then the deterministic sequential

code will be generated. In the multi-task code generation schema, the data-

dependency graph (DDG) should also be constructed and then the task partition

algorithm is used to extract more parallelism.265
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3.1.1. Dependency Analysis

We construct the DDG based on reads and writes occurring in guarded

actions. Notice that next(x) is considered as a new variable.

Definition 4 (Read and Write Dependencies) [29] Let FV (τ) denote the

free variables occurring in the expression τ . The dependencies from guarded

actions to variables are defined as follows:

RdV ars (γ ⇒ write (x)) := FV (γ) ∪ {x}
RdV ars (γ ⇒ x = τ) := FV (γ) ∪ FV (τ)

RdV ars (γ ⇒ next (x) = τ) := FV (γ) ∪ FV (τ)

WrV ars (γ ⇒ read (x)) := {x}
WrV ars (γ ⇒ x = τ) := {x}
WrV ars (γ ⇒ next (x) = τ) := {next (x)}

Then, the dependencies from variables to guarded actions are defined as

follows:

RdActs (x) := {γ ⇒ A|x ∈ RdV ars (γ ⇒ A)}
WrActs (x) := {γ ⇒ A|x ∈ WrV ars (γ ⇒ A)}

An action can only be executed if all read variables are known. Similarly, a

variable is only known once all actions writing it in the current step have been270

evaluated. SIGNAL ensures that at most one write will be performed.

Definition 5 (Data Dependency Graph) Let GA be the set of guarded

actions except assumption and V ar be the set of the variables of GA. A DDG

is a directed acyclic graph 〈GA,→D〉, where:

• →D⊆ GA×V ar×GA is a data-dependency relation: 〈ga1, v, ga2〉 ∈→D⇔275

v ∈ WrV ars(ga1) and v ∈ RdV ars(ga2).

The DDG describes the execution order of guarded actions. We ignore the

initialisation information (immediate actions containing keyword init) and as-

sumption actions when constructing the DDG, because the former only takes

effect once while the latter is only used for constructing the clock tree.280
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DDG can be constructed by simply traversing S-CGA programs twice to

calculate all data-dependency relations and optimizing them. A direct depen-

dency relation will be removed, if it can be implied by other relations. For

instance, true ⇒ Read x (line 01), x̂ ⇒ f := y + 0.05 ∗ x (line 06) and

x̂ ⇒ C1 := (x < −0.5)&&(f < −0.25)&&(y < 0.15) (line 07) can generate285

three direct relations 〈01, x, 06〉, 〈01, x, 07〉 and 〈06, f, 07〉, where the line num-

bers of the S-CGA model are used to note the corresponding guarded actions.

〈01, x, 07〉 is implied by the relations 〈01, x, 06〉 and 〈06, f, 07〉, thus it can be

omitted.

Figure 2: The data-dependency graph.

The DDG of the running example is shown in Fig.2, where the labels rep-290

resent variables appearing in the edges. For instance, 〈01, x, 06〉 denotes the

variable x ∈ WrV ars(01) and x ∈ RdV ars(06).

3.1.2. Global Synchronization

The DDG specifies a partial order between variable updates. Once all vari-

ables determined to be present have been computed, the state of system, defined295
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by the value of variables associated to next statement of the S-CGA which are

present, must also be updated. Then, the next tick of the master clock will start

a new cycle. Thus, a global synchronisation is introduced to wait for the com-

pletion of current step computations. We can imagine three implementations:

• for the system to be correct computations should complete before the300

occurrence of next input. Thus, the next input or a timer can fire the end

of the current step. It is efficient but requires the study of environment and

platform timing assumptions which are beyond the scope of this paper.

• a dependency between all the nodes of the dependency graph and the big

step task is added. It follows that all the tasks should run, even if they305

are associated to absent variables. It is costly.

• the big step waits for tasks linked to present variable to complete. This

set of task is dynamic but can be much smaller. This solution makes

tasks associated to absent variables fully passive. We have retained this

solution. Once variables associated to clocks have been computed, we310

know how many tasks must be waited for. This fact will be used to

implement this global synchronisation between tasks attached to present

variables.

In the next section, we will present the task partitioning over DDG from

which we define the parallelism through elementary tasks.315

3.1.3. Task Partitioning

There are several partition methods, such as the topological sorting way

[17], the vertical way [13] and the horizontal way [14]. This paper would like

to give a general framework for task partitioning, in which we can use different

partition methods [17][13][14] and the partition combination patterns which will320

be presented in the following paragraphs.

Here we show the main idea in a general way: map the guarded actions

to tasks one by one, and map the read/write dependencies to the synchronous
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communication between tasks. Moreover, combination is a key step for task

partitioning to achieve more efficiency. In this paper, three combination patterns325

are proposed to optimise the partitioning result.

At first, several preliminary functions are defined.

Definition 6 (Starting) Let ga be a node from a generated DDG G =

〈GA,→D〉. The function Starting(ga) � {ga′|〈ga′, x, ga〉 ∈→D}, maps ga to a

set of nodes which have relationships with ga and pointing to ga.330

Definition 7 (Ending) Let ga be a node from a generated DDG G =

〈GA,→D〉. The function Ending(ga) � {ga′|〈ga, x, ga′〉 ∈→D} , maps ga to a

set of nodes which ga has relationships with.

Definition 8 (Replacing) Let ga be a node from a generated DDG G =

〈GA,→D〉, and let n be a new node which doesn’t appear in G. The function335

Replacing(ga, n,G) � 〈nGA,→nD〉 returns a new graph in which ga occurs in

G are replaced with n, where

• nGA = GA ∪ {n} \ {ga},

• →nD= {〈na, x, n〉|〈na, x, ga〉 ∈→D}
∪ {〈n, x, nb〉|〈ga, x, nb〉 ∈→D}340

In addition, a cost function is introduced to evaluate the computation of

each node in the graph, i.e., Cost(n) = {LOW,HIGH} for each node n. In this

paper, the cost is given by the engineers, for example the numbers of statements

in a node.

The essential idea of optimization is to merge as many nodes as possible.345

Three partition combination patterns are proposed, as shown in Fig. 3.

Merge Pattern. Let a and b be two nodes in DDG. If a and b satisfy Ending(a) =

{b} and Starting(b) = {a}, then a and b can be merged into one new node

named a;b. As shown in Algorithm 1, the combination consists of firstly remov-

ing the edge {〈a, x, b〉} (line 4, here x represents the variable that is read by b350

and written by a), and then calling the Replacing function twice to replace a

and b with a;b (line 5-line 6).

17



Figure 3: Partition Combination Patterns.

Parents Sequentialization Pattern. As presented in Algorithm 2, let a, b and c

be three nodes in DDG. If Ending(a) = Ending(b) = {c} and Starting(c) =

{a, b} (line 3), then the nodes a and b will be checked if their cost are LOW.355

If Cost(b) = LOW , the dependency from a to c can be modified to a new

dependency from a to b (line 4-line 5). Else if Cost(c) = LOW , the dependency

from b to c can be modified to a new dependency from b to a (line 6-line 7).

