
HAL Id: hal-03410906
https://hal.science/hal-03410906

Submitted on 5 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spin-orbit-coupled fluids of light in bulk nonlinear media
Giovanni Martone, Tom Bienaimé, Nicolas Cherroret

To cite this version:
Giovanni Martone, Tom Bienaimé, Nicolas Cherroret. Spin-orbit-coupled fluids of light in bulk non-
linear media. Physical Review A, 2021, 104 (1), �10.1103/PhysRevA.104.013510�. �hal-03410906�

https://hal.science/hal-03410906
https://hal.archives-ouvertes.fr


Spin-orbit-coupled fluids of light in bulk nonlinear media

Giovanni I. Martone,1, ∗ Tom Bienaimé,1, † and Nicolas Cherroret1, ‡

1Laboratoire Kastler Brossel, Sorbonne Université, CNRS,
ENS-PSL Research University, Collège de France; 4 Place Jussieu, 75005 Paris, France

We show that nonparaxial polarized light beams propagating in a bulk nonlinear Kerr medium
naturally exhibit a coupling between the motional and the polarization degrees of freedom, realizing
a spin-orbit-coupled mixture of fluids of light. We investigate the impact of this mechanism on the
Bogoliubov modes of the fluid, using a suitable density-phase formalism built upon a linearization of
the exact Helmholtz equation. The Bogoliubov spectrum is found to be anisotropic, and features
both low-frequency gapless branches and high-frequency gapped ones. We compute the amplitudes
of these modes and propose a couple of experimental protocols to study their excitation mechanisms.
This allows us to highlight a phenomenon of hybridization between density and spin modes, which is
absent in the paraxial description and represents a typical fingerprint of spin-orbit coupling.

I. INTRODUCTION

Quantum fluids of light represent a novel and flexible
kind of many-body system, whose constituents are pho-
tons that can effectively interact with each other (see [1]
for a review). They make it possible to observe in optics
many phenomena usually encountered in cold-atom sys-
tems, such as condensation [2, 3], superfluidity [4, 5], or
nucleation of nonlinear excitations [6–8]. To achieve a
fluid of light, a simple approach consists in propagating
a quasi-monochromatic beam of light in a medium with
sufficiently strong Kerr optical nonlinearity [9, 10]. This
setup, which does not involve any cavity, can be modeled
as a (2 + 1)-dimensional interacting system, with the two
spatial dimensions lying in the transverse plane while
the propagation direction plays the role of an effective
time. The third-order Kerr nonlinearity is interpreted
as a photon-photon interaction. This configuration has
been experimentally realized using a variety of materials,
including photorefractive crystals [11, 12], thermo-optic
media [13–15], and hot atomic vapors [16, 17]. In the
paraxial approximation, where the propagation occurs at
a small angle with the optical axis of the medium, the
effective-time evolution of the beam is described by a non-
linear Schrödinger equation. The latter is mathematically
analogous to the Gross-Pitaevskii equation governing the
real-time dynamics of an atomic Bose-Einstein conden-
sate. Consequently, small oscillating fluctuations of the
beam intensity field on top of a fixed background are
described by the standard Bogoliubov theory [18–21], as
was recently confirmed experimentally [14, 17]. Large
perturbations on top of a small background on the other
hand lead to the creation of dispersive shock waves [22–25].
Recently, this platform was also exploited to explore the
generation of topological defects and the associated turbu-
lence [26, 27], analogue cosmological Sakharov oscillations
in the density-density correlations of a quantum fluid of
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light [28, 29], as well as the spontaneous emergence of
long-range coherence [30, 31].

