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Abstract

The impedance tube is a widespread tool in the acoustic research community and has
proven e�cient in retrieving the intrinsic properties of some porous materials using an acoustic
inverse method. However, these inverse methods can be biased because of the improper
consideration of the uncertainty on the signals used for the inference (usually, the surface
impedance or re�ection coe�cient). This bias is highlighted and a straightforward solution is
suggested.

A re�nement of the statistical Bayesian inference strategy in impedance tubes is then pro-
posed, which can be applied on single layer materials as well as multi-layer materials (three
layers maximum are tested). When performing a single acoustic observation on a multi-layer
material, the problem can become severely ill-posed, because of the non-uniqueness of the
inverse problem solution, and the lack of sensitivity of some parameters. To lift these issues,
multiple air-gaps are added between the material and the rigid backing of the impedance tube
to arti�cially increase the number of observations, non-intrusively. Di�erent test cases are
considered for three numerically simulated porous materials of di�erent intrinsic properties,
assembled in twelve di�erent multi-layer structures to test the robustness of the method on
synthetic noisy data. A multiple-try di�erential evolution sampling is used to tackle the sta-
tistical Bayesian inference problem.

Key-words: impedance tube; porous materials; material characterization; Bayesian in-
ference; multi-layer materials

1 Introduction

A porous material can be represented as the combination of a solid phase and a �uid phase.
Interactions and energy exchanges occurring between the two phases give rise to the dissipation
of waves traveling through the porous medium. In air, wave dissipation is mostly caused by
viscous and thermal e�ects, which strongly depend on the pore microstructure. To represent this
geometry at the macroscopic scale, several intrinsic porous material properties have been derived
and integrated in models governing the acoustic wave behavior.
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These intrinsic properties (i.e., porosity, tortuosity, pore size, etc.) are of interest in a wide
range of applications outside the acoustics domain, because porous media are largely present in our
environment and are used in various �elds : in geophysics [1] for the detection of seismic waves [2, 3]
or for the detection of land mines [4, 5]; in medicine for the study of bones [6�8]; in aeroacoustics
for the reduction of trailing edge noise [9�11]; in thermal engineering, for transpiration-cooling
in combustion chambers [12, 13]; in room acoustics, as sound absorbing foam [14, 15]. A shared
feature of these research topics is that the knowledge of the intrinsic properties of porous materials
is needed for the use of predictive models (i.e., wave propagation in soil for seismic applications, risk
fracture assessment for porous bone, acoustic absorption for foams). A community has developed
around the idea that acoustic inverse methods could be used to gain information on the properties
of porous media [16�31]. This kind of indirect measurement, coined inference, has proven reliable
provided that precise acoustic models could be used. It complements or replaces altogether the
di�cult task of having to directly measure each property separately.

There seems to be three important choices that one must make before attempting such an
inverse method: the frequency content of the signal (low frequency in wave guides [16, 20, 22�
25, 27, 28], or high frequency with ultrasonic transducers in free space [16�19, 21, 26, 29�31]), the
nature of the inference (deterministic when an optimization approach is used [16�19, 21�23, 25], or
statistic when a Bayesian inference is used [20, 25�31]), and the type of signal (time-domain [17�
19, 21, 26, 28�30] or frequency-domain [16, 20, 22, 23, 25, 27, 31]). In the present work, only one of
the 23 possible choice combinations is studied : frequency-domain signals at low frequencies using
a Bayesian inference approach. However, one will �nd that the method can be applied to other
types of inference straightforwardly, as will be discussed in Sec. 5.6.

Although the problem of single-layer material identi�cation has been broadly studied, there is
very little in the literature about the identi�cation of multi-layer materials with acoustic inverse
methods, i.e., �nding simultaneously the intrinsic properties of two or more than two materials
that are stacked on one another. When dealing with a �xed number of known materials that can be
characterized independently, there is no need for such a multi-layer identi�cation. However, when
a single material is inhomogeneous and can be approximated by a discrete number of unknown
layers, the method becomes relevant.

To the best of our knowledge, only a recent contribution [27] has attempted the analysis of such
a problem, using two levels (parameter identi�cation and model selection) of Bayesian inference,
showing that it was possible to not only detect the number of layers in a material, but also
identify some of their properties. However, as in other studies before [20, 28, 29], ill-posedness is
present in the identi�cation, i.e., there is a non-uniqueness, an indetermination of the obtained
solution. Bayesian inference methods are well suited for this kind of di�cult task, in that they
yield posterior probability densities for the parameters of interest, containing all the knowledge one
is able to extract from the signals. Thus, the non-uniqueness of the solution can be characterized,
provided that the Bayesian inference su�ciently and e�ciently explored the parameter space.

This paper sets two goals. The �rst one is showing that using surface impedance or re�ection
coe�cient obtained from impedance tubes for material inverse characterization is bound to yield
biased inference results, because of uncertainties not being correctly taken into account. The
second objective is the development of a technique, based on the addition of air-gaps behind the
samples, to reduce the ill-posedness and improve the knowledge on material properties of both
single- and multi-layer samples. Although air-gaps are traditionally used to improve the acoustic
absorption of sound-absorbing foams in the low-frequency range [32], they are used in this work to
gain additional observations of the same samples for identi�cation purposes. This was attempted
previously in Ref. [33], albeit with additional boundary conditions at the end of the impedance
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tube. In this regard, the present study complements the work of Ref [27], adding a straightforward
strategy to remove ill-posedness during the inversion.

The paper is organized as follows. The acoustical model and methods applied to a porous
material are �rst recalled in Sec. 2. The source of the biases introduced by the consideration of
derived signals in an impedance tube is then presented in Sec. 3. The Bayesian inference framework
is developed in Sec. 4.1. Section 5 presents and discusses the identi�cation results obtained on
15 di�erent numerical materials with synthetic noisy data, and Sec. 6 summarizes the takeaway
messages and concludes the paper.