Algorithm 1 Merge Pattern.
Input: ddg

Output: ddg

1: procedure Merge Pattern:

2: for each node a ∈ ddg.GA do

3: if Ending(a) = {b} and Starting(b) = {a} then

4: (ddg.→D)← (ddg.→D \{〈a, x, b〉});
5: ddg ← Replacing(a, a; b, ddg);

6: ddg ← Replacing(b, a; b, ddg);

7: end if

8: end for

9: return ddg;

10: end procedure
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Algorithm 2 Parents Sequentialization Pattern.
Input: ddg

Output: ddg

1: procedure Parents Sequentialization Pattern:

2: for each node c ∈ ddg.GA do

3: if Starting(c) = {a, b} and Ending(a) = {c} and Ending(b) = {c} then

4: if cost(b) = LOW then

5: (ddg.→D)← (ddg.→D ∪{〈a, x, b〉} \ {〈a, x, c〉});
6: else if cost(a) = LOW then

7: (ddg.→D)← (ddg.→D ∪{〈b, x, a〉} \ {〈b, x, c〉});
8: end if

9: end if

10: end for

11: return ddg;

12: end procedure

Sons Sequentialization Pattern. Let a,b and c be three nodes in DDG. If Ending(a)

= {b, c} and Starting(b) = {a}, then the dependency from a to c can be mod-360

ified to a new dependency from b to c. The detailed description is shown in

Algorithm 3, where another case Starting(c) = {a} is also considered (line 6

-line 7).

Algorithm 3 Sons Sequentialization Pattern.
Input: ddg

Output: ddg

1: procedure Sons Sequentialization Pattern:

2: for each node a ∈ ddg.GA do

3: if Ending(a) = {b, c} then

4: if Starting(b) = {a} then

5: (ddg.→D)← (ddg.→D ∪{〈a, x, c〉} \ {〈b, x, c〉});
6: else if Starting(c) = {a} then

7: (ddg.→D)← (ddg.→D ∪{〈a, x, b〉} \ {〈a, x, c〉});
8: end if

9: end if

10: end for

11: return ddg;

12: end procedure

The task partitioning algorithm is shown in Algorithm 4: First, the Parents

Sequentialization Pattern is called; Second, the Sons Sequentialization Pattern365

is called; Finally, the Merge Pattern is used to merge all possible nodes.
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Algorithm 4 Task Partitioning.
Input: ddg

Output: ddg

1: procedure Task Partitioning:

2: ddg ← Parents Sequentialization Pattern(ddg);

3: ddg ← Sons Sequentialization Pattern(ddg);

4: ddg ← Merge Pattern(ddg);

5: return ddg;

6: end procedure

The partitioning result of the running example is shown in Fig. 4, where the

labels are omitted. For instance, 01 → 06, 02 → 06 are replaced by 01 → 02,

02 → 06 according to the parents sequentialization pattern and then the new

node ”01;02;06” is constructed according to the merge pattern.370

Figure 4: The partitioning result.

3.2. Platform-Independent Level: VMT Generation

As mentioned above, S-CGA provides a common intermediate format to

support more synchronous languages such as QUARTZ, AIF as the inputs of

our compiler. However, the purpose of the introduction of VMT is to provide a

common multi-tasking structure for different platform targets. The introduction375

of VMT increases the scalability of the MiniSIGNAL compiler. The scalability

is manifested in two ways: First, it is expected to support both simulation

analysis (translating to Simulink) and formal verification (e.g. UPPAAL) at

the platform-independent level. Second, low-level abstract structure is easily

transformed into various target executable code.380

This section introduces the syntax and the operational semantics of a VMT

20



based on Synchronous Transition System (STS) [30]. A VMT is defined by a

set of tasks synchronised by a wait-notify mechanism. Notifications could be

associated to newly computed variables and sent to the reading tasks. However,

to reduce the number of notifications, they specify task completion instead of385

single variable computations. Static properties make the link between the two

viewpoints and ensure that once a task has received enough notifications, its

required variables have been valued.

In the following, we first introduce tasks, their before-after semantics and

then VMTs and their STS-based semantics.390

3.2.1. Tasks

A task could be simply defined as guarded assignment as specified by a S-

CGA statement. However, in order to make possible the composition of tasks

as required by the partitioning methods presented in Section 3.1.3, we have

introduced a small action language.395

Actions. Starting with the Cond and Assign constructors allowing the specifica-

tion of elementary guarded actions, we have added sequence (Seq), if-then-else

(Ite) as well as a Load statement to make explicit the access to memory storage

of past values. Moreover, we have introduced the Notify statement to notify

target tasks about the completion of the calculus of some variables. Note that400

waits are not explicit: once a task is ready, its action part can execute without

blocking.

The following Coq code defines the abstract syntax of the action language.

The Action type is parameterized by the type Id of variable identifiers which

are supposed to have a decidable equality, the type Tid of task identifiers which405

are supposed to be iterable (i.e. they can all be put in a list) and the type M of

identifier-data mappings5.

5isM M m is true when m designates a memory location
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Inductive Action ‘{Id: EqDec} {Tid: Iterable} ‘{M:Mem Id}: Type :=

Skip (* does nothing *)

| Load (v:Var Id) (m:Var Id) (ism:isM M m) (* loads v from memory location m *)

| Notify (tid: Tid) (* notifies target task tid *)

| Assign (v: Var Id) (e: Exp (VarDec Id)) (* assigns expression e to v *)

| Seq (a1: Action) (a2: Action) (* sequential composition *)

| Cond (c: Exp (VarDec Id)) (a: Action) (* conditional execution of action *)

| Ite (c: Exp (VarDec Id)) (ift: Action) (iff: Action). (* if then else *)

The execution of an action is seen as atomic. Thus semantics of an action is410

defined as the condition under which a notification is sent and with which set

of known variables. Thus, notifying a same target several times is forbidden.

As an example, the following Coq code defines the guard and action parts

of task t24. The guard is a conjunction of two (boolean) variables c_C1to6 and

C1to6. The action is a sequence of three assignments.415

Definition t24_guard: Exp (VarDec VID_dec) :=

eAnd (eVar _ (vId c_C1to6)) (eVar _ (vId C1to6)).

Definition t24_action: Action VID_dec TID_it M :=

Seq (Assign (vId c_add_DC) (eTrue _))

(Seq (Assign (vId add_DC) (eFun F_inc [eVar _ (vId m_DC)]))

(Notify T25)).

The guard is an expression defined as the conjunction of two Boolean vari-

ables. The action is defined by constructors introduced in this section. They

allow sequences of conditional writes and notifications.

Tasks. A task is defined in the context of a VMT which is made of a set of tasks420

communicating through shared variables and synchronised by notifications. A

task is a tuple 〈Inputs,Counter,Body〉 where,

• Inputs is (a super-set of) the set of variables required to be known for

the task body to be computable.

