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Abstract

This paper is concerned with plane wave propagation in multi-layer assemblies of rigid

isotropic porous media inside impedance tubes. The focus is placed on the inverse problem,

i.e., the retrieval of the intrinsic properties defining the pore micro-structure of each layer: the

porosity, the pore mean size and the pore size standard deviation. Each layer is considered

isotropic. Such an inverse problem can be ill-posed due to the non-uniqueness of the solution.

The technique explored in this work is the consideration of additional acoustic observations,

where air gaps are placed behind the multi-layer assembly. The aptitude of this strategy to

overcome the ill-posedness of the inverse problem is evaluated on numerical synthetic data,

on assemblies made of three layers. For a given fixed amount of input data, inverse problems

including different observations with air gaps can yield more accurate results, removing the
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ill-posedness.

Key-words: impedance tube; porous materials; material characterization; Bayesian in-

ference; multi-layer materials; air gaps

1 Introduction

A porous material can be represented as the combination of a solid phase and a fluid phase. Inter-

actions and energy exchanges occurring between the two phases give rise to the dissipation of waves

traveling through the porous medium. In air-saturated porous media, wave dissipation is mostly

caused by visco-inertial and thermal effects which strongly depend on the pore microstructure [1].

To represent this geometry at the macroscopic scale, several intrinsic porous material properties

(i.e., porosity, tortuosity, pore size, etc.) have been derived and integrated in models governing

the acoustic wave behavior.

These intrinsic properties are of interest in a wide range of applications outside of the acoustic

domain, because porous media are largely present in our environment and are used in various fields:

in geophysics [2] for the detection of seismic waves [3, 4] or for the detection of land mines [5, 6];

in medicine for the study of bones [7–9]; in aeronautics for the reduction of trailing edge noise [10–

12]; in thermal engineering, for transpiration-cooling in combustion chambers [13, 14]; in room

acoustics, with sound absorbing foam [15, 16]. A shared feature of these research topics is that the

knowledge of the intrinsic properties of porous materials is needed for the use of predictive models

(i.e., wave propagation in soil for seismic applications, risk fracture assessment for porous bone,

acoustic absorption for foams).

The measurement of each individual intrinsic property of a porous material is a difficult task, often

requiring multiple independent experiments [17–20]. As a result, different indirect measurement

approaches have been developed, based on the resolution of an acoustic inverse problem [21, 22].

Having measured an acoustic field that has interacted with a given porous material, and given a

model that can represent well the acoustic behavior of said porous material as a function of its
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intrinsic properties, the goal becomes that of finding the parameters of the numerical model that

allow to best match the experimental data. It is then assumed that the numerically inferred values

for the parameters of interest are the “true” values.

This paper is concerned with such an inverse problem, for the case where rigid multi-layer ma-

terials are considered. The mechanical behavior of the frame, and the potential coupling between

fluid and solid phase, are not considered in this work. Furthermore, each layer is assumed to be

isotropic, so that 1D wave propagation can be considered.

The inverse problem of single-layer material identification has been thoroughly studied in dif-

ferent frequency regimes, with various acoustic models and experimental setups [21, 22]. However,

there is little in the literature about the identification of multi-layer materials with acoustic inverse

methods, i.e., finding simultaneously the intrinsic properties of two or more than two materials

that are stacked on one another [23–25]. When dealing with a fixed number of known materials

that can be characterized independently, there is no need for such a multi-layer identification.

However, when a single material is inhomogeneous and can be approximated by a discrete number

of unknown istrotropic layers, the method becomes relevant [23].

The contribution of de Ryck et al.[23] established a method for the identification of porous

materials having inhomogeneous profiles of material properties (i.e., the porosity, tortuosity, etc.).

Using a conjugate gradient algorithm and a deterministic approach for the minimization of the

reflection coefficient, they were able to reconstruct complex property profiles from synthetic nu-

merical data (with and without noise). However, when more than one property was identified at a

time, the reconstruction was degraded, even in the noiseless case where no Gaussian noise is added

to pollute the signals. The work of Fellah et al. [24] was concerned with the inverse problem for

the identification of two layers of rigid porous media, using reflected waves in the ultrasonic range

as input for their deterministic inverse method. Using a smaller subset of model parameters that

were shown to be sensitive with respect to the reflection coefficient, the inverse problem was shown

to be well-posed and to admit a unique solution. A recent contribution by Fackler et al. [25] has
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attempted the analysis of the inverse problem for multi-layer materials, using two levels of Bayesian

inference (parameter identification and model selection), showing that it was possible to not only

detect the number of layers in a material, but also identify some of their properties, and the as-

sociated uncertainties. However, as in previous studies on porous media identification [26–28],

ill-posedness was present in the identification, i.e., there was a non-uniqueness, an indetermination

of the obtained parameters of interest. Bayesian inference methods are well suited for this kind

of difficult task, in that they yield posterior probability densities for the parameters of interest

containing all the knowledge one is able to extract from the signals. Thus, the non-uniqueness of

the solution can be characterized, provided that the Bayesian inference sufficiently explored the

parameter space. It then becomes possible to quantify the effectiveness of new methods attempting

to remove part of the inverse problem ill-posedness.

There seems to be three important practical choices that one must make before solving an in-

verse problem for the identification of porous media properties, depending on the type of available

acoustic measurement:

• The frequency content of the signal (low-mid frequency range in wave guides [22, 25–27, 29–

32], or high frequency range with ultrasonic transducers in free space [28, 29, 33–39]).