2 Acoustical model and methods

The porous material samples are assumed to have a rigid structure. Porous samples thus be-
have as an equivalent �uid when considering the dissipation of an acoustic wave traveling within
the intra-pore �uid phase (air). Viscous e�ects are introduced in the de�nition of a complex
frequency-dependent density ρ̃eq, whereas thermal e�ects are introduced in the de�nition of a com-
plex frequency-dependent bulk modulus K̃eq. The equation controlling the wave behavior inside
the �uid phase is written

∆p+ ω2 ρ̃eq

K̃eq

p = 0. (1)

The focus here is placed on the identi�cation process, and not on taking the most detailed
or complex model of the literature for the pore dissipation. It was chosen to use the Johnson-
Champoux-Allard-Pride-Lafarge (JCAPL) model with Horoshenkov hypotheses [34] on the pore
distribution for the following investigations, see Sec. 2.1.

2.1 Semi-phenomenological model of Horoshenkov for dissipation within

the �uid phase

The dissipation in the pores is accounted for by the JCAPL model [35�38] and the hypotheses on
the pore distribution by Horoshenkov [34], i.e., the pore sizes follow a log-normal distribution and
the pores have a circular shape. The JCAPL model for viscous dissipation can be written

ρ̃eq =
ρf
φ
α̃(ω), α̃(ω) = α∞

[
1 +

1

jω̄
F̃ (ω)

]
, (2)

F̃ (ω) = 1− P + P

√
1 +

M

2P 2
jω̄, ω̄ = ωρf

k0α∞
µφ

, (3)

P =
M

2βP
, M = 8

k0α∞
φΛ2

, (4)

and for thermal dissipation,

K̃eq =
γP0

φ

1

β̃ (ω)
, β̃ (ω) = γ − (γ − 1)

[
1 +

1

jω̄′
F̃ ′ (ω)

]−1
, (5)

F̃ ′ (ω) =

√
1 +

M ′

2
jω̄′ , ω̄′ = ωρf

k′0CP
κφ

, (6)
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M
′
=

8k′0
φΛ′

. (7)

The parameters used in this model relate to the micro-structure of the porous sample: porosity
φ and tortuosity α∞; viscous and thermal permeabilities k0 and k′0; characteristic viscous and
thermal lengths Λ and Λ′, respectively. Using the hypotheses of a log-normal pore distribution
and a circular pore shape, it is possible to use only three parameters, namely the porosity φ, mean
pore size s̄ and pore size standard deviation σs (normalized by log(s̄)), instead of six [34]. The
relationships between the JCAPL and Horoshenkov model parameters are [34, 39] (there is a typo
in the de�nition of βP in Ref. [34], which was reproduced in our earlier work [40]):

φ = φ, α∞ = e4(σs log 2)
2

,

k0 =
s̄2φ

8α∞
e−6(σs log 2)

2

, k′0 =
s̄2φ

8α∞
e+6(σs log 2)

2

(8)

Λ = s̄e−
5
2
(σs log 2)

2

, Λ′ = s̄e+
3
2
(σs log 2)

2

βP =
4

3
e4(σs log 2)

2

− 1.

The main reasons for the choice of using the Horoshenkov hypotheses are the simplicity of the
model (few parameters) and its use of a statistical representation of the pore geometry. Having
fewer parameters can greatly reduce the complexity of an inverse problem and prevent over�tting.
This statistical representation of the pores is also thematically relevant to the use of a statistical
(Bayesian) inference method.

Because of the wide variety of areas of application for the inverse characterization of the intrinsic
properties of porous media, it also seems valuable to use a model whose properties (pore size and
standard deviation) have a straightforward meaning to the end user, contrary to the JCAPL model
properties.

The approach followed in this work does not require the use of a particular model for the
identi�cation, and could be straightforwardly attempted with simpler or more complex models.

2.2 Transfer matrix approach for multi-layer samples

A widespread technique to obtain the surface impedance of a multi-layer material is the transfer
matrix method [41, Chap. 11], assuming the layers are all isotropic and only plane waves are
propagated. Each individual isotropic layer is attributed a matrix, linking the acoustic �eld vector
on one side of the layer to that at the other end of the layer. One can then multiply each individual
matrix to obtain the acoustic �eld on the top surface of the stacked layers, in contact with the
incident wave. This allows one to calculate the total re�ection coe�cient (or surface impedance)
of the multi-layer material.

The method is used for combinations of rigid porous materials and air-gaps. Although not
suited for very large samples or very high frequencies because of instability problems (see, i.e.,
Ref. [42]), it is in practice suitable for most, if not all, of the studies that would be performed in
an impedance tube.

For a multi-layer material composed of NS samples (including the air-gap) and with a rigid
wall boundary condition (BC), the acoustic �eld in front of the sample writes[

p
v

]
x=0

= I0,1 × T̃
(1) × I1,2 × T̃

(2) × . . .× INS−1,NS × T̃
(NS) ×

[
1
0

]
︸ ︷︷ ︸
rigid BC

, (9)
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where p is the acoustic pressure, v the acoustic particle normal velocity. In the case where the
rigid wall condition is not perfect, say it has an impedance Π 6= +∞, the rigid BC array at the

right of Eq. 9 becomes
[

1
Π−1

]
. In practice, one should characterize the impedance tube and try

to obtain Π as high as possible. The abscissa x = 0 indicates the multi-layer surface in contact
with the incident wave, and

T̃
(i)

=

 cos
(
k̃
(i)
eqLi

)
j · sin

(
k̃
(i)
eqLi

)
z̃
(i)
eq

j · sin
(
k̃
(i)
eqLi

)
/z̃

(i)
eq cos

(
k̃
(i)
eqLi

)  , I i−1,i =

[
1 0

0 φi
φi−1

]
(10)

are the transfer matrix of layer i and interface matrix between layers i−1 and i, respectively. This
interface matrix translates the conservation of the volume of air at the interface, φi−1vi−1 = φivi.