• Counter is the number of notifications that the task waits for before start-425

ing its execution. It should be ensured that if the number of notifications

reaches the value of the counter, all input variables are known.
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• Body is an action defining the behavior of the task, which consists in

computing variables and performing notifications.

The Coq definition of a task is shown below. Several auxiliary definitions are430

attached to tasks, derived from action observers. They provide helpers for the

definition of wellformedness conditions. The last section defines the run-time

task semantics with the help of the act_run function taking as parameters the

memory contents (sM), the environment of currently known signal variables and

the action of the task. It returns the updated environment and for each task435

identifier, the set of variables known when notified.

Record Task ‘(Id: EqDec) (Tid: Iterable) (M:Mem Id): Type := {

inputs: SV.set (VarDec Id); (* set of declared required variables *)

counter : nat; (* number of notifications to be waited for *)

body: Action Id Tid M;

(* auxiliary definitions *)

tk_requires := act_requires body; (* variables needed to run body *)

tk_writes := act_writes body; (* variables written by body *)

tk_writeCond := writesCond body; (* var -> condition to be written *)

tk_notifyCond := notifiesCond body; (* tid -> condition to be notified *)

(* well-formedness conditions *)

twf_req: SV.subset tk_requires inputs; (* required variables are inputs *)

twf_RO: SV.disjoint tk_writes inputs; (* input variables are unchanged *)

twf_MRO: forall v, SV.set_In v (act_writes body) -> not (Inp v); (* no

direct write in memory *)

(* semantics *)

tk_ensures (env: Env inputs) := act_ensures body (dom env); (* known variables

after any execution *)

tk_run (sM: sMem M) (env: Env inputs): act_state (tk_ensures env) Tid :=

act_run sM body (subEnv env twf_req)

}.

As an example, we define in Coq Task t24 of Figure 5. The body of the task

is obtained by using the Cond action constructor to associate the action with its440

guard:
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Program Definition t24: Task TID_it M := {|

inputs := SV.list2set (VarDec VID_dec) [vId m_DC; vId c_C1to6; vId C1to6];

counter := 1;

body := Cond t24_guard t24_action

|}.

This Coq declaration should be completed by the proof of the three prop-

erties attached to tasks and guaranteeing its well-formedness. For example, we

prove that the knowledge of the given inputs is sufficient to run the body. It445

has to be noted that the value given for the counter cannot be checked here:

the graph of tasks is needed for that and this static check should be done at the

VMT level.

3.2.2. VMT Syntax

VMT defines a set of sequential behaviours called tasks. As shown in Section450

3.1.2, after a global synchronisation, tasks are fired according to the wait/notify

mechanism. When all tasks have completed, the state of the system is updated

and an iteration is performed.

Definition 9 (Virtual Multi-Task (VMT)) A VMT structure is a tuple

〈mem,Task, Init〉, where,455

• mem is the set of memory locations.

• Task is the set of tasks (defined in the next paragraph).

• Init contains the initial values of memory locations.

The VMT structure is defined in Coq by a record of four fields.TaskId is the

set of task identifiers. task associates a task definition to a TaskId. vmt_mem460

and vmt_init define the global memory and its initial state.

Record VMT ‘(Id: EqDec) := {

TaskId: Type; (* set of task identifiers *)

vmt_mem: Mem Id; (* internal state of the system *)

vmt_init: vmt_mem; (* initial state of a task *)

task: taskId -> Task Id TaskId vmt_mem

}.
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Several important wellformedness conditions apply to a VMT and should

be ensured by the translation from the data dependency graph and thus be

guaranteed by the static analysis of the source (SIGNAL) model:465

• The task graph should be acyclic. As mentioned in the definition of DDG,

this property is expressed as a reachability condition in a graph labelled

by Boolean expressions: any path built from dependency arcs labelled by

a notification condition and such as the conjunction of conditions along

the path is satisfied should be finite. This condition is a generalisation of470

Coq accessibility predicate Acc used to define the well-founded induction

principle [31]. Here, we manage conditional arcs.

Inductive vmt_acyclic ‘{Id: EqDec} (vmt: VMT Id) (tid: TaskId vmt)

(d: Exp (VarDec Id)) : Prop :=

vmt_isReachable: (isSat d -> forall (pid: TaskId vmt) v,

vmt_acyclic vmt pid (eAnd (tk_notifyVar (M:=vmt_mem vmt)

(task pid) tid v) d)) -> vmt_acyclic vmt tid d.

It has to be noted that this acyclicity condition differs from the one derived

from other synchronous languages such as LUSTRE where arcs of the depen-475

dency graph are unconditional. Thus, the direction of data flows may change

during system execution. This hypothesis has consequences on the acceptabil-

ity of the SIGNAL source code: it should be rejected if it contains some cyclic

conditional dependencies. As a consequence, this property relies on a decidable

sufficient condition. We have proved its decidability when arc labels are ignored.480

Thus, the static test is for the moment more strict than necessary.

• For any set of tasks of sufficient cardinal, if their notification condition

for target t is satisfied then the conditions of all input variables of t are

also satisfied. This static property can be defined by the following formula

that should be true for each set pids of tasks of cardinal greater or equal485

to the counter N of a given task t:

� (
∧

p∈pids
tk notifyCond p t) →

∧
v∈Inputs T

∨
p∈pids

tk notifyVar p t v
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• There should exist at most one writer for each variable of the system. More

precisely, the conjunction of writing conditions of the same variable by two

distinct tasks should be unsatisfiable. It is thus possible for two guarded

actions to update the same variable if their guards are exclusive. This490

can be the case for guarded actions derived from a default construct in

SIGNAL or in the translation of synchronous automata where assignments

would be state dependent.

These properties are decidable because the set of tasks is finite (declared

Iterable in Coq) and clock conditions are abstracted as propositional formulas.495

3.2.3. VMT Semantics

The semantics of a VMT is defined by a synchronous transition system (STS)

which, given a set D of values is a triple 〈S, V, .→〉 where S is a set of states,

V a set of variables and →⊆ S × (V � D) × S is a set of transitions labelled

by reactions defined as partial functions from V to D mapping simultaneously500

present variables to values. In order to give the semantics of a VMT, we first

need to define the structure of an auxiliary state used to schedule the execution

of the tasks. Its main constituents are the following:

• vmt env: the environment containing the value of currently known vari-

ables which will eventually constitute the STS reaction: once all tasks are505

completed, the environment contains the system reaction and the value of

memorised variables.

• vmt done: the set of completed tasks.

• vmt prev: associates a task with the set of tasks from which it has received

a notification.510

• vmt wrt: associates a variable of the environment with the task that has

produced its value.