• The nature of the inverse problem (deterministic when an optimization approach is used [29–

36], or statistic when a Bayesian inference is used [25–28, 32, 37–39]).

• The type of signal (time-domain [27, 28, 33–38] or frequency-domain [25, 26, 29–32, 39]).

In our previous studies, we were interested in solving the inverse problem (using a Bayesian

approach) on air-saturated isotropic rigid porous materials (plastic foam) using the equivalent

fluid model [37, 38] and on water-saturated porous materials (bone tissue and biomaterials) using

the Biot model [28, 40]. The high-frequency regime was studied using experimental ultrasound

data [28, 37, 38, 40]. The low frequency regime was also studied for air-saturated porous materi-

als [27]. Since we were measuring transient signals, the time-domain signals were used to “feed” the

inference process. In the present work, frequency-domain signals at low-mid frequencies are used.
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This choice is driven by the actual set-up in which, ultimately, experiments would be performed

(i.e., the impedance tube, where frequencies ranging from 200 Hz to 5.5 kHz can be observed). Sig-

nals acquired in impedance tubes are typically treated in the frequency domain. Finally, Bayesian

inference is chosen since it allows for an improved characterization regarding the ill-posedness of

the problem [25, 26, 28].

The first objective of this paper is to evaluate the merit of a technique based on the addition

of air gaps behind the samples to reduce the ill-posedness and improve the knowledge on material

properties of both single- and multi-layer samples. Although air gaps are traditionally used to

improve the acoustic absorption of sound-absorbing foams in the low-frequency range [41], they

are used in the present work to gain additional observations of the same samples for parameter

identification purposes, in an attempt to over determine the inverse problem. This was tried

previously by Sellen et al. [42], albeit with additional boundary conditions at the end of the

impedance tube. A similar strategy was also attempted by Zieliński et al. [31] for the deterministic

identification of the Jonhson-Champoux-Allard-Lafarge (JCAL) model parameters of single-layer

materials, making use of surface impedance measurements and two scaling factors to obtain a set

of normalized dimensionless parameters. Air gaps of known thicknesses were used, but without

quantifying their benefit to the identification procedure.

The present study merges elements of the works of Refs. [25, 31], showing a straightforward

strategy for the removal of ill-posedness in the inverse problem for multi-layer material identi-

fication. The influence of additional air gaps in porous media identification is exposed, using

Bayesian inference to highlight cases of non-uniqueness in the inverse problem. In addition, it is

shown that using surface impedances or reflection coefficients obtained from impedance tubes as

the input for the inverse characterization is bound to yield biased identification results, because of

frequency-dependent uncertainties not being correctly taken into account.

The paper is organized as follows. The acoustical model and methods applied to a porous

material are first summarized in Sec. 2. A source of bias in the inverse characterization based on

impedance tube measurements is highlighted in Sec. 3. The Bayesian inference framework is given

5



in Sec. 4. Section 5 presents and discusses the identification results obtained on different numerical

tests with synthetic noisy data, and Sec. 6 summarizes the takeaway messages and concludes the

paper.

2 Acoustical model

The porous material samples considered in this work are assumed to have a rigid structure. Porous

samples thus behave as an equivalent fluid when considering the dissipation of an acoustic wave

traveling within the intra-pore fluid phase (air). Visco-inertial effects are introduced in the defi-

nition of a complex frequency-dependent density ρ̃eq, whereas thermal effects and stiffness of the

medium are introduced in the definition of a complex frequency-dependent bulk modulus K̃eq. The

equation controlling the wave behavior inside the fluid phase is written

∆p+ ω2 ρ̃eq

K̃eq
p = 0. (1)

Wave dissipation in the pores is accounted for, in the present work, by the Jonhson-Champoux-

Allard-Pride-Lafarge (JCAPL) model [43–46] and the hypotheses on the pore distribution by

Horoshenkov [47], i.e., the pore size distribution is assumed to follow a log-normal distribution

and the pores have a circular shape. Using these hypotheses, it is possible to use only three

parameters to fully define ρ̃eq and K̃eq, namely the porosity φ, mean pore size s̄ and pore size

standard deviation σs (normalized by log(s̄)) [47].

The main reason for the choice of using the Horoshenkov hypotheses is the simplicity of the

model: having fewer parameters can greatly reduce the complexity of an inverse problem. Because

of the wide variety of areas of application for the inverse characterization of the intrinsic properties

of porous media, it also seems valuable to use a model whose properties (pore size and standard

deviation) have a straightforward meaning to the end user, while some of the JCAPL model

properties are defined in the high and low frequency limits with integrals of the velocity profile

within the pores. The Horoshenkov hypothesis on the log-normality of the pore size distribution

covers a large range of porous materials (fibrous, granular, foam), and has been favorably compared
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to surface impedance data obtained in impedance tubes [47]. The choice in this work to use the

JCAPL model as the basis for the Horoshenkov hypothesis is motivated by the widespread use

of the JCAPL model in the acoustic community, and the straightforward changes required to

apply the hypothesis allowing the reduction in the number of parameters required. The JCAPL-

Horoshenkov model is also well adapted to impedance tube measurements, typically performed in

the medium frequency range, since it connects the high-frequency and low-frequency limits.

The approach followed in this work does not impose the use of a specific model for the identi-

fication, and could be straightforwardly attempted with a different pore dissipation model.