The equivalent wave number of the material is k̃(i)eq = ω

√
ρ̃
(i)
eq/K̃

(i)
eq and z̃

(i)
eq =

√
ρ̃
(i)
eq K̃

(i)
eq is its

equivalent characteristic impedance. Note that for an air-gap, the typical properties of air are
used. The interface matrix I0,1 assumes φ0 = 1.

Next, the normalized surface impedance Z̃s (ω) and the re�ection coe�cient R̃ (ω) simply are

Z̃s (ω) =
px=0

vx=0

· 1

Zf
, R̃ (ω) =

Z̃s (ω)− 1

Z̃s (ω) + 1
, (11)

with Zf the characteristic impedance of air.

3 A source of bias in material characterization

3.1 Experimental apparatus

An impedance tube is a device made up of a loudspeaker connected to a tube, ending with a rigid
backing. Porous materials are placed at the end of the tube, and microphones are located along
the tube. The goal is to use the pressure measurements to separate the incident and re�ected
waves from the standing wave pattern created within the tube. A schematic of the tube is shown
in Fig. 1.

Sound source
Test sample

Rigid back
 plate

Incident wave
Reflected wave

Mic.

Figure 1: Schematics of an impedance tube

The pressure measured at the microphone locations xi can then be obtained, provided that the
source coe�cient Ã of the loudspeaker is known. The acoustic pressure p inside the impedance
tube is, for plane waves,

p (x, ω) = Ãe−jk(ω)x + ÃR̃ (ω) e+jk(ω)x, (12)

with j the imaginary unit, x the longitudinal microphone locations in the tube and where k (ω) =
ω/cf is the propagation wavenumber of air for the plane wave (here the tube is assumed wide
enough to neglect viscous e�ects at the walls), with cf the speed of sound.
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The re�ection coe�cient is obtained by the solving of a linear system, since there is more
information (three pressure measurements) than there are unknowns (Ã and R̃), i.e., one has to

solve for Q =
[
Ã, R̃

]t
in  p1

p2
p3

 =

 e−jk(ω)x1 e+jk(ω)x1

e−jk(ω)x2 e+jk(ω)x2

e−jk(ω)x3 e+jk(ω)x3

 ·Q, (13)

where the notation pi = p(xi, ω) is used.
Note that this approach is not always followed. It is sometimes found in the literature that

pressure measurements are used in pairs to identify the re�ection coe�cient, the pair being selected
only at certain frequencies related to the spacing between the microphones [43]. Although this is
justi�ed when only two microphones are available, we argue that using all microphones simultane-
ously is strictly better. Indeed, provided that the linear system 13 is properly conditioned, no part
of the available signal is wasted. For the proper placement of microphones, guidelines are provided
in Ref [43]. Using more microphones can allow for the calculation of the impedance when in the
presence of higher order modes, which propagates at higher frequencies.

3.2 Evaluating the uncertainty on the re�ection coe�cient

Using the transfer matrix method of Ref. [41, Chap. 11], the total re�ection coe�cient R̃ (ω) can
be calculated at normal incidence for a sample, with or without an air-gap.

Typically, one knows with which degree of uncertainty the pressure measurements are realized
at the microphone of the impedance tube (say, 0.5 dB on the amplitude and 1◦ on the phase in
the frequency band of interest). This error is usually a function of the frequency and averaging
time. Here, for simplicity, it is assumed that a long enough averaging time is taken and that the
remaining error is constant across all frequencies.

Numerical experiment: Let us consider a given uncertainty on the real and imaginary parts
of microphone pressure measurements for a given re�ection coe�cient. Then, let us see what
this uncertainty would become once re-propagated onto the calculated re�ection coe�cient (thus
numerically mimicking an experiment). The following steps are performed successively at each
frequency of interest :

� select a value of the re�ection coe�cient
{
R̃ (ω) ∈ C,

∣∣∣R̃ (ω)
∣∣∣ ≤ 1

}
, �x Ã = 1

� calculate the pressure pi, i = 1, 2, 3 at the three microphone locations xi, i = 1, 2, 3 using
Eq. 12. The distance between microphones i and k is noted di,k : d1,2 = 10 mm, d2,3 = 70 mm.

� add a random Gaussian noise to the three pressure measurements, with standard deviation
σ = 0.05 on both the real and imaginary parts, i.e.,

� εR,i ∼ N (0, σ), εI,i ∼ N (0, σ) =⇒ p (xi) = p (xi) + εR,i + jεI,i, i = 1, 2, 3

� obtain the re�ection coe�cient from the noisy pressure measurements using Eq. 13.

The previous steps are repeated 104 times at each frequency for each value of the re�ection coef-
�cient, to provide converged statistics. In particular, we are interested in the standard deviation
of the error on both the real and imaginary parts of the re�ection coe�cient calculated from the
noisy signals. These are shown for some frequencies of interest in Fig. 2.

Interestingly, the standard deviations of the real and imaginary parts display a similar trend
at a given frequency. However, the uncertainty on the re�ection coe�cient is clearly frequency
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(a) 100Hz. (b) 250Hz.

(c) 500Hz. (d) 1000Hz.

(e) 2000Hz. (f) 4000Hz.

Figure 2: Standard deviation of the real (left) and imaginary (right) parts of the re�ection coe�-
cient.

dependent, and depends on the re�ection coe�cient value as well. This makes any inference
approach based on the re�ection coe�cient an unnecessarily complex process, since one would
have to give a value of the uncertainty at each frequency, for each value of the re�ection coe�cient.
This also requires that one perfectly knows the microphone measurement uncertainty. If this is not
done, and one takes an average uncertainty, then one would inevitably bias the identi�cation by
giving more weight to areas with high uncertainties, and less weight to areas with low uncertainties.
The same could be said about the impedance and the absorption coe�cient, even more so with the
impedance since its values are not bounded, thus creating even larger contrasts of uncertainties
depending on the frequency and impedance value.