In recent times, multicomponent atomic quantum gases
with spin-orbit coupling have become a very active field
of research (see the reviews in [32–38] and references
therein). These systems are engineered in the laboratory
by coupling the atoms with properly designed laser fields.
On the one hand, they enable one to study phenomena
and systems typical of solid-state physics (spin-Hall ef-
fect, Majorana fermions, topological insulators) in highly
controllable setups. On the other hand, they allow for
the realization of novel many-body configurations, with
no counterpart in other domains of condensed matter
physics. In this context, a natural question is whether
the physics of spin-orbit coupling can also be investigated
in the framework of fluids of light. It is known that – in
contrast to atomic gases – light propagating in inhomoge-
neous media is naturally subject to an intrinsic spin-orbit
interaction, which is predicted by Maxwell theory [39, 40].
Such a mechanism has been observed in a number of
optical configurations involving light transmitted or re-
flected at dielectric interfaces [41], plasmonic slits [42],
nonparaxial beams [43], or light propagating in random
media [44, 45]. In the context of fluids of light, signatures
of spin-orbit interactions and of spin Hall effects were
reported in microcavity exciton-polaritons [46–49]. In
the present work, we show that a spin-orbit interaction
naturally occurs for fluids of light in the cavityless propa-
gating geometry discussed above. For that purpose, we
construct a general formalism for spin mixtures of fluids
of light that goes beyond the paraxial approximation in
which, by construction, any coupling between polarization
and orbital motion is discarded. By linearizing the full
nonlinear Helmholtz equation describing the system and
computing the Bogoliubov modes, we show that the exci-
tation spectrum exhibits features, like the anisotropy of
the frequencies and the hybridization of the density and
spin modes, that are typical of spin-orbit-coupled atomic
Bose gases [50–52]. We also discuss specific experimental
setups aiming to detect these phenomena.

This article is organized as follows. Section II is devoted
to the presentation of the physical model describing our
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nonparaxial fluid of light, based on the nonlinear vector
Helmholtz equation, with emphasis on the phenomenon of
spin-orbit coupling of light. In Sec. III we reformulate this
model in terms of appropriately chosen density and phase
variables and derive the associated Lagrangian. The core
elements of our theory are presented in Sec. IV: here we
linearize the field equations about a uniform background
configuration and study the properties of their solutions,
i.e., the Bogoliubov modes. The particular case of the
paraxial limit is discussed in Sec. V, where we show that
the system behaves like a standard binary mixture of
Bose-Einstein condensates, with a density and a spin
branch in its excitation spectrum. Sections VI and VII
contain the main predictions of our formalism: in Sec. VI
we derive the exact Bogoliubov spectrum of the system,
pointing out the presence of multiple branches and their
anisotropy. In Sec. VII we demonstrate the existence of
a phenomenon of mode hybridization due to spin-orbit-
coupling of light in a fluid mixture, and we propose two
concrete experimental scenarios where it can be observed.
We finally summarize our findings in Sec. VIII. Further
technical details are collected in two Appendices.

II. THE MODEL

We start our analysis by describing the physical setup
under consideration in Sec. II A. In Sec. II B we introduce
the Lagrangian of the model and discuss the connection
with the phenomenon of spin-orbit coupling.

A. Setup description

Let us consider a monochromatic light beam propagat-
ing in a dielectric material with cubic Kerr nonlinearity.
We write the electric field as E(r, t) = Re

[
E(r)e−iω0t

]
,

where ω0 is the field frequency and E its complex ampli-
tude. The components of E inside the medium obey the
so-called Helmholtz equation

−∇2E+∇ (∇ · E)−β2
0E+2β0gI |E|2E+2β0gPE2E∗ = 0 .

(1)
Here β0 = n0ω0/c is the propagation constant, with n0

the linear refractive index and c the vacuum speed of light.
Notice that two distinct nonlinear terms are present: one
is proportional to the total optical intensity |E|2, the other
to the square field E2 (which in turn depends on the field
polarization). The corresponding coupling strengths are
gI(P ) = −n2,I(P )ω0/c, where n2,I(P ) denotes the two non-
linear refractive indices. The appearance of these two
kinds of nonlinearity is a consequence of the formal prop-
erties of the cubic susceptibility of isotropic materials
(see, e.g., Refs. [53, 54]). A simple physical interpreta-
tion can be formulated thinking in analogy with spin-1
bosonic systems undergoing rotationally-invariant s-wave
collisions: the strength of the interaction can be different
for colliding pairs of total spin 0 and 2, thus justifying the

need for two independent coupling constants [55]. If both
gd and gs are nonzero, the two nonlinear terms in Eq. (1)
only reduce to a single one in two cases: when the electric
field is linearly polarized and one has |E|2E = E2E∗, or
when it is circularly polarized and thus E2 = 0. In the
present work we consider fields of arbitrary polarization,
hence one has to include both nonlinear couplings in the
Helmholtz equation (1).