3 A source of bias in material characterization

In this section, the synthetic model for wave propagation in an impedance tube is first recalled

(see Sec. 3.1). It is then shown why using the surface impedance or reflection coefficient in the

inverse characterization of a porous material might lead to biased results, due to the uncertainty

being a nonlinear function of the frequency (see Sec. 3.2).

3.1 Wave propagation in a model impedance tube

An impedance tube is a device made up of a loudspeaker connected to a tube, ending with a rigid

backing. Porous materials are placed at the end of the tube, and microphones are located along the

tube. In practice, the goal is to use the pressure measurements to separate the incident and reflected

waves from the standing wave pattern created within the tube. A schematic of the tube is shown

in Fig. 1. In this paper, only numerical synthetic data is considered. However, the dimensions,

frequency bands and material properties were chosen to be representative of typical impedance

tube measurements in our lab. In the following, the notion of “measurement” always refer to the

numerical extraction of a value from our code. The pressure at the microphone locations xi can

then be numerically evaluated, provided that both the source coefficient Ã of the loudspeaker and

the reflection coefficients are known. The acoustic pressure p inside the impedance tube is, for
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Figure 1: Schematics of an impedance tube

plane waves,

p (x, ω) = Ãe−jk(ω)x + ÃR̃ (ω) e+jk(ω)x, (2)

with the source coefficient Ã, R̃ the normal incidence reflection coefficient of the porous sample, j

the imaginary unit, x the longitudinal microphone locations in the tube and where k (ω) = ω/cf

is the propagation wavenumber of air for the plane wave (here the tube is assumed wide enough

to neglect viscous effects at the walls), with cf the speed of sound.

The reflection coefficient is obtained by the solving of the linear system


p1

p2

p3

 =


e−jk(ω)x1 e+jk(ω)x1

e−jk(ω)x2 e+jk(ω)x2

e−jk(ω)x3 e+jk(ω)x3

 ·Q, (3)

with Q =
[
Ã, R̃

]t
and where the notation pi = p(xi, ω) is used.

Note that this approach is not always followed. It is sometimes found in the literature that

pressure measurements are used in pairs to identify the reflection coefficient, the pair being se-

lected only at certain frequencies related to the spacing between the microphones [48]. Although

this is justified when only two microphones are available, it is argued here that using all micro-

phones simultaneously (instead of two at a time) is strictly better, since the information content

is increased. For the proper placement of microphones, guidelines are provided in Ref [48].

3.2 Evaluating the uncertainty on the reflection coefficient

Using the transfer matrix method of Ref. [1, Chap. 11], the total reflection coefficient R̃ (ω) can be

calculated at normal incidence for a sample, with or without an air gap. The degree of uncertainty
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of the pressure measurements is usually a complex function of the frequency, because of different

biases (imprecision in the mounting of microphone, imprecision in the exact location of the upper

surface of the porous sample). Here, for simplicity, it is modeled by a zero-mean Gaussian noise

of constant standard deviation across all frequencies.

Numerical experiment: A fixed uncertainty on the real and imaginary parts of microphone

pressure measurements is considered for a given reflection coefficient. We are interested in what

becomes of this uncertainty when propagated in the calculated reflection coefficient. The following

steps are performed successively at each frequency of interest:

• Select a value of the reflection coefficient
{
R̃ (ω) ∈ C,

∣∣∣R̃ (ω)
∣∣∣ ≤ 1

}
, fix Ã = 1.

• Calculate the pressure pi, i = 1, 2, 3 at the three microphone locations xi, i = 1, 2, 3 using

Eq. 2. The distance between microphones i and k is noted di,k: d1,2 = 10 mm, d2,3 = 70 mm.

• Add a random Gaussian noise to the three numerical pressures (i.e., synthetic signals mim-

icking the measurements), with standard deviation σ = 0.05 on both the real and imaginary

parts, i.e.,

– εR,i ∼ N (0, σ), εI,i ∼ N (0, σ) =⇒ p (xi) = p (xi) + εR,i + jεI,i, i = 1, 2, 3.

• Obtain the reflection coefficient from the noisy pressure measurements using Eq. 3.

The previous steps are repeated 104 times at each frequency for each value of the reflection co-

efficient, to provide converged statistics. The quantity of interest here is the standard deviation

of the error on both the real and imaginary parts of the reflection coefficient, calculated from the

noisy signals. These are shown for some frequencies of interest in Fig. 2.
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(a) 500Hz.

(b) 2000Hz.

(c) 4000Hz.

Figure 2: Standard deviation of the real (left) and imaginary (right) parts of the reflection coeffi-
cient.
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The standard deviations of the real and imaginary parts display a similar trend at a given

frequency. However, the uncertainty on the reflection coefficient is clearly frequency dependent,

and depends on the reflection coefficient value as well. This makes any inference approach based on

the reflection coefficient an unnecessarily complex process, since one would first have to estimate

a value of the uncertainty at each frequency, for each value of the reflection coefficient. If this

is not done, and one takes an average uncertainty, then a bias is present in the identification, by

giving more weight to frequencies with high uncertainties, and less weight to frequencies with low

uncertainties. The same could be said about the impedance and the absorption coefficient, even

more so with the impedance since its values are not bounded, thus creating even larger contrasts

of uncertainties depending on the frequency and impedance value.