To prove the previous points, a numerical test is performed where the re�ection coe�cient
and associated uncertainties are given in Fig. 3 for a single-layer porous material, whose acoustic
behavior is governed by the model detailed in Sec. 2.1. Material properties are φ = 0.98, s̄ = 250µm
and σs = 0.05, which are properties close to those of a melamine foam. Two cases are considered,
one with no air-gap, and one where an air-gap of 30 mm is placed between the material and the
rigid backing plate of the impedance tube.

The uncertainty is important in both cases at low frequencies. This is caused by the limited
microphone spacing (supi,k |di,k| = 80 mm) and the linear system becoming increasingly more ill-
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(a) Without an air-gap (b) With an air-gap of 30mm placed behind the mate-
rial

Figure 3: Real and imaginary parts of the re�ection coe�cient of a foam of thickness 30 mm with
φ = 0.98, s̄ = 250µm and σs = 0.05. The dashed lines correspond to the limits containing ≈ 95%
of the 104 samples that were used to obtain converged statistics.

conditioned, resulting in some cases in
∣∣∣R̃ (ω)

∣∣∣ > 1. At around 2000 Hz, the uncertainty becomes
large again only for the reference re�ection coe�cient with no air-gap present. Note that the
error distribution does not necessarily always follow a normal distribution, because the mapping
having the microphone pressures as input and the re�ection coe�cient as output is not linear.
The main consequence of this test is that adding an air-gap may allow the experimenter to better
observe parts of the signals, because of the uncertainty distribution in the observation with an
additional air-gap being di�erent from that in the reference no air-gap observation. Said di�erently,
a frequency band can be shadowed in one experiment because of high uncertainties, and display
small uncertainties when an air-gap has been added. This is caused by an air-gap changing the
real and imaginary part of the re�ection coe�cient, which has a direct impact on the uncertainty,
as shown in Fig. 2.

4 Bayesian inference for inverse identi�cation of porous ma-

terial properties

Given relevant indirect observations, one can use Bayes' theorem to update one's knowledge and
draw conclusions about certain hypotheses. One of the tenets of the Bayesian approach to statistics
is to interpret knowledge, or degree of belief, as a quantity represented by probabilities [44, Chap.
8].

This section presents the di�erent elements required to perform the Bayesian inference of the
model parameters of interest. The Bayesian inference approach used to �nd the posterior density
functions of the parameters is recalled, as well as the speci�c numerical strategy.
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4.1 Bayes' theorem

In Bayesian inference, knowledge on a parameter is represented by its probability density function.
Bayes theorem on conditional probabilities writes

P (θ|D, I) =
P (D|θ)P (θ, I)

P (D, I)
, (14)

where θ represents the model parameters to identify, D represents the observed data (real and
imaginary parts of microphone pressure measurements), and I represents background general in-
formation, such as the choice of model (for the porous wave propagation and for the noise on the
observed data). The goal is to sample from P (θ|D, I), the posterior probability, to reconstitute the
probability density function (pdf) of each parameter. The likelihood P (D, I|θ) = L (θ) represents
the mismatch between the model and the data for a given set of model parameters. Since a Gaus-
sian hypothesis is made regarding the error on the pressure measurements (assumed distinct and
independent for the real and imaginary parts of the signals, but constant across the microphones),
one can write the likelihood as the product of likelihoods for the real and imaginary parts of the
observations:

L (θ) = (2πσR)−N/2 e
− SR

2σ2
R × (2πσI)

−N/2 e
− SI

2σ2
I , (15)

SR =

Nmicro∑
k=1

Nfreq∑
n=1

real
(
pobsk,n − pnumk,n

)2
, SI =

Nmicro∑
k=1

Nfreq∑
n=1

imag
(
pobsk,n − pnumk,n

)2
, (16)

where N is the number of measurement points (N = Nfreq × Nmicro) with Nfreq the number of
frequencies contained in a signal and Nmicro the number of microphones. The error standard
deviations of the real and imaginary parts of the pressure measurements are denoted σR and
σI, respectively. This error is usually a function of the frequency and averaging time. Here, it is
assumed that a long enough averaging time is taken and that the remaining error is constant across
all frequencies. In the case of the present numerical study, this hypothesis is enforced and the exact
synthetic signal is polluted with the addition of a Gaussian noise on its real and imaginary parts.
Finally, pobsk,n is the experimental pressure at the kth microphone and nth frequency, whereas pnumk,n is
the numerical pressure evaluated with Eq. 12 after the re�ection coe�cient R̃ (ω) was calculated
using the transfer matrix approach (9,10,11), with parameters θ as input. Note that in practice,
the logarithm of the likelihood is used to avoid numerical zeros.

The prior probability P (θ, I) represents all the information one may have on the parameters
before the new measurement. For instance, one might have a precise measurement of the thickness
of a sample, or an air-gap, and use the prior probability to encode this knowledge by a normal
law of low standard deviation on the thickness parameter. Bayesian inference would then favor
solutions respecting this added knowledge. In the present work, however, it was decided to not
consider strong previous knowledge, to conduct a blind inference where only the acoustic data
would drive the parameter inversion. It seemed more �tting, since only synthetic data generated
with exactly known porous material properties are used, to not make things trivial by imposing a
very tight parameter space during the inference. The parameter space is made of the Horoshenkov
model parameters of the ith porous sample, its thickness Lp,i, the temperature T and static pressure
P0 (used to calculate air properties, assuming an ideal gas law), the standard deviations σR and
σI of the real and imaginary parts on the microphone pressure measurements, and the length of
the jth air-gap, La,j, if any. Uniform probabilities of broad supports are used for the prior to
represent an initially uninformative state of knowledge, whose bounds are given in Table 1. The
only exception is for the static pressure, for which a smaller relative prior support is chosen. This
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is done because it is the only parameter that was shown to have close to zero in�uence on the
identi�cation, because of its low sensitivity in the test cases under study.

Table 1: Prior bounds of the parameters, where the symbol � means that there is no unit. The
indices i and j denote the layer number and air-gap number, respectively. The ∗ exponent means
the true value of a parameter.