Several invariant properties are associated to this structure. They are en-

sured by the initial empty environment (tasks should first read from memory),
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and preserved by each task execution.515

• (vmt dreq) input variables of terminated tasks are known by the environ-

ment,

• (vmt dsub) running a terminated task would not create new variable-value

mappings6,

• (vmt prev) sources of notifications are in the set of terminated tasks,520

• (vmt pdone) the notification condition of sources is satisfied by the envi-

ronment,

• (vmt cnd) sources of variables are in the set of terminated tasks,

• (vmt wcnd) the writing condition of sources is satisfied by the environ-

ment.525

The fields defining a VMT run-time state together with their invariant prop-

erties are formally defined in Coq as follows:

Record vmt_state ‘{Id: EqDec} (vmt: VMT Id) (wf: VMT_WF vmt) (sM:

vmt_smem vmt): Type := {

vmt_min: SV.set (VarDec Id); (* needed variables *)

vmt_env: Env vmt_min; (* value of known variables *)

vmt_dom := dom vmt_env; (* valued variables *)

vmt_done: SV.set (TaskId vmt); (* terminated tasks *)

vmt_dreq: forall t,SV.set_In t vmt_done -> SV.subset (inputs (task t))

vmt_dom; (* their inputs are valued *)

6It does not occur but the proof uses this property
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vmt_dsub: forall t (h: SV.set_In t vmt_done),

isSubEnv (as_env (tk_run (task t) sM (updEnv vmt_env (vmt_dreq t h))))

vmt_env;

vmt_prev: TaskId vmt -> SV.set (TaskId vmt); (* notify sources *)

vmt_pdone: forall t, SV.subset (vmt_prev t) vmt_done;

vmt_cnd: forall t p, SV.set_In p (vmt_prev t) ->

forall h, isTrue (eSem (tk_notifyCond (task p) t) (updEnv vmt_env h));

vmt_count tid := SV.card (vmt_prev tid);

(* every variable in the domain has been written by a (uniq) task *)

vmt_wrt: forall v, SV.set_In v vmt_dom -> TaskId vmt;

vmt_wdone: forall v h, SV.set_In (vmt_wrt v h) vmt_done;

vmt_wcnd: forall v h1 h2,

isTrue (eSem (tk_writeCond (task (vmt_wrt v h1)) v) (updEnv vmt_env h2))

A micro-step of the VMT selects a ready task and makes it update the530

environment. Notifications and writes to variables are taken into account to

update the corresponding fields. Then proof obligations associated to state

invariants must have been proved. It comes to establish that when a task is

launched, i.e. when its declared counter has been reached, its input variables are

known by the environment. This is the main result related to VMT semantics. It535

is expressed in Coq as the ability to define the function vmt_step computing the

next state after a micro step when the precondition VMT_enabled is fulfilled (the

task has not yet run and has received enough notifications). The following Coq

fragment only contains the header of the function. Several auxiliary variables

are introduced before defining the next state. Then, thanks to the Program540

construct proof obligations are generated. They require to prove that all the

stated invariants are preserved. The statement of the invariants together with

the completion of these proofs constitute the main challenge of VMT definition.

Program Definition vmt_step ‘{Id: EqDec} (vmt: VMT Id) (wf: VMT_WF vmt) (sM: vm

t_smem vmt) (st: vmt_state wf sM) (en: VMT_enabled st)

: vmt_state wf sM := ...

545

The VMT runs while some ready task exists, which defines a macro-step
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(named vmt_steps) in the following Coq code:

Inductive vmt_steps ‘{Id: EqDec} (vmt: VMT Id) (wf: VMT_WF vmt) {sM: vmt_smem

vmt} (st: vmt_state wf sM) : vmt_state wf sM -> Prop :=

vmt_end: (VMT_enabled st -> False) -> vmt_steps st st

| vmt_one: forall (h: VMT_enabled st) st’, vmt_steps (vmt_step h) st’

-> vmt_steps st st’.

The semantics of a VMT as a STS can now be given. The STS state is

defined as the set of valued memory locations. For each macro step, a VMT550

runtime state is initialised. It contains an empty environment from which a

maximal sequence of micro steps is run. Then, the memory contents is updated

and the reaction label is built from two projections of the runtime state which

contains the value of all the variables making the reaction as well as the value

of memory variables.555

Definition VMT_sem ‘{Id: EqDec} (vmt: VMT Id) (wf: VMT_WF vmt): sts _ :=

{|

State := vmt_smem vmt; (* memory structure *)

Init := vmt_init vmt; (* memory initialisation *)

Next st r st’ := (* transitions labelled by reactions *)

exists vst’, vmt_steps (vmt_init_step wf st) vst’ /\

r = env2reaction (vmt_env vst’) /\ (* projection to reaction *)

st’ = env2state (vmt_env vst’) st (* projection to memory *)

|}.

Remark: Here, we do not show the Coq representations of some concepts

(such as variables, data type and data structure) which are derived from the

source SIGNAL specifications.

3.2.4. VMT Generation560

VMT can be structurally translated from S-CGA and DDG by generating

each element separately, as shown in Algorithm 5. The algorithm first generates

the Init field by the initial clock of S-CGA (line 03) and the Next(i.e. mem)

field by the delay actions to update the memory (line 04). Each task is then

produced from the vertices of the DDG (line 05 - line 18): For each vertex (i.e.565
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a guarded action), the corresponding taskId is derived from the variable name

(line 07); the Action field including most of the task body is generated from

the guarded action(line 08); the Inputs field is generated from the Action (line

09); the Counter and Notify are generated according to two rules: for each

edge whose ending vertex is the current vertex, their starting vertices are added570

to the Counter (line 11 - line 12); likewise, for each edge whose starting vertex

is the current vertex, their ending vertices are added to the Notify (line 13 -

line 14). Then, the generated task is added to the Task field of VMT (line 17).

Algorithm 5 VMT Generation.
Input: S − CGA,DDG

Output: vmt

1: procedure gen VMT(S CGA, DDG):

2: vmt ← new VMT();

3: vmt.Init ← getInit(S CGA); //Init

4: vmt.Next ← getNext(S CGA); //mem

5: For each v ∈ DDG do // create Task

6: t← new Task();

7: t.Id← getId(DDG, v);

8: t.Action← getAction(vmt.Next, v);

9: t.Inputs← getInputs(t.Action);

10: For each e ∈ DDG do //Task

11: If e.end vertex() = v then

12: t.Counter ← t.Counter + 1;

13: Else If e.start vertex() = v then

14: t.Notify. addNotify(e.end vertex);

15: end If

16: end For

17: vmt.Task. addTask(t);

18: end For

19: return vmt;

20: end procedure

The top-level structure of VMT is an infinite loop of elementary iterations:

the Main program calls the Init function, then keeps calling all tasks. Once all575

tasks are completed, the Next function is called before the next loop.