To prove the previous points, a numerical test is performed where the reflection coefficient

and associated uncertainties are given in Fig. 3 for a single-layer porous material, whose acoustic

behavior is governed by the model detailed in Sec. 2. Material properties are φ = 0.98, s̄ = 250µm

and σs = 0.05, which are properties close to those of typical rigid acoustic foams. Two cases are

considered, one with no air gap, and one where an air gap of 30 mm is placed between the material

and the rigid backing plate of the impedance tube.

In both cases, the mean value of the 104 runs perfectly matches the true value, on the whole

frequency spectrum. The uncertainty is important in both cases at low frequencies. This is caused

by the maximum microphone spacing (80 mm) and the linear system 3 becoming increasingly more

ill-conditioned, resulting in some cases in
∣∣∣R̃ (ω)

∣∣∣ > 1. At around 2000 Hz, the uncertainty becomes

large again only for the reference reflection coefficient with no air gap present. Note that the error

distribution does not necessarily always follow a normal distribution, because the mapping having

the pressure signals as input and the reflection coefficient as output is not linear. This is seen

in Fig. 3 by the slight lack of symmetry, at certain frequencies, of the credibility intervals (CI)

around the mean value. The main consequence of this test is that adding an air gap may allow

the experimenter to better observe parts of the signals, because of the uncertainty distribution in

the observation with an additional air gap being different from that in the reference no air gap

observation. Said differently, a frequency band can be shadowed in one experiment because of high
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(a) Without an air gap

(b) With an air gap of 30mm placed behind the material

Figure 3: Real and imaginary parts of the reflection coefficient of a foam of thickness 30 mm
with a porosity of φ = 0.98, a mean pore size s̄ = 250µm and a pore size standard deviation of
σs = 0.05. The gray areas correspond to the limits containing ≈ 95% of the 104 samples that were
used to obtain converged statistics. The symbols correspond to the exact values that were used in
generating the numerical pressures.

uncertainties, and display small uncertainties when an air gap has been added. This is caused by

an air gap changing the real and imaginary part of the reflection coefficient, which has a direct

impact on the uncertainty, as shown in Fig. 2.

4 Bayesian inference for inverse identification of porous ma-

terial properties

Given relevant observations (here, numerically generated acoustic pressures), one can use Bayes’

theorem to update one’s knowledge and draw conclusions about certain hypotheses. One of the

tenets of the Bayesian approach to statistics is to interpret knowledge, or degree of belief, as a

12



quantity represented by probabilities [49, Chap. 8].

This section presents the different elements required to perform the Bayesian inference of the

model parameters of interest. The Bayesian inference approach used to find the posterior density

functions of the parameters is recalled, as well as the specific numerical strategy.

In Bayesian inference, knowledge of a parameter is represented by its probability density func-

tion (pdf). Bayes theorem on conditional probabilities writes

P (θ|D, I) ∝ P (D|θ)P (θ, I) , (4)

where θ represents the model parameters to identify, D represents the observed data (real and

imaginary parts of the pressure), and I represents background general information, such as the

choice of model (for the porous wave propagation and for the noise on the observed data). The goal

is to sample from P (θ|D, I), the posterior probability, to reconstitute the pdf of each parameter.

The likelihood P (D, I|θ) = L (θ) represents the goodness of fit between the data and the model,

for given values of model parameters. Since a Gaussian hypothesis is made regarding the error on

the pressure measurements (assumed distinct and independent for the real and imaginary parts of

the signals, but constant across the microphones), one can write the likelihood as the product of

likelihoods for the real and imaginary parts of the observations:

L (θ) = (2πσR)−N/2 e
− SR

2σ2
R × (2πσI)

−N/2 e
− SI

2σ2
I , (5)

SR =

Nexp∑
m=1

Nmicro∑
k=1

Nfreq∑
n=1

real
(
pobs
m,k,n − pnum

m,k,n

)2
, SI =

Nexp∑
m=1

Nmicro∑
k=1

Nfreq∑
n=1

imag
(
pobs
m,k,n − pnum

m,k,n

)2
, (6)

where N is the number of observed data points (N = Nexp×Nfreq×Nmicro), with Nexp the number

of numerical “experiments” (Nexp = 1 in the reference case where no air gap has been added, and

Nexp = 1 + Nairgap when air gaps have been added). Nfreq is the number of frequencies contained

in a signal and Nmicro the number of microphones (here 3). The error standard deviations of the

real and imaginary parts of the pressure measurements are denoted σR and σI , respectively. In

the case of the present numerical study, the exact synthetic signals are polluted with the addition
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of a Gaussian noise on their real and imaginary parts. This is a rather strong hypothesis, made

to simplify the analysis, as we ignore non-Gaussian biases that are present in actual experiments

(i.e., microphone mounting, imprecision on the material placement relative to the microphones).

Finally, pobs
k,n is the observed pressure signal (with a zero-mean Gaussian noise added to it) at the kth

microphone and nth frequency, whereas pnum
k,n is the numerical pressure evaluated with Eq. 2 after

the reflection coefficient R̃ (ω) was calculated using the transfer matrix approach, with parameters

θ as input. Note that in practice, the logarithm of the likelihood is used to avoid numerical zeros.