Parameter σR σI T P0 Lp,i φi s̄i σs,i La,j

Unit Pa Pa ◦C 105 Pa mm � µm � mm

Min 10−4 10−4 5 0.95 0.5L∗p,i 0.1 10 0 1

Max 0.5 0.5 25 1.05 1.5L∗p,i 0.999 103 0.99 100

Finally, P (dobs) is the evidence, which represents the probability that a given model generated
the observed data. In practice, the calculation of this term is avoided because of the need for a
high dimensional integration. When the second level of Bayesian inference is needed, i.e., model
selection [45], it becomes important to evaluate [27] or approximate [46, Chap. 2] the evidence.
However, considerations of model selection are out of the scope of the present work.

Overall, Eq. 14 represents how the prior knowledge on the parameters is updated by the ob-
servation of new data D, under certain hypotheses I. Only the �rst level of Bayesian inference
is conducted, i.e., that of parameter identi�cation. To obtain the posterior pdf of each parame-
ter, a numerical approximation is obtained by the use of a Markov Chain Monte Carlo algorithm
(MCMC, see Sec. 4.1.1).

4.1.1 MT_DREAM (ZS) approach to MCMC

The purpose of a Markov Chain Monte Carlo approach is to draw samples from an unnormalized
distribution, such as the posterior pdf of Eq. 14 in our case, where the evidence term is not
calculated. A Markov chain is created, which visits the (often high-dimensional) parameter space
iteratively, jumping to a new position in space when a certain criterion is met. This rule of selection
is given by the Metropolis-Hasting algorithm [47, 48], and can be summarized as follows:

� If the proposed position in space θnew leads to an improvement in P (D|θ)P (θ, I), then the
proposed value is accepted and stored in the chain.

� If the new position leads to a lower value of P (D|θ)P (θ, I), i.e. the parameters are less likely,
then the proposed value is only accepted with a probability of P (D|θnew)P (θnew, I) /P

(
D|θold

)
P
(
θold, I

)
,

where θold is the previous value. If the proposed value is not accepted, the previous value is
stored in the chain again.

The preceding means that the chain will move preferentially towards regions of high probability
density, while allowing moves towards regions of lower density to properly explore the whole region
of interest.

The main challenge of an MCMC approach lies in the proposal step, where a new position in the
parameter space needs to be determined. If chosen randomly, there is a very little chance, in a high-
dimensional space, that the point would be of any interest to the problem : it can easily fall too far
o� the region of interest, which has typically a small but unknown support, thus resulting in a lot
of wasted numerical resources. This problem is coined as the curse of dimension. To palliate this
issue, one strategy consists in using multiple chains in parallel that can learn from each other, in
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a way similar to di�erential evolution techniques used in optimization [49]. The MCMC approach
which is followed is the Multiple-Try Di�eRential Evolution Adaptive Metropolis with sampling
from past State : MT_DREAM (ZS) [50�52], where Z is the name of the past state storage
matrix . This strategy o�ers a lot of di�erent techniques to mix the chains e�ciently to explore
high-dimensional space (snooker update, self-adaptive randomize subspace, di�erential evolution
update), and was shown to work even in the case of multi-modal distributions (at least up to a
dimension of 25 [52, Sec. 3.2] for a tri-modal Gaussian distribution with well separated modes).
This latter point is of importance in the present study, as the multi-modality (presence of multiple
peaks) in a posterior density is a sign of non-uniqueness of a solution : given the observation that
has been realized, multiple parameter values are likely. Since a goal of the present work was to
�nd a way to remove this non-uniqueness, it was chosen to use the MT_DREAM (ZS) approach
to accurately explore the potentially multi-modal densities of the parameters.

In all the simulations that were performed, three chains were ran in parallel, with 3 · 105

iterations and 3 tries for each iteration (the proposal was a combination of multiple tries). To
check the convergence of the chains, a Gelman-Rubin criterion was used [53], yielding values lower
than 1.01 for all parameters except for those presenting multi-modal distributions, where the
criterion is not well-adapted and where we relied on the convergence of the other parameters and
on visual checks of the chains. The MCMC python code implementation that was used is freely
available under the GNU GPLv3 license at https://github.com/LoLab-VU, and was created by
the Lopez Lab at Vanderbilt University [54].

5 Results

5.1 Description of the numerical tests

Three numerical materials were used,M1,M2 andM3, whose properties are summarized in Table 2.
Only the Horoshenkov properties are identi�ed (φ, s̄, σs) but the equivalent properties of the
JCAPL model are given for information. In practice, here are the steps followed for the numerical

Table 2: Properties of the Horoshenkov model and derived properties for materials M1, M2, M3

Horoshenkov
model prop-
erties [34]

JCAPL model properties derived from Eq. 8

Material φ s̄ (µm) σs α∞ k0 (·10−10 m2) Λ (µm) Λ′/Λ = α∞ k′0/k0 βP

M1 0.85 100 0.2 1.08 8.77 95.3 1.08 1.26 0.44

M2 0.65 50 0.5 1.62 0.61 37.0 1.62 4.23 1.16

M3 0.98 250 0.05 1.0 75.6 249.3 1.0 1.01 0.34

study:

� A single or multi-layer material is chosen, with or without an air-gap, and the exact re�ection
coe�cient is calculated by the transfer matrix approach (9,10,11).

� The numerical synthetic pressure inside the impedance tube is evaluated at x1 = 2 cm,
x2 = 3 cm and x3 = 10 cm (with x = 0 at the material upper surface) with Eq. 12 and �xing
the source coe�cient at Ã = 1.
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� AGaussian noise is added to the pressure signals to represent an experimental error/uncertainty,
with σR = 0.05 and σI = 0.08 the standard deviations of the error on the real and imaginary
parts of the signals, respectively. See Fig. 4 for a representation of this signal on the three
microphone locations for material M1 alone of thickness L1 = 30 mm, without an air-gap.