For example, the VMT model translated from the running example is shown

in Fig. 5. Where the dependency relation from DDG (e.g. “07;14 → 20;03“ in

Fig. 4) is transformed from the corresponding counter statements and notify
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Figure 5: The VMT model of the running example(part).

statements (e.g. declared by t7 and t20 in Fig. 5). The Cond of t7 is an if-580

structure while the condition of t20‘Cond is omitted because its value is always

true. In addition, the prefix “c “+ x, represents the clock of the x variable (in

symbol x̂). According to the intuitive semantics of guarded actions, the clock

“c “+ x is assigned to true before the variable x is computed, otherwise, the

clock is set by false.585

3.3. Platform-Dependent Level: Ada Code Generation

We could associate one Ada task to each DDG node and use the Ada ren-

dezvous mechanism or protected objects to control race conditions. However,

the generated code would be inefficient as it would contain too many tasks.

In addition, as mentioned before, the init data and the next update generated590

from the delay construct x = x1 $ init c are dealt with outside of the multi-task

partition. The current data before next update, are always reused by the tasks,

i.e., reusing in-cache data is expected. Moreover, sometimes the task’s execution

time is very short. Hence, creating tasks and context-switching between them

incur significant overhead.595

In this paper, we adopt concurrent JobQueue to support fine-grained par-

allelism for Ada. For instance, one task is created for one core at initialisation

time, a job is a set of data that is processed by a task. Thus the overhead of

creating/destroying tasks and context switching between them can be reduced.
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Figure 6: Lock-free work-stealing deque.

The jobs which belong to a task, are stored in a job queue, and workers are600

employed by the job scheduler to process the jobs. Efficient job scheduling im-

proves resource utilization by automatically load-balancing jobs across workers,

thereby enhancing the overall performance of the computation. In order to guar-

antee load balancing, we have chosen the lock-free work-stealing deque [22] [23]

to implement the parallel computation of DDG (Fig. 6): Each job corresponds605

to one procedure in Ada, and each worker is bound to a specific core with one

local deque. The deque’s owner worker pushes and pops local job to and from

the deque’s bottom, and steals a job from other local deque if its deque becomes

empty.

The type TID is used to specify the number of available cores provided by610

execution platforms.
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generic

type TID is range <>;

--...

with procedure Run (O: Object; Id : TID);

package Worker is

procedure submit(tsk : Object );

--...

end Worker;

--main.adb

type TID is new Integer range 1..N; -- N workers

type job is access procedure (Id: TID);

procedure Run(A: job; Id: TID) is

begin

A.all(Id);

end Run;

package Workers is new Worker(TID , job , null , Run);

A local deque presents three methods in its interface:

• PushBottom: pushing an object onto the bottom of the deque;

• PopBottom: poping an object from the bottom of the deque if the deque615

is not empty, otherwise returning Empty ;

• Steal : returning Empty if the deque is empty. Otherwise, returning the

element successfully stolen from the top of the deque, or returning Abort if

this worker loses a race with another worker to steal the topmost element.

generic

type Object is private;

EMPTY: Object;

package LocalQueue is

type Deque is limited private;

--...

procedure PushBottom(P: in out Deque; Obj: in Object );

function PopBottom(P: in out Deque) return Object;

function Steal(P: in out Deque) return Object;

end LocalQueue;

620
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To implement the Wait/Notify mechanism, a lock-free counter should be de-

fined by calls to Lock free Try Write 32 from the Ada library System.Atomic -

Primitives, which atomically modifies a variable if it contains the expected value.

Each job has one counter with an initial value, which is the number of jobs it

depends on. When one of them is completed, the value decreases by 1 (i.e.625

calling the procedure decr once). If the return value of decr z is zero, then the

job can be executed.

package LockFreeCounter is

type counter(init: integer) is tagged record

value: integer := init;

end record;

procedure decr(C: in out Counter; z : out integer );

--...

end LockFreeCounter;

package body LockFreeCounter is

--...

procedure decr(C: in out Counter; z : out integer) is

V: uint32 := Uint32(C.Value );

begin

loop

exit when Lock_Free_Try_Write_32(C.Value ’Address , V, V-1);

end loop;

z := Integer(V)-1;

if z=0 then C.value := C.Init; end if;

end decr;

end LockFreeCounter;

The other transformations from VMT to Ada are trivial: The init function

generated from Init is defined in the program body of the main, each task of630

VMT is mapped to a procedure (or job). The procedure next generated from

mem is fired when the global synchronisation happens. It updates memory for

the next big step. In addition, all variable-declarations containing input/out-

put/local variables are transformed into global variables in Ada.

For instance, the Ada code generated from the running example is shown635

below. Firstly, initialised variables are declared in the structure “begin ... end
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Main“. Secondly, all jobs corresponding to tasks in VMT with empty counter

value are put into the lock-free work-stealing deque. Thirdly, the number of

workers is set to the number of available CPUs in the target platform to achieve

the fastest execution speed. Finally, when the counter value of c next is zero,640

memory is updated, the deque is reinitialised and the value of three outputs is

recorded.

c_next : LockFreeCounter.counter (3); -- wait for three outputs

procedure next is

cpt : Integer;

begin

c_next.decr(cpt);

if (cpt > 0) then return; end if;

-- next field: update memory for next time step

-- restart running

Workers.submit(start_step ’Access , id);

end next;

procedure start_step(Id: TID) is

begin

Workers.submit(t01 ’Access , id); Workers.submit(t02 ’Access , id);

Workers.submit(t21 ’Access , id); Workers.submit(t22 ’Access , id);

end start_step;

-- Main procedure

begin

-- init function: initialize memory

-- start running

Workers.submit(start_step ’Access );

end Main;

4. Prototype Tool Support

As mentioned in Fig.1, the MTCodeGen prototype tool also adopts a modu-645

lar architecture, which is implemented in the functional programming language

OCaml. The statistical OCaml code of each module is shown in Table 1.

The architecture of the MTCodeGen tool consists of three layers: infrastruc-

ture, compilation and application, which is shown in Fig. 7.
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Table 1: Main Modules of the MTCodeGen prototype tool.

Module Description OCaml (lines)

Normalization input programs → kSIGNAL models 300+

kSIGNAL2SCGA kSIGNAL models → S-CGA models 300+

Clock Calculus resolution the equation system, etc 400+

Dependency Analysis S-CGA models → DDGs 100+

Partition Method S-CGA + DDG → VMT models 250+

VMT2Uppaal VMT models → UPPAAL models 300+

VMT2Ada VMT models → Ada code 300+

Figure 7: The architecture of the MTCodeGen prototype tool.
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The infrastructure layer specifies that the tool is developed on the OCaml650

Eclipse plug-in OcaIDE 7.

The compilation layer focuses on the compilation process from the source

OCaml project to the MTCodeGen plug-in. Firstly, the whole project is com-

piled into an execution file, i.e. the MTCodeGen compiler, by using the OcaIDE

environment; then the target plug-in is generated from the execution file accord-655

ing to the instantiation mechanism of Eclipse.

The application layer includes two particular applications of the MTCode-

Gen compiler: Firstly, the compiler can consider SIGNAL models with a con-

figuration file as the input, and generate multi-task Ada code. Secondly, the

compiler has already been integrated with the AADL modelling environment660

OSATE 8, to support the co-modelling with AADL and SIGNAL, and code

generation.