The prior probability P (θ, I) represents all the information one may have on the parameters

before the new observation. For instance, one might have a precise measurement of the thickness

of a sample, or an air gap, and use the prior probability to encode this knowledge by a normal

law of low standard deviation on the thickness parameter. Bayesian inference would then favor

solutions respecting this added knowledge. In the present work, however, it was decided to not

consider strong previous knowledge, to conduct a blind inference where only the acoustic data

would drive the parameter inversion. The parameter space is made of the Horoshenkov model

parameters of each porous sample, their thickness Lp,i, the temperature T and static pressure P0

(used to calculate air properties, assuming an ideal gas law), the standard deviations σR and σI

of the real and imaginary parts on the microphone pressure signals, and the length of the air gaps

La,j, if any. Uniform probabilities of broad supports are used for the prior to represent an initially

uninformative state of knowledge, whose bounds are given in Table 1. The only exception is for

the static pressure, for which a smaller relative prior support is chosen when multi-layer materials

are considered. This is done because it is the only parameter that was shown to have close to zero

influence on the identification. Single-layer materials were considered first in this study, and their

support for P0 was [0.8− 1.2 ·105]Pa.

Overall, Eq. 4 represents how the prior knowledge on the parameters is updated by the ob-

servation of new data D, under certain hypotheses I. Only the first level of Bayesian inference

is conducted, i.e., that of parameter identification. To obtain the posterior pdf of each parame-

ter, a numerical approximation is obtained by the use of a Markov Chain Monte Carlo algorithm

(MCMC).
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Table 1: Prior bounds of the parameters, where the symbol – means that there is no unit. The
indices i and j denote the layer number and air gap number, respectively.

Parameter σR σI T P0 Lp,i φi s̄i σs,i La,j

Unit Pa Pa ◦C 105 Pa mm – µm – mm

Min 10−4 10−4 5 0.95 5 0.1 10 0 1

Max 0.5 0.5 25 1.05 40 0.999 103 0.99 100

The chosen MCMC approach is the Multiple-Try DiffeRential Evolution Adaptive Metropolis

with sampling from past State: MT_DREAM (ZS) [50–52], because it was shown to work even

in the case of multi-modal distributions (at least up to a dimension of 25 [52, Sec. 3.2] for a

tri-modal Gaussian distribution with well separated modes), and was used in our earlier works in

porous media identification [27, 28, 37, 38, 40]. The ability to capture multi-modality is required

to evaluate the inverse problem ill-posedness (in the sense of non-uniqueness of the solution). To

check the convergence of the chains, a Gelman-Rubin criterion was used [53] a posteriori, after a

fixed set of 3 · 105 iterations. In practice, this number of iterations should be as large as possible,

given one’s numerical budget. The number of iterations required to reach a given value of the

Gelman-Rubin criterion (typically, under 1.05) is case-dependent and would highly vary if another

model were to be used for the equivalent fluid. In the present study, inferences on single-layer

materials could reach convergence in as little as 5 · 104 iterations, while some triple-layer materials

never did, due to the inability of the criterion to handle multi-modal distributions. In these cases,

a visual check was done on each chain individually to ensure their proper mixing. The MCMC

python code implementation that was used is freely available under the GNU GPLv3 license

at https://github.com/LoLab-VU/PyDREAM, and was created by the Lopez Lab at Vanderbilt

University [54]. Three chains were used in parallel, and the number of multi-try was set to 5.

Once the Markov chains have converged, one can take different estimates to evaluate the porous

media parameters. A common choice is to extract the set of parameters that maximize the left

term of Eq. 4, also known as maximum a posteriori (MAP), and retrieve credibility intervals. The

interested reader is referred to Ref. [49, Chap. 8] for a more general introduction to Bayesian

estimates, and to Refs. [27, 28] for applications on porous media. In the present study, it was
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elected not to give any particular estimate, as the main purpose of this work is to assess the

influence of a method on the inverse problem ill-posedness. A graphical display of the pdf allows

one to check the ill-posedness in a straightforward manner via the existence of multiple modes.

5 Results

5.1 Description of the numerical tests

Three numerical materials were used,M1,M2 andM3, whose properties are summarized in Table 2.

In practice, here are the steps followed for the numerical study:

Table 2: Properties of the model for materials M1, M2, M3

Model properties [47]

Material φ s̄ (µm) σs

M1 0.85 100 0.2

M2 0.65 50 0.5

M3 0.98 250 0.05

• A single or multi-layer material is chosen, with or without an air gap, and the numerical

reflection coefficient is calculated by the transfer matrix approach.

• The numerical synthetic pressure signals are evaluated at x1 = 2 cm, x2 = 3 cm and x3 =

10 cm (with x = 0 at the material upper surface) with Eq. 2 and fixing the source coefficient

at Ã = 1.

• A Gaussian noise is added to the pressure signals to represent the uncertainty, with σR = 0.05

and σI = 0.08 the standard deviations of the error on the real and imaginary parts of the

signals, respectively. See Fig. 4 for a representation of these signals for material M1 of

thickness L1 = 30 mm, without an air gap.
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Figure 4: Microphone signals (exact and with added zero-mean Gaussian noise) in the impedance
tube for material M1 at the fictive microphone locations.

• The noisy pressure signals are then used as input to Bayesian inference process, mimicking

what the experimenter would do with experimentally obtained impedance tube measure-

ments.