Figure 4: Microphone signals in the impedance tube for material M1

� The noisy pressure signals are then used as input to the MT_DREAM(ZS) algorithm de-
scribed in Sec. 4.1.1.

5.1.1 Inverse crime

The reader familiar with inverse problems will have noticed that in the current numerical analysis,
the same model is used to generate the synthetic data and to infer the model parameters. This
is sometimes referred to as an inverse crime [55], because of the more manageable aspect of the
inverse problem in such cases (thus potentially hiding the true di�culty of the same approach on
real experimental data). The addition of a Gaussian noise to pollute the signals partially removes
the inverse crime, and, counter-intuitively, might even make the problem more tractable. Without
noise, the likelihood has a very steep gradient at the true value of the parameters, which can make
the exploration of the posterior densities more challenging and increase the occurence of multi-
modal distributions (the equivalent of local minima when using a standard optimization approach
to an inverse problem). It was chosen to follow a pragmatic approach, in adding a noise with a
standard deviation between 5− 8% of the input signal amplitude Ã = 1 of the source wave. This
is equivalent to having a standard deviation of about 0.5 dB for an incident wave amplitude of
94 dB, which is representative of typical microphone uncertainty speci�cations.

We note that in the limit where σR or σI is very high, no information can be drawn from the
signals about the inferred parameters.

5.2 Discussion of the results

First, the Bayesian inference identi�cation process is performed on each sample (whose thickness
is �xed at 30 mm) individually, with or without air-gaps (see Figs. 5,6,7). This makes it possible
to show how the method performs in a default situation with only one layer to identify. The
identi�cation of the six possible combinations of multi-layers made up of two single layers is then
performed (see Figs. 8,9,10,11,12,13), followed by that of the six combinations of multi-layers
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made up of three single layers (see Figs. 14,15,16,17,18,19). The total thickness of the multi-layer
is always taken to be 30 mm (not including air-gap), distributed equally on all layers. A summary
of the sample combinations that are identi�ed is given in Table. 3.

Table 3: Summary of the 15 sample con�gurations and associated �gures. The symbol ◦ means
the stacking of materials, with the left term being the one closest to the acoustic source.

One layer Two layers Three layers

Combination Figure Combination Figure Combination Figure

M1 5 on the following page M1 ◦M2 8 on page 16 M1 ◦M2 ◦M3 14 on page 23

M2 6 on page 15 M2 ◦M1 9 on page 17 M2 ◦M1 ◦M3 15 on page 24

M2 7 on page 15 M1 ◦M3 10 on page 18 M1 ◦M3 ◦M2 16 on page 25

M3 ◦M1 11 on page 19 M3 ◦M1 ◦M2 17 on page 26

M2 ◦M3 12 on page 20 M2 ◦M3 ◦M1 18 on page 27

M3 ◦M2 13 on page 21 M3 ◦M2 ◦M1 19 on page 28

For each of the 15 sample con�gurations, �ve di�erent inferences are conducted, where the
number of air-gaps and the number of frequencies in a signal are varied. The goal is to determine
whether an improvement in the parameter identi�cation is caused by the presence of air-gaps in
the observation, or simply to the increase in the number of frequencies caused by the observation
of additional signals. The cases are summarized in Table 4.

Table 4: Summary of the di�erent observations used in each of the 15 sample con�gurations. The
� symbol means that the observation has been used for the inference. Nfreq is the number of
frequencies contained in a single signal, whereas N is the total number of data points used in
Eq. 15.

Case Nfreq No air-gap
Air-gap length

N
2 cm 4 cm 6 cm

1 1200 � 1200

2 4800 � 4800

3 1200 � � 2400

4 1200 � � � 3600

5 1200 � � � � 4800

Even though parameters like the temperature or static pressure were identi�ed during all the
test cases, they are of relatively low importance to the study, the goal being that of recovering
the material parameters. However, it was noted that the temperature was very well identi�ed in
all cases (i.e., displaying a posterior pdf of small support centered on the true value), showing a
high sensitivity relative to the inverse problem. By contrast, the static pressure was always poorly
identi�ed, in the sense that the posterior density was almost uniform, over the entire support of
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the prior, meaning that no information on the parameter could be gained. Other notable �ndings
are that the noise parameters σR and σI were always correctly identi�ed, as well as the air-gap
lengths. The thickness of a sample was not always well identi�ed in the multi-layer cases when the
other parameters were also not well identi�ed. This is caused by the thickness having a similar
in�uence on the observed signals as the tortuosity α∞ (s̄, σs) of a sample, because of both of these
parameters controlling partially the e�ective travel length of a wave inside the sample. This model
correlation introduces di�culties in the identi�cation, especially when multiple modes are present.

In the following, the 5 inference cases summarized in Table 4 are displayed in each �gure.
The displayed pdfs are obtained by taking the samples of the MCMC chains, removing the �rst
20% samples as burn-in (so that the chains properly reach the density to explore), and using the
seaborn [56] python package for the plot of the kernel density estimate.

When the experiment is repeated with an air-gap, it would be counterproductive to reduce
the number of frequencies in each signal to keep N constant, as less information would be drawn
from the observation. However, case 2 was added to assess whether adding more frequencies in
a single observation is equivalent to adding observations with an air-gap, in terms of parameter
identi�cation.

5.3 Mono-layer identi�cations

The identi�cation of a single layer of porous material was successfully carried out, as shown in
Figs. 5,6,7 where the posterior pdfs all display a support that is sensibly smaller than the prior
support in Table 1.

Figure 5: Posterior pdfs of the properties of material M1. The black vertical line corresponds to
the true value. The legend refers to Table 4
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Figure 6: Posterior pdfs of the properties of material M2. The black vertical line corresponds to
the true value. The legend refers to Table 4

Figure 7: Posterior pdfs of the properties of material M3. The black vertical line corresponds to
the true value. The legend refers to Table 4

It is observed that the identi�cation case 5 yields better identi�cation results for materials M1

and M2 when compared with identi�cations cases 1 and 2, meaning that the posterior density is
usually closer to the true value (vertical line) and has a narrower support. Since the pdfs are not
normalized, a narrow support directly translates in the highest value of the pdf being higher than
for broader pdfs.