5. Evaluation

We have conducted three case studies for evaluating our approach. The case

studies have been selected to address and balance several considerations.665

5.1. Industrial Case Studies

The Guidance, Navigation and Control (GNC) system is a core system sup-

porting orbiting operations of spacecrafts, which undertakes the tasks of de-

termining and controlling spacecraft attitude and orbit. GNC is composed of

navigation sensors (such as navigation cameras, star sensors, gyroscopes, and670

accelerometers), actuators (such as reaction flywheels, nozzles, orbit-controlled

engines), and control computers (AOCS) which process the guidance and con-

trol tasks of various sensors, perform orbit determination, orbit control, attitude

determination and attitude control. In addition, a data process unit (DPU) is

usually added between navigation sensors and AOCS to pre-process data sent by675

7http://www.algo-prog.info/ocaide/
8https://osate.org/
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navigation sensors according to engineering guidelines. A simplified architecture

of the GNC system is given in Fig.8.

Figure 8: Guidance, Navigation and Control (GNC) system.

The requirement document of AOCS is got from our industrial partner. It

has more than 200 pages, and has nine sections, such as Attitude Determination

(AD), Orbit Calculation (OCn), Attitude Control (AC), Orbit Control (OCl),680

and so on. AOCS has 124 modules and 21 modes. For such a complex em-

bedded system, we use AADL to specify the complex hierarchical architecture

of GNC, adopt AADL Behavior Annex to describe the components involved

control flow information, and use SIGNAL to express the components involved

a large amount of dataflow computation. SIGNAL models are encapsulated in685

AADL models by using the AADL extension mechanism based on property sets.

The statistical data of the GNC system (AADL/SIGNAL models) is shown in

Table 2.

In this paper, we select three subsystems (the bold font in the Table 2)

involved SIGNAL models as study cases.690

• CASE A: Data Processing of Sun Sensor (DPSS). The subsystem mainly

performs the computation about data processing according to the data

received from sun sensors.
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Table 2: Statistical data of the GNC model.

GNC component Language size(line)

sensors

navigation cameras AADL 100+

star sensors AADL 100+

gyroscopes AADL 100+

. . .

actuators

reaction flywheels AADL 100+

nozzles AADL 200+

orbit-controlled engines AADL 100+

. . .

AOCS

AD

AD’s Architecture AADL 4000+

DPSS BA/SIGNAL 200+/200+

Shadow Region Detection BA 300+

. . .

OCn

OCn’s Architecture AADL 3500+

COE BA/SIGNAL 300+/300+

Argument of Periapsis BA/SIGNAL 150+/100+

. . .

AC

AC’s Architecture AADL 4200+

EID SIGNAL 200+

Capture Earth BA 200+

. . .

OCl

OCl’s Architecture AADL 2000+

. . .

Total AADL 20000+

BA 2400+

SIGNAL 2000+
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Table 3: Statistical data of generated code of three cases.

Case Task Number Synchronous Communication Size (line of Ada)

CASE A 31 30 1000+

CASE B 12 29 900+

CASE C 11 21 600+

• CASE B: Computation of Orbit Elements (COE). The subsystem is used

to compute six Keplerian orbital elements at a particular time according695

to the system clock and the GPS data.

• CASE C: Eliminate Initial Deviation (EID). The subsystem eliminates

the angular rate of attitude generated by the separation of satellites from

launch vehicles by calling some three-axis attitude control algorithms of

spacecraft.700

5.2. Code Generation

The statistical data of Ada code generation (three case studies) is shown in

Table 3. Here, we use CASE A to illustrate the whole compilation process of

Ada code generation. For the CASE B, the Data Dependency Graph can refer

to Appendix B. In addition, the details of CASE C have already been shown705

in the running example.

In CASE A, it involves two kinds of hardware devices: three sun sensors of

the Satellite (Sa, Sb, Sc) and a sun sensor of the Solar Array (SA), each sun

sensor has four batteries. The system receives the input data from the hardware

devices, performs the data processing (including 4 parallel sub-processes) and710

sends the results to other subsystems (e.g. Data Processing of Star Sensor).

The main requirement of CASE A consists of:

• Req1.1: Converting the source data of the sensors (Sa, Sb, Sc) to the

corresponding voltage value.
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• Req1.2: Computing the voltage value of the four batteries of each sensor,715

if a sensor doesn’t satisfy the related constraint, resetting the solar angle

to zero, otherwise calculating the solar angle.

• Req1.3: Computing the filter of each solar angle by the filter algorithms.

• Req1.4: Using the data from two sensors (Sb and Sc) to calculate the

projection of the sun vector in the satellite celestial coordinate system.720

• Req2.1: Converting the source data of the sensor (SA) to the correspond-

ing voltage value.

• Req2.2: Calculating the solar angle of the solar array.

• Req2.3: Computing the filter of the solar angle.

Our industrial partner specifies the requirement of CASE A as a SIGNAL725

model. Then the model, as the input program loaded on the prototype tool,

is transformed into the multi-task Ada code. Here we start with the data de-

pendency graph shown in Fig. 9 (a), in which the numbers of nodes stand for

the locations where the corresponding guarded actions appear in the generated

S-CGA model, the mapping relations between nodes and requirement specifica-730

tions are also shown below the figure. Secondly, the partitioning result is shown

in Fig. 9 (b) according to the combination patterns. Then, the VMT structure

(Fig. 9 (c)) is generated from the S-CGA model and the DDG. Finally, The

generated Ada code (e.g. task36) is shown in Fig. 9 (d).

5.3. Code Generation Strategies Comparison735

Three cases are also used to experiment various code generation strategies

comparisons for SIGNAL under a specific multi-core platform. The experiment

contains purpose, environment, strategies, process, result, analysis and conclu-

sion.

Experiment Purpose: We envision providing an experiment framework740

to the industry engineers. Three modules (Case A, Case B and Case C), i.e.,

41



Figure 9: The compilation process of CASE A.
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a part of real code are used in the experiment framework. In the experiment,

the goal is to compare the code generation strategies and test the validity of

aforementioned combination patterns. Without loss of generality, the industry

engineers can put all of the real code on this framework to use the concurrency.745

Experiment Environment: The environment from our laboratory in-

cludes: 8-cores i7-7700 CPU 3.600GHz, 16G RAM, Ada2012 and the IDE of

Ada (GNAT 7.3.0).

Experiment Strategies: Four strategies are listed below:

• Coarse-grained: Multi-task code generation adopting the typical Ada ren-750

dezvous mechanism.

• Schneider: Multi-task code using the vertical task partition method [13].

• JobQueue: Multi-task code using a thread pool pattern [24].

• Concurrent JobQueue: Multi-task code using the aforementioned lock-free

work stealing deque.755

Where the Coarse-grained strategy, resembling the semaphore-style strategy

adopted by Polychrony, is proposed in our previous work [19]. In addition,

Schneider et al. mainly proposed two partition methods: the vertical strategy

and the horizontal one [14]. We mainly consider the vertical one in this paper.