The reader familiar with inverse problems will have noticed that in the current numerical analysis,

the same model is used to generate the synthetic data and to infer the model parameters. This

is sometimes referred to as an inverse crime [55], because of the more manageable aspect of the

inverse problem in such cases (thus potentially hiding the true difficulty of the same approach on

real experimental data). There is a practical interest in using an inverse crime, when trying to

explore new methods [55]. The focus of this paper is placed on the evaluation of ill-posedness in the

inverse identification of multi-layer porous media parameters. To ease the analysis and compare

the reference method (without an air gap) to the one developed in this work, it is convenient to

know in advance the true model parameter values, hence the use of a similar model for both the

direct and inverse problems [23, 31].

The addition of a Gaussian noise to pollute the signals can, counter-intuitively, make the

problem more tractable. Without noise, the likelihood has a very steep gradient near the true value

of the parameters, which can make the exploration of the posterior densities more challenging for

some MCMC strategies, and increase the occurrence of multi-modal distributions (the equivalent

of local minima when using a standard optimization approach to an inverse problem). It was

chosen to add a noise with a standard deviation between 5 − 8% of the input signal amplitude
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Ã = 1 of the source wave (σR = 0.05 and σI = 0.08). This is equivalent to having a standard

deviation of about 0.5 dB in the pressure signals, for an incident wave amplitude of 94 dB.

5.2 Sample configurations

A summary of the sample combinations that are identified is given in Table 3.

Table 3: Summary of the 6 sample configurations. The symbol ◦ means the stacking of materials,
with the left term being the one closest to the acoustic source.

One layer Three layers

Combination Combination

M1 M1 ◦M2 ◦M3

M2 M2 ◦M1 ◦M3

M2 M3 ◦M2 ◦M1

First, the Bayesian inference identification process is performed on each sample (whose thickness

is fixed at 30 mm) individually, with or without air gaps. This makes it possible to show how the

method performs in a default situation with only one layer to identify. The identification of multi-

layers made up of three single layers is then performed. The total thickness of the multi-layer is

always taken to be 30 mm (not including air gap), distributed equally on all layers. For each sample

configuration, 2 different inferences are conducted (Case 1 and Case 2), where the number of air

gaps and the number of frequencies in a signal are varied. The cases are summarized in Table 4. In

Case 1, a single observation is performed, and the pressure signals at the three microphone locations

are recorded from 200 Hz to 6000 Hz, with a step in the frequency resulting in 4800 data points

(Nfreq = 4800 and the number of numerical “experiment” is Nexp = 1). In Case 2, the reference

“no air gap” observation is also performed, and three additional observations are done with various

air gaps. The pressure signals for all Nexp = 4 numerical experiments are recorded at the three

microphone locations, from 200 Hz to 6000 Hz, with a frequency step resulting in Nfreq = 1200 data

points. As a result, the total number of data points N = Nexp × Nfreq × Nmicro remains constant

in both cases, but the frequencies considered are not the same (in practice, acquisition equipment

has a fixed Nfreq). The goal is to determine whether a change in the parameter identification
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results is caused by the presence of air gaps in the observation, and not by an increase in the

amount of observed data. In practice, however, one should take all the available information into

consideration when performing the identification, and should not down sample the frequencies as

done here for illustration purposes.

Table 4: Summary of the different observations used in each sample configuration. The � symbol
means that the observation has been used for the inference. Nfreq is the number of frequencies
contained in a single signal, whereas Nexp is the number of numerical ”experiment“, corresponding
to the number of ticks in a given line of this table.

Case Nfreq No air gap air gap length
Nfreq ×Nexp

2 cm 4 cm 6 cm

1 4800 � 4800

2 1200 � � � � 4800

In the following, the inference results of the 6 configurations of Table 3 are displayed. The

pdfs are obtained by taking the samples of the MCMC chains, removing the first 20% samples

as burn-in (so that the chains properly reach the density to explore), and using the seaborn [56]

python package for the plot of the kernel density estimate.

5.3 single-layer identifications

The identifications of single layer materials are shown in Figs. 5,6,7 where the posterior pdfs all

display a support that is sensibly smaller than the prior support in Table 1. While this is not a

direct sign of convergence, it means that information was indeed gained from the observed signals.

The closeness of all pdfs to the true value (vertical line in the figures) is a solid proof that the

inverse problem is well resolved in all cases. Note that in Case 2, there are 3 additional parameters

to identify (i.e., the air gap lengths), which makes the Bayesian inference strategy more complex

and the parameter space more difficult to explore.
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Figure 5: Posterior pdfs of the properties of material M1. The vertical line corresponds to the
true value. φ is the porosity, s̄ is the mean pore size and σs is the normalized pore size standard
deviation. The legend refers to Table 4.

Figure 6: Posterior pdfs of the properties of material M2. The vertical line corresponds to the
true value. φ is the porosity, s̄ is the mean pore size and σs is the normalized pore size standard
deviation. The legend refers to Table 4.
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Figure 7: Posterior pdfs of the properties of material M3. The vertical line corresponds to the
true value. φ is the porosity, s̄ is the mean pore size and σs is the normalized pore size standard
deviation. The legend refers to Table 4.

It is observed that the Case 2 identification (with air gaps) yields better identification results for

parameters φ and σs of materials M1 and M2, when compared with Case 1 identification. Indeed,

the posterior density is usually closer to the true value (vertical line) and has a narrower support.

Since the pdfs are not normalized, a narrow support directly translates in the highest value of the

pdf being higher than for broader pdfs. A narrower support means that more information was

gained from the observed data.

We again remind the reader that both cases 1 and 2 have the same total number of observations.