The main goal of our analysis is to investigate the ef-
fects of the spin-orbit coupling of light, which is encoded
in the second term on the left-hand side of Eq. (1). This
term is absent in linear homogeneous media, where, ac-
cording to Maxwell’s equations, ∇ · E vanishes. Taking
the divergence on both sides of Eq. (1) one can see that
the spin-orbit coupling in our system originates from the
spatial variations of the nonlinear terms [see also Eq. (28)
below]. This motivates the Bogoliubov-like approach we
will develop in this paper: by imprinting a small fluctua-
tion on top of a uniform background, one will trigger a
spin-orbit coupling accessible through perturbation the-
ory.

For concreteness we consider a material that extends
infinitely along the r⊥ = (x, y) plane, as well as along the
positive direction of the optical axis z. We assume that at
the z = 0 interface between the air and the medium, the
latter is illuminated by a laser of given electric-field profile
E(r⊥, z=0) (see Fig. 2 below and the related discussion
of Sec. VII for practical examples of this setting). The
components of the field inside the medium are then found
by solving the three coupled differential equations (1)
with the above condition. This is in fact an initial-value
problem, in which the z coordinate can be regarded as an
effective time. Since Eq. (1) is of second order in z, one
also has to specify the first derivative of the field profile
at the interface, Ė(r⊥, z = 0) (we use the standard dot
notation for writing derivatives with respect to z).

An important property of Eq. (1) is that its projection
onto the z axis depends on the longitudinal field compo-
nent Ez but not on the effective-time derivatives Ėz and
Ëz. This means that one can eliminate Ez by expressing
it as a function of the transverse components of E and
their derivatives (in other words, Ez is not an independent
dynamical variable of our problem). However, in practice
this elimination can be difficult to perform in the pres-
ence of nonlinearities, unless one considers the linearized
version of Eq. (1), as we will do in Sec. IV.

B. Lagrangian formulation and spin-orbit coupling

Instead of working directly with the vector equation (1),
we develop our analysis starting from the corresponding
Lagrangian, which is a scalar quantity and is thus easier to
manipulate. It reads L =

∫
d2r⊥ L, where the Lagrangian
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density is

L = − 1

2β0

{[
(S · ∇)ij Ej

]∗[
(S · ∇)ij′ Ej′

]
− β2

0E∗i Ei
}

− gd
2
E∗i E∗j EiEj −

gs
2
E∗i E∗i′(Sk)ij(Sk)i′j′EjEj′ .

(2)

Here and henceforth Latin indices i, j, k, . . . take values
x, y, z (or +,−, z if one works in the circular basis, see
below), and we implicitly sum over repeated indices unless
otherwise specified. The prefactor of L has been chosen
such that it reduces to the Gross-Pitaevskii Lagrangian
density in the paraxial limit, see Eq. (30) below. Here,
the components Sk of the spin operator are 3×3 matrices.
Correspondingly, the spin optical intensity is defined as
the vector with components E∗i (Sk)ijEj . The two interac-
tion terms in L have strengths gd = gI+gP and gs = −gP .
They are proportional to the square of the total optical
intensity and the spin optical intensity, respectively. This
is the most general form of the two-body contact inter-
action for a three-component system with full rotational
invariance [55].

Notice that the kinetic term of the Lagrangian den-
sity (2) has the peculiar form (S · ∇)2, and thus features
a three-dimensional and fully isotropic spin-orbit coupling.
This is a different situation compared to the one arising
in atomic gases, where the spin-orbit coupling is often
taken as a combination of the Rashba [56] and Dressel-
haus [57] terms, which are linear in the particle’s spin and
momentum. In addition, in those systems, the spin-orbit
interaction can be anisotropic and involves only a subset
of spatial directions (see the reviews in [32–38] for further
information).

Equation (2) does not depend on the basis in which
E is expressed. If one chooses the Cartesian basis, the
entries of Sk simply read (Sk)ij = −iεijk. Taking the
Euler-Lagrange equation ∂i∂L/∂(∂iE∗j ) − ∂L/∂E∗j = 0
and using the tensor identity εijkεi′j′k = δii′δjj′ − δij′δji′ ,
one eventually recovers the Helmholtz equation (1). How-
ever, in the following we will use the basis of circular
polarizations, which is a natural choice when dealing with
spin-related phenomena. It is spanned by the three unit
vectors ê± = ∓(êx ± iêy)/

√
2 and êz (we take z as the

quantization axis of the angular momentum). The com-
ponents of the complex electric field in this basis are
E± = ∓(Ex ∓ iEy)/

√
2 and Ez. Regarding the spin opera-

tor S, its z component in the circular basis {ê+, êz, ê−}
is diagonal, Sz = diag(1, 0,−1), and the other two are
given by