Although it is no surprise that the reference identi�cation (case 1) does not yield results as
precise as those in the other cases because of the lower number of observations (N = 1200), the two
cases 2 and 5 both have the same N = 4800. The only di�erence is that for case 5 the observations
are split between four di�erent numerical experiments of N = 1200 including three di�erent air-
gaps, instead of just one with N = 4800 with just the reference (no air-gap) observation.

This identi�cation test on mono-layers is a �rst indication that diversifying the observation
using air-gaps could in some cases increase the information content available on the parameters
to identify. This improvement might be material dependent, as in the case of material M3, where
it does not seem worth the additional experiments. It is postulated that low resistivity materials
(such as M3 ) do no bene�t as much from the addition of air-gaps because of the air-cavity
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e�ect being less pronounced than for resistive materials. The di�erent signals thus share a similar
type of information content, and cannot be used as e�ciently to improve one's knowledge on the
parameters.

5.4 Bi-layer identi�cation

The identi�cation of a bi-layer of porous materials was successfully carried out, as shown in
Figs. 8,9,10,11,12,13 where the posterior pdfs all display a support that is sensibly smaller than
the prior support in Table 1.

Figure 8: Posterior pdfs of the bi-layer M1 ◦M2. The black vertical line corresponds to the true
value. The legend refers to Table 4
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Figure 9: Posterior pdfs of the bi-layer M2 ◦M1. The black vertical line corresponds to the true
value. The legend refers to Table 4
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Figure 10: Posterior pdfs of the bi-layer M1 ◦M3. The black vertical line corresponds to the true
value. The legend refers to Table 4
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Figure 11: Posterior pdfs of the bi-layer M3 ◦M1. The black vertical line corresponds to the true
value. The legend refers to Table 4
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Figure 12: Posterior pdfs of the bi-layer M2 ◦M3. The black vertical line corresponds to the true
value. The legend refers to Table 4
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Figure 13: Posterior pdfs of the bi-layer M3 ◦M2. The black vertical line corresponds to the true
value. The legend refers to Table 4

The main di�erence with the identi�cation of a mono-layer is that ill-posedness starts to appear
in the problem. For instance, in the identi�cation of M2 ◦M1 in Fig. 9, the mean pore size of M1,
s̄1, presents a very wide posterior for case 1 and 2, with two peaks of density. In the identi�cation
of M1 ◦M3, the identi�cation of case 0 fails altogether to retrieve the correct parameters.

Overall, the pdf supports are larger than in the case of mono-layer parameter identi�cation,
which was expected because of the increased complexity of the problem. Also, since the thickness
of each layer is reduced, it stands to reason that each individual material has less in�uence on the
observation than in the mono-layer case, thus causing a larger pdf.

It is observed that the identi�cation case 5, including the presence of air-gaps, almost system-
atically provides the best identi�cation of all the parameters (close to true value with a narrow
support of the pdf). This is a strong indication that adding air-gaps behind materials in an
impedance tube increases the information content available, thus providing better identi�cation of
material properties, even in the case of a bi-layer material.

Of importance for the identi�cation is the ordering of the layers, as was also observed in Ref. [27].
If a resistive material is placed in front of another material, a lesser amount of the incident wave
will reach the second layer and eventually be seen on the observed signals. For instance, in the
identi�cations of the M1 ◦M2 (Fig. 8) and M2 ◦M1 (Fig. 9) bi-layers, identi�cation of the former
layer is easier than that of the latter, as seen by smaller pdf supports.

This limitation is intrinsic to the method, and is part of the reason why the thickness of each
layer was halved in the bi-layer cases. It is indeed almost impossible to identify any multi-layer
material using the present technique (or any other that we know of) when the �rst layer is made
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of a large and/or very resistive material. The incident wave simply does not �see� enough of the
subsequent layers to provide information on these layers within the observed signals.

Finally, it seems that a single additional observation with an air-gap is su�cient to retrieve
most of the information and remove the non-uniqueness of the solution in the bi-layer case, whereas
adding more air-gaps to make new observations can make the precision with which parameters
are retrieved increase. The di�erence in parameter identi�cation between using 2 air-gaps (3
observations) or 3 air-gaps (4 observations) is sometimes minimal, but cannot really be predicted
in advance. It is thus advised to perform as many measurements as possible within the time
constraints that one can allocate.

5.5 Tri-layer identi�cation

The identi�cation of a tri-layer of porous materials was successfully carried, as shown in Figs. 14,15,16,17,18,19
where the posterior pdfs all display a support that is sensibly smaller than the prior support of
Table 1.
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Figure 14: Posterior pdfs of the tri-layer M1 ◦M2 ◦M3. The black vertical line corresponds to the
true value. The legend refers to Table 4
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Figure 15: Posterior pdfs of the tri-layer M2 ◦M1 ◦M3. The black vertical line corresponds to the
true value. The legend refers to Table 4
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Figure 16: Posterior pdfs of the tri-layer M1 ◦M3 ◦M2. The black vertical line corresponds to the
true value. The legend refers to Table 4
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Figure 17: Posterior pdfs of the tri-layer M3 ◦M1 ◦M2. The black vertical line corresponds to the
true value. The legend refers to Table 4
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Figure 18: Posterior pdfs of the tri-layer M2 ◦M3 ◦M1. The black vertical line corresponds to the
true value. The legend refers to Table 4
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Figure 19: Posterior pdfs of the tri-layer M3 ◦M2 ◦M1. The black vertical line corresponds to the
true value. The legend refers to Table 4

For the identi�cation of tri-layer materials, things get quite more di�cult than for the previous
tests. Once more, wrong identi�ed values, very wide pdfs or bi-modal distributions can be obtained
in cases 1 and 2, as expected because of the increased complexity of the problem. Even when one
air-gap is considered (case 3), some pdfs are o� their target values. It seems that in most cases
the addition of two or three air-gaps is necessary.