The only difference is that for Case 2, the observations are split between four different numerical

experiments with Nfreq = 1200, including three different air gaps, instead of just one numerical

experiment with Nfreq = 4800 with just the reference (no air gap) observation. If one were to

keep Nfreq = 4800 in Case 2 instead of down sampling the frequencies, the inference results (not

displayed here for conciseness) would be pdfs that are narrower around the true values. However,

there is a limit to what increasing Nfreq will yield in terms of improved identification, and this

limit, which is a function of the noise level, is not clearly understood.

For the identification of material M3, things are less clear cut, and the identification of the

porosity is better in the reference case than it is with the addition of air gaps. Worse, a bi-

modality seems to appear in the pdf of the mean pore size s̄3, signifying that ill-posedness (in the

sense of non-uniqueness) starts to appear.
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This identification test on single-layers is a first indication that diversifying the observation

using air gaps could, in some cases, increase the information content available on the parameters

to identify. This improvement might be material dependent, as in the case of material M3 (see

Fig. 7), where it seems slightly counterproductive to add “experiments” with additional air gaps. It

is postulated that low resistivity materials (such as M3 ) do no benefit as much from the addition

of air gaps because of the air-cavity effect being less pronounced than for resistive materials. The

different signals thus share a similar type of information content, and cannot be used as efficiently

to improve one’s knowledge on the parameters.

In addition to the material properties, it is also important to check whether the other parameters

have been well identified. Identification results of σR, σI , T, P and L are shown in Fig. 8 for

material M1.

Figure 8: Posterior pdfs of the different parameters, during the identification of the properties of
M1. The vertical line corresponds to the true value. σR (resp. σI) is the standard deviation of the
real (resp. imaginary) part of the observed noisy pressure signals, T is the ambient temperature
and P0 the ambient pressure. Lp,1 is the sample thickness. The legend refers to Table 4.
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All the parameters but the ambient pressure P0 have been well estimated, with again a slight

improvement in Case 2. Due to the low sensitivity of the ambient pressure, it was decided to

reduce its range of variation in the prior model to within 5% of its nominal value (see Table 1),

instead of 20% here, in order to facilitate the inference process. The density peak at low values of

the ambient pressure remains unexplained, and was observed in all three identifications. It might

be part of the reason why, in the presence of air gaps, a bi-modality appeared in the identification

of M3.

As opposed to the ambient pressure, the temperature is a well identified parameter. This means

that its influence on the eduction result is substantial. One could thus benefit from including the

temperature as a parameter during the eduction process, instead of fixing its value at the measured

one without accounting for uncertainties.

5.4 triple-layer identification

Qualitative identification results of the triple-layer porous materials are summarized in Figs. 9,10,11

in the form of posterior probability density functions.
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Figure 9: Posterior pdfs of the triple-layer M1 ◦M2 ◦M3. The vertical line corresponds to the
true value. The ith layer has a porosity φi, a mean pore size s̄i and normalized pore size standard
deviation σs,i. The legend refers to Table 4.
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Figure 10: Posterior pdfs of the triple-layer M2 ◦M1 ◦M3. The vertical line corresponds to the
true value. The ith layer has a porosity φi, a mean pore size s̄i and normalized pore size standard
deviation σs,i. The legend refers to Table 4.
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Figure 11: Posterior pdfs of the triple-layer M3 ◦M2 ◦M1. The vertical line corresponds to the
true value. The ith layer has a porosity φi, a mean pore size s̄i and normalized pore size standard
deviation σs,i. The legend refers to Table 4.

The reference method, Case 1, is first analyzed. When no air gap is considered during the

inverse problem, the parameters of each layers are not always well identified.

For the identification of the triple-layer M1 ◦M2 ◦M3 (Fig. 9), all 3 model properties of the

second layer have been wrongly identified, and only the porosity was correctly found in the third

layer. By wrongly identified, it is meant here that the support of the posterior pdf does not

include the true value of the parameter. The properties of the first layer remain well identified.
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This is most likely due to the signal being more sensitive to the first layer properties in impedance

tubes. If the first layer does not let the waves through, then no information can be gained on the

consecutive layers. We note the apparition of a bi-modal pdf for the model parameters of the first

layer, in particular for the standard deviation of the pore size σs,1. This is a sign of non-uniqueness

in the solution. Using a classical deterministic approach to inverse problem, each mode would

correspond to a local minimum.

For the identifications of the remaining triple-layers (Figs. 10,11), the identification remains

quite poor with the reference method (i.e., without air gaps). Wide posterior pdfs are obtained

for the model parameters of the third layer of M2 ◦ M1 ◦ M3 (Fig. 10), indicating that little

information was gained via the observations (in particular for the porosity). The presence of bi-

modal distributions is quite marked in Fig. 11, for the second and third layers of the sample,

indicating again the appearance of a non-unique solution to the inverse problem.

Case 2 corresponds to the model parameter identification of each layer, when air gaps have

been added behind the sample to artificially increase the number of observation. By reducing

the amount of frequencies at which the signal is observed, the total amount of data remains the

same between Case 1 and Case 2. Quite markedly, the identification with air gaps has drastically

improved the solution of the inverse problems. In all the identifications that were performed

(Figs. 9,10,11), all the material properties have been well identified (meaning that the true value

falls within the posterior pdf). In addition, where there was a bi-modal pdf for certain parameters

in the reference case, these are now gone. This means that the non-uniqueness of the problem has

been removed.