Experiment Process: Firstly, target programs are generated from three760

SIGNAL cases with adopting various strategies; Secondly, generated programs

are executed on the platform with a specified number of cores (2, 4, 6 and 8).

Finally, the average execution time of each generated program is recorded.

Experiment Results: Fig.10 shows the experiment results of the three

GNC subsystems (CASE A/B/C), where the abscissa expresses the number of765

cores and the ordinate indicates the average execution time.

Discussion and Analysis: The average time shows the execution efficiency

of generated Ada code using different strategies. Given the same number of

cores, the execution efficiency ranking from high to low is: Concurrent JobQueue

> JobQueue > Schneider > Coarse-grained.770
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Figure 10: The experiment results of CASE A/B/C on multi-core

The Coarse-grained strategy like Polychrony produces a lot of micro tasks,

thus it is costly. The vertical Schneider strategy is better than the first one,

however it may also create many tasks when the DDG includes complex depen-

dency relations, and lots of task switching may take much time to save registers,

reload stack from memory, etc.775

One benefit of JobQueue or concurrent JobQueue is that the number of tasks

(or workers) is controlled by users: Users can specify the number of workers

according to the specific physical platform. Workers randomly get jobs and

execute them in parallel on respective cores, thus the time overhead of ‘conflicts‘

among tasks is very low.780

The Concurrent JobQueue strategy proposed in the paper has a better exe-

cution efficiency than the JobQueue strategy, the main reason is that the former

adopts the combination patterns to reduce some administrative overhead, and

also considers the lock-free work-stealing deque method for the purpose of better

load balancing.785

The experiment also validates the combination patterns and the concurrent
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Figure 11: The experiment results of CASE A

JobQueue which indeed reduce the execution time of target code. Fig.11 shows

three experiment results of CASE A: The blue line is the execution time of

the target Ada code using JobQueue on different cores; The red line shows the

result of the target code adopting both JobQueue and the combination patterns;790

The green one records the result of the target code using both the concurrent

JobQueue and the combination patterns.

Comparing the blue line with the red one, it presents that the combination

patterns reduce the execution time because these patterns reduce the number

of tasks of the target code and cut down communication consumption by means795

of merging some tasks that are potentially suitable for sequential execution.

Comparing the red one with the green one, it shows that the concurrent

JobQueue method further reduces the execution time: the concurrent JobQueue

adopts the work-stealing deque method to achieve better load balancing and

replaces the Ada rendezvous mechanism with the lock-free call.800

Note that, all three kind of strategies suffer from a higher execution time

when the number of cores is 6 or 8, one potential reason is that each node in

the Fig 9 (b) has low computation (few equations/statements) and the cost of

tasking administration could be greater than the cost of tasking computation

along with the increase of the number of CPUs. To validate it, each node805

performs high computation, and Fig. 12 shows there is a positive correlation
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between the cores’ number and the execution efficiency.

Figure 12: The experiment results of CASE A with high computation

Experiment Conclusion: the following conclusions are drawn from the

experimentation:

• The partition combination patterns improve the execution efficiency.810

• The concurrent JobQueue strategy significantly improves the execution

efficiency, comparing with other strategies.

6. Related Work

Several compilers for synchronous languages have been proposed, such as the

commercial SCADE KCG code generator [32], and the academic LUSTRE V6815

[33], Heptagon [34], ESTEREL V5 92 9, Averest 10 for QUARTZ, Polychrony

for SIGNAL, and so on. With the advent of multi-core processors, automated

synthesis of multi-task code from synchronous languages has gradually become

a hot research topic.

Here, we classify the related work based on different synchronous languages.820

For a synchronous program, several levels of parallelization are possible, such

9http://www-sop.inria.fr/esterel.org/files/Html/Downloads/Downloads.htm
10http://www.averest.org/
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as inter-block parallelization (coarse-grained), intra-block parallelization (fine-

grained), etc. Moreover, task partition, synchronization, mapping and schedul-

ing are the main topics in the multi-task code generation for synchronous lan-

guages.825

(1) LUSTRE

Graillat et al. [11] consider the top-level node of a LUSTRE application

as a software architecture description where each sub-node corresponds to a

potential parallel task. Given a mapping (tasks to cores), they automatically

generate code suitable for the targeted many-core architecture. However, they830

focus on a minimal case where only the direct sub-nodes of the main node are

implemented as parallel tasks.

Souyris et al. [35] propose a solution for automatic parallel code gener-

ation from LUSTRE/Heptagon models with non-functional specification (e.g.

period). It is formed of two parts: the specification of each sequential task as835

a synchronous program (nodes), and the integration specification. Each task

specification is compiled into sequential C code using a classical LUSTRE/Hep-

tagon compiler. The integration specification describes how tasks communicate

and synchronize. It is taken as input by the parallelization tool. So, they mainly

consider node-level parallelization.840

(2) PRELUDE

Pagetti et al. [7] introduce a real-time software architecture description

language, named PRELUDE, which is built upon the synchronous language

LUSTRE and which provides a high level of abstraction for describing the func-

tional and the real-time architecture of a multi-periodic control system. They845

have given a compilation from PRELUDE to multi-task execution on a mono-

processor real-time platform with an on-line priority-based scheduler such as

Deadline-Monotonic or Earliest-Deadline-First. [8] describes a static mapping

from dependent real-time task sets which are specified by PRELUDE, to a

many-core platform. Furthermore, it gives a lightweight run-time environment850

for scheduling and execution of the resulting real-time system. Thus, their main

consideration is the mapping and scheduling of multi tasks on a platform.

47



(3) SCADE

In [9], ANSYS presents a first step and an overview of the generation of

parallel code from the SCADE application. Its principle is to rely on paral-855

lelism annotations on the model that does not affect the semantics but tells the

compiler to generate independent tasks that communicate through channels.

The generated set of tasks form a Kahn Process Network (KPN). The actual

implementation of the generated set of tasks on the final platform, as well as its

timing analysis, is done afterwards and outside of the language.860

The work [9] mainly focuses on the structure of generated code. Based on

it, ANSYS gives a detailed extension of SCADE to generate parallel code that

targets execution on Infineon’s latest generation AURIX multi-core processor

[10].

However, the solution of ANSYS requires the user to specify how to partition865

the model for parallel execution with annotations parallel subsets.

(4) SIGNAL

In terms of multi-task code generation for SIGNAL, the report [36] describes

multi-task code generation strategies available in the Polychrony toolset, includ-

ing clustered code generation with static and dynamic scheduling, distributed870

code generation. Jose et al. [18] propose a process-oriented and non-invasive

multi-task code generation using the sequential code generators in Polychrony

and separately synthesise some programming glue. Our previous works [16][19]

present a sequential/multi-task code generator for SIGNAL.