In most cases, adding three air-gaps (case 5) to the observation leads to proper identi�cations
with pdfs close to or centered on the true value. When only two air-gaps are considered (case
4), parameters can be well identi�ed in some cases, but once again the solution su�ers from the
placement of a resistive layer in �rst or second position (see Fig. 18).

Overall, adding up to three air-gaps behind a tri-layer material makes it possible to retrieve
most properties of each individual layer. By contrast, the arti�cial frequency-content increase of a
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single observation by multiplying the number of frequencies in a signal (case 2) does not seem to
signi�cantly help the identi�cation, if at all.

5.6 Discussion

General comments on the previous material identi�cations are highlighted next:

� The use of the Horoshenkov hypothesis in the JCAPL model is attractive for multi-layer
identi�cations using impedance tubes, as an increase in the number of parameters would
otherwise rapidly increase the di�culty of the inference. Since the Horoshenkov hypothesis
is rooted in a statistical representation of the pore size, it is also well suited to a Bayesian
inference analysis.

� Limitations of the method are related to the immediate fact that if a layer is placed behind
another layer that is large or has a high resistivity, i.e., no wave is transmitted through it,
then the use of one or more air-gaps would be wasted, as the observation on the microphones
of the impedance tube would remain the same.

� If there is a clear rule stating how many air-gaps are necessary to identify a material having
L layers, it was not elucidated in the present work. For the cases that were studied, it seems
that increasing the number of air-gaps almost systematically improves the identi�cation,
and that adding even just one air-gap could drastically improve the results, going from an
indeterminate state to a known state (albeit with large uncertainties, compared with cases
with more observations).

� When an air-gap is added to make a new observation, an additional parameter needs to be
identi�ed (the air-gap length). It is then remarkable that despite having a higher number of
parameters to identify, the cases with more air-gaps systematically improve the identi�cation
results compared with reference cases.

� Overall, it seems that all the presented numerical experiments tend to show that adding
frequencies to a signal is not equivalent, and is in fact inferior, to adding observations of the
same material with additional air-gaps. Although requiring additional experiments in the
impedance tube, it remains a straightforward and non-intrusive method that can readily be
used in most acoustic labs.

� When using a deterministic approach to inverse problems, by means of an optimization
algorithm, one could directly apply this paper's method using the log-likelihood as a cost
function and the log-prior as a regularization parameter.

� When using high-frequency content time-domain signals, for instance with ultrasonic trans-
ducers, the present method needs to be adapted since an impedance tube cannot be used
anymore. However, one could potentially add an air-gap and a rigid plate behind the mate-
rial to measure the total re�ection coe�cient of the combination, to cheaply obtain a second
observation on the same material. This is akin to changing the angle of incidence of the ul-
trasonic wave, and using multiple measurements to identify material properties [26]. Adding
an air-gap would also delay the arrival of the wave that was fully transmitted and then re-
�ected on the rigid back-plate, back to the transducer, thus potentially allowing better wave
decoupling in the time domain.
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Additional tests were performed, where the thickness of each sample and the length of the air-gaps
were �xed to their true values. This resulted in less ill-posedness for the inverse problem (i.e.,
less non-uniqueness and multi-modality in the pdfs). However, it was noted that the uncertainty
on the inversed parameters was still greater than when air-gaps were considered, even when the
thickness of the layers and the lengths of the air-gaps were still assumed unknown.

The in�uence of the thickness on the observed signals is correlated with that of the tortuosity
α∞ of a sample, since they both control the distance a wave travels inside the sample. In the
Horoshenkov model of Eq. 8, this amounts to a potential correlation of the sample thickness with
both the pore size and standard deviation of the pore sizes. These correlations are a potential
source of di�culty during the inference, which highlights that constraining the sample thickness
(or any other known parameter) during the identi�cation should be done whenever possible.

In practice, one often knows the length of each stacked material. However, if the materials are
truly distinct, the identi�cation of their properties would be simpler in the �rst place if measure-
ments were done individually on each layer, and there would we no need to make the inference
more di�cult by considering multiple layers simultaneously.

The developed method should be seen as a complement to that of Ref. [27], where the number
of discrete layers in inhomogeneous materials is considered unknown (with the assumption that
a discrete representation is warranted). In this case, the thickness of each layer is unknown, and
becomes a parameter of the inversion procedure that cannot be discarded.

6 Conclusion

This article has introduced two potential improvements towards porous material characterization
in impedance tubes.

It was �rst shown that using the surface impedance or re�ection coe�cient signals as the
input of an inverse problem for the identi�cation of the intrinsic properties of porous media would
necessarily lead to biased results. This is caused by the unknown frequency dependence of the
uncertainty on these signals, which are derived initially from microphone pressure measurements
using a nonlinear relationship. A more e�cient approach consists in directly using the pressure
measurements at all the microphones for the inverse problem input, for which the error level and
type are usually given by the manufacturer or known otherwise. When more than two microphones
are used in the impedance tube, the approach then becomes strictly better, as more information
is gained.

A numerical analysis was then conducted on 15 di�erent materials, consisting in all the single-
layer and multi-layer combinations obtained with 3 di�erent porous materials. Using a di�erential
evolution version of the MCMC method [52], an objective Bayesian inference strategy was followed
on each material con�guration to retrieve their intrinsic properties, consisting in the parameters of
Horoshenkov [34] applied to the JCAPL model. The inference inputs were synthetic noisy pressure
evaluated at �ctive microphone positions, mimicking an experiment.

It was shown that adding an air-gap behind a material to perform one or more additional
acoustic observations almost systematically led to an improved identi�cation. In the case where
multi-layers were considered (up to three), adding an air-gap allowed the disambiguation in pa-
rameter estimation that was present in the reference case without air-gap. Adding frequencies in
a single observed signal was shown to be an inferior strategy when compared with adding air-gaps
to increase the number of observations.
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