Note that in Case 2, there are three additional parameters to identify (i.e., the air gaps lengths).

As a result, the inference process is more difficult than for Case 1. Yet, identification results are

improved.

To complement the discussion, the thickness parameters of each layer as well as the air gap

lengths, are displayed for the identification of materialM1◦M2◦M3 in Fig. 12. Similar conclusions

can be drawn, i.e., that the addition of air gaps has improved the identification, and removed the

non uniqueness present in the thickness of the second and third layer of the material.
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Figure 12: Posterior pdfs of the thickness of each layer of triple-layer M3 ◦M2 ◦M1, and of the air
gap lengths. The vertical line corresponds to the true value. The legend refers to Table 4.

5.5 Discussion

General comments on the previous material identifications are now highlighted.

The use of the Horoshenkov hypothesis in the JCAPL model is attractive for multi-layer iden-

tifications using impedance tubes, as an increase in the number of parameters would otherwise

rapidly increase the difficulty of the inference. In addition, the JCAPL model is quite adapted

to impedance tube studies, as it can be used in the intermediary frequency range, contrary to

asymptotic models [27, 37].

An intrinsic limitation of the identification of multi-layer samples in impedance tubes is related

to the fact that if a layer is placed behind another layer that is large or has a high resistivity,

almost no wave is transmitted through it. As a result, the use of one or more air gaps would be
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wasted, as the observation on the microphones of the impedance tube would remain the same.

It remains unclear how many air gaps are required to properly identify multi-layer materials.

In additional tests, not presented here for conciseness, it was observed that even adding just one

air gap could sometimes remove the non-uniqueness (bi-modality of the posterior pdf) in certain

cases. The result is even more marked when all the frequency data is used. In the present work,

the frequency data of the observed signals were down-sampled when air gaps were present, in order

to keep the total amount of data the same between Cases 1 and 2, to focus on the influence of air

gaps, relatively to the non-uniqueness.

For every air gap added to make a new observation, an additional parameter needs to be iden-

tified (the air gap length). It is then remarkable that despite having three additional parameters

to identify, the cases with more air gaps systematically improve the identification results compared

with the reference case. In practice, the experimenter could know quite precisely the thickness of

each air gap, making it possible to restrain the support of the prior in Table 1. A similar constraint

could be imposed on the total thickness of a multi-layer sample, which could further help removing

the ill-posedness by forbidding unfeasible solutions.

When using a deterministic approach to inverse problems, by means of an optimization algo-

rithm, one could directly apply this paper’s method using the log-likelihood as a cost function and

the log-prior as a regularization parameter. Using multiple air gaps, the cost function becomes

more regular, and gradient-descent algorithms could be used with less risks of ending in a local

minimum that is not the global minimum.

When using high-frequency content time-domain signals, for instance with ultrasonic transduc-

ers, the present method needs to be adapted since an impedance tube cannot be used anymore.

However, one could potentially add an air gap and a rigid plate behind the material to measure

the total reflection coefficient of the combination, to cheaply obtain a second observation on the

same material. This is akin to changing the angle of incidence of the ultrasonic wave, and using

multiple measurements to identify material properties [23, 37]. Adding an air gap would also delay

the arrival of the wave that was fully transmitted and then reflected on the rigid back-plate, back

to the transducer, thus potentially allowing better wave decoupling in the time domain.
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In practice, one often knows the length of each stacked material. However, if the materials are

truly distinct, the identification of their properties would be simpler in the first place if measure-

ments were done individually on each layer, and there would be no need to make the inference

more difficult by considering multiple layers simultaneously. However, if the porous layers are not

truly stiff, the vertical stacking of multiple layers could potentially change the pore geometry.

6 Conclusion

This paper was concerned with the numerical validation of a technique for the inverse identifica-

tion of multi-layer rigid porous media in impedance tubes. The goal was to retrieve the model

parameters (JCAPL-Horoshenkov) of each layer, assumed isotropic (1D propagation only).

Using the surface impedance or reflection coefficient signals as the input of an inverse problem

for the identification of the intrinsic properties of porous media leads to biased results. This is

caused by the unknown frequency dependence of the uncertainty on these signals, which are derived

initially from microphone pressure measurements. A more efficient approach consists in directly

using the pressure signals for the inverse problem input. When more than two microphones are

used in the impedance tube, this approach then becomes strictly superior, as more information is

gained.

A numerical analysis was conducted on 6 different materials, consisting in single-layer and triple-

layer sample combinations. Using an objective Bayesian inference strategy, the model parameters

pdf of each material configuration were retrieved. The inputs of the inference were synthetic

noisy pressure signals evaluated at fictive microphone positions, mimicking an experiment inside

an impedance tube.

In the reference identification case of triple-layer samples (no air gap), the model parameters

were not properly identified: non-uniqueness was present in the solution, and the posterior pdf

support remained very large. The strategy used in this work consisted in adding observations

to feed the inference process, by the addition of air gaps behind the multi-layer samples. The

frequency data was down-sampled when air gaps were considered, to keep equal the total amount

of data used in the inference. It was shown that adding three different air gaps behind a triple-layer
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sample almost systematically led to an improved identification for all the considered parameters.

Adding the air gaps allowed the disambiguation in parameter estimation that was present in the

reference case without air gap (non-uniqueness of the solution), and the posterior pdf support

always included the true parameter value.
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