Comparing with existing work of multi-task code generation for SIGNAL,875

this paper focuses on improving the efficiency of target code when applied to

real-world aerospace industrial cases, by supporting of fine-grained parallelism

with the concurrent JobQueue pattern.

(5) ESTEREL

Li et al. [37] present a multi-threaded processor that is the KEP3a, which880

allows the efficient execution of concurrent ESTEREL programs.

Yuan et al. [38] propose two distinct approaches that distribute ESTEREL

threads evenly across multi-core architectures. The first approach statically
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distributes threads based on the computation intensity approximated by the

number of instructions generated from each thread. The second approach dis-885

tributes threads dynamically using a thread queue that dispatches a thread

whenever a core becomes idle.

In general, compared with the data-flow synchronous languages such as

LUSTRE, SCADE, PRELUDE, SIGNAL, and so on, ESTEREL offers con-

trol flow primitives to express reactive behaviors. As the threads within an890

ESTEREL program are tightly coupled, the distribution technique introduced

in these works depends on the number of concurrent execution paths without

data dependencies.

(6) QUARTZ

Baudisch et al.[13] propose two synthesis procedures generating multi-threaded895

OpenMP-based C code from QUARTZ by vertical/horizontal partitioning re-

spectively.

Furthermore, in [14], they show an automatic synthesis procedure that trans-

lates synchronous programs to software pipelines. Thereby, the original system

does not need to be divided into threads, but they are automatically generated900

by cutting the original system into pipeline stages. It is based on pipelining

these programs before turning them into OpenMP-based C-Code. By connect-

ing all parts of the implementation by FIFO buffers, the execution of the stages

can be desynchronised.

Compared to our approach, their work also consider fine-grained parallelism.905

However, our target language is Ada and we introduce concurrent JobQueue to

support fine-grained parallelism in the Ada multi-task model. In OpenMP a

structured concurrency is enforced and we do not always have such a structure.

(7) Other variants of synchronous languages

Li et al. [39] present the transformation from synchronous SystemJ code to910

implementation on two types of time-predictable cores, the evolutionary algo-

rithm is used to evaluate multi-core scheduling solution for finding guaranteed

reaction time of real-time synchronous programs for multi-core targets. It aims

at finding the mapping and schedule of synchronous programs that guarantees,
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statically, reaction times when mapped onto a multi-core platform.915

Yip et al. [40] introduce the ForeC language that enables the deterministic

parallel programming of multi-cores. ForeC inherits the benefits of synchronous

language ESTEREL, such as determinism and reactivity, along with the benefits

and power of the C language, such as control and data structures. The ForeC

compiler generates statically scheduled code for direct execution on a predictable920

parallel architecture. The aim is to generate code that is amenable to static

timing analysis.

7. Conclusion and Future Work

Synchronous languages are widely adopted for the design and verification

of safety-critical systems. With the advent of multi-core processors, multi-task925

code generation for synchronous languages has become a trend. MiniSIGNAL

is a multi-task code generation tool for SIGNAL. The existing MiniSIGNAL

code generation strategies mainly consider coarse-grained parallelism based on

Ada multi-task model. However the generated code is still inefficient when we

apply the tool to the real-world aerospace industrial cases. Therefore, this930

paper presents a new multi-task code generation method for MiniSIGNAL,

which supports fine-grained parallelism. Our method first generates a platform-

independent multi-task structure (VMT) from the intermediate representation

S-CGA, then generates target Ada code with the concurrent JobQueue pattern

from VMT. Moreover, the formal syntax and the operational semantics of VMT935

are mechanised in the proof assistant Coq, to support the semantics preservation

proof of the new multi-task code generation strategy proposed by this paper in

the future. Finally, the industrial case study has shown that the approach is

feasible.

We will consider to introduce this new Ada parallel model proposed in Ada940

202x. With the widespread advent of multi-core processors, it further aggravates

the complexity of timing analysis. For instance, FAA has published the CAST-

32A document[41] and some recommendations for time-predictability on multi-
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core, that is the timing behavior of a system must be analyzable and validable

off-line. An interesting work is to estimate worst-case execution time (WCET)945

of SIGNAL programs running on multiprocessors. Separate compilation of syn-

chronous programs is also an important issue [42]. Constructive semantics [27]

of SIGNAL provides a basis for the separate compilation of SIGNAL programs

and we can implement it with several technologies such as interface theory. In

addition, we are currently working on the whole proof of semantics preservation950

of MiniSIGNAL in Coq.
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Appendix A. The SIGNAL model of the running example (CASE1095

C)

1. process Satellite Orient to Earth =

2. (? real x, y;

3. ! integer jet DC, count DC;

4. boolean jet sign;1100

5. )

6. (| x ˆ= y ˆ= jet DC ˆ= count DC

7. | f := y+0.05∗x

8. | C1 := (x < −0.5) and (f < −0.25) and (y < 0.15)

9. | C2 := (x < −1.0) and (−0.25 <= f) and (f < −0.15) and (y < 0.15)1105

10. | C3 := ((x < −1.0) and (−0.15 <= f) and (f < −0.1) and (y < 0.15))

or ((x < −2.0) and (−0.1 <= f) and (f < −0.05) and (y < 0.15))

or ((−2.0 <= x) and (x < −1.0) and (−0.1 <= f) and (f < −0.05) and (jet sign = false))

11. | C4 := ((1.0 < x) and (x <= 2.0) and (0.05 < f) and (f <= 0.1) and (jet sign = false))

or ((x > 1.0) and (0.05 < f) and (f <= 0.1) and (y > −0.15))1110

or ((x > 2.0) and (0.1 < f) and (f <= 0.15) and (y > −0.15))

12. | C5 := (x > 1.0) and (0.15 < f) and (f <= 0.25) and (y > −0.15)

13. | C6 := (x > 0.5) and (f > 0.25) and (y > −0.15)

14. | C1to6 := C1 or C2 or C3 or C4 or C5 or C6

15. | C1 DC := 500 when C11115

16. | C2 DC := 100 when C2

17. | C3 DC := 10 when C3

18. | C4 DC := −10 when C4

19. | C5 DC := −100 when C5

20. | C6 DC := −500 when C61120

21. | jet DC := C1 DC default C2 DC default C3 DC

default C4 DC default C5 DC default C6 DC default 0

22. | djet DC := jet DC $ init 0

23. | jet sign T := true when (djet DC = 0)

24. | jet sign F := false when not (djet DC = 0)1125

25. | jet sign := jet sign T default jet sign F

26. | tmp DC := count DC $ init 0
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27. | add DC := (tmp DC + 1) when C1to6

28. | count DC := add DC default tmp DC

29. |)1130

30.where

31. integer C1 DC, C2 DC, C3 DC, C4 DC, C5 DC, C6 DC;

32. integer tmp DC, add DC;

33. boolean C1, C2, C3, C4, C5, C6, C1to6;

34. boolean jet sign T, jet sign F;1135

35. integer djet DC;

36. real f;

37.end;
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Appendix B. The data dependency graph of CASE B
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