Sx =
1√
2

0 1 0
1 0 1
0 1 0

 , Sy =
1√
2

0 −i 0
i 0 −i
0 i 0

 . (3)

III. DENSITY-PHASE FORMALISM

The Helmholtz equation (1) describes the effective-time
evolution of the electric field starting from an arbitrary
initial profile. Here, we consider situations where the
total field can be represented in the form of a large back-
ground term with a small fluctuation on top of it. The
background is a stationary solution of Eq. (1), while the
effective-time evolution of the fluctuation can be investi-
gated by linearizing this equation around the background.
This procedure is analogous to the Bogoliubov approach
for studying fluctuations on top of a Bose-Einstein conden-
sate (see, e.g., the books [20, 21] and references therein).
However, it should be kept in mind that fluids of light are
two-dimensional systems: since z plays the role of time,
only x and y should be regarded as spatial coordinates.
This means that the phases of the components of E can
experience large fluctuations around their background
values. Consequently, one should not directly perform
the expansion of the total field E about the background,
as it requires both intensity and phase fluctuations to be
small; rather, one should tackle this problem by means of
the so-called density-phase formalism [58–61]. We point
out that this is not a strict necessity for the calculations
of the present paper: since the observables we consider
(mainly the excitation spectrum and the beam intensity)
do not depend on the phases of E, they could be safely
evaluated using the field formalism. However, working
in the density-phase framework becomes mandatory for
accurately describing other quantities such as field corre-
lation functions [31]. Because of its more general validity,
in this article we will work within this formalism, whose
extension to a spin-orbit-coupled fluid of light is described
in the present section.

The starting point is the Lagrangian density (2), which
for simplicity is decomposed as L = L⊥ +Lz. Lz collects
all the terms in L depending on Ez, whereas the remaining
ones are included in L⊥. One has:

L⊥ = − 1

2β0

[
(S2
z )ββ′ Ė∗β Ėβ′ + (SαSα′)ββ′∂αE∗β ∂α′Eβ′

]
+
β0

2
E∗βEβ −

gd
2
E∗βE∗β′EβEβ′ −

gs
2

(Sz)βγ(Sz)β′γ′E∗βE∗β′EγEγ′ (4)

and

Lz = − 1

2β0

[
(SαSα′)zz∂αE∗z ∂α′Ez + (SαSz)zβ∂αE∗z Ėβ + (SzSα)βzĖ∗β∂αEz

]
+
β0

2
|Ez|2 − gdE∗βEβ |Ez|2 −

gd
2
|Ez|4

− gs(Sα)βz(Sα)zβ′E∗βEβ′ |Ez|2 −
gs
2

[
(Sα)zβ(Sα)zβ′E∗2z EβEβ′ + (Sα)βz(Sα)β′zE∗βE∗β′E2

z

]
.

(5)
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In these expressions Greek indices take values x, y or
±, depending on whether one works in the Cartesian
or circular basis. Notice that Lz does not depend on
Ėz, which is consistent with the fact that Ez is not an
independent dynamical variable, as discussed in Sec. II.
We now introduce the density and phase variables by
parametrizing the electric field as follows:

E+Ez
E−

 = eiΘ


√
I cos ϑ2 eiχ/2

Êz√
I sin ϑ

2 e−iχ/2

 . (6)

Here I = |E+|2 + |E−|2 is the optical intensity due to the
transverse polarization components, ϑ ∈ [0, π] quantifies

their relative weight and χ ∈ [0, 2π[ their relative phase.

The complex field Êz differs from the full longitudinal
component Ez by a phase factor, and the quantity Θ ∈
[0, 2π[ entering this factor can be regarded as the global
phase of the electric field. All these variables are functions
of the transverse and longitudinal coordinates, r⊥ and z.

We now rewrite the two Lagrangian densities (4) and (5)
in terms of the new density-phase variables. In doing so
it is useful to recall that the entries of the spin-1 matrices
in the circular basis [see Eq. (3)] satisfy the identities
(S2
z )ββ′ = δββ′ , (SαSα′)zz = δαα′ , (Sα)βz(Sα)zβ′ = δββ′ ,

(Sα)zβ(Sα)zβ′ = (Sα)βz(Sα)β′z = (σx)ββ′ , and (Sz)ββ′ =
(σz)ββ′ , where σx and σz are the usual 2× 2 Pauli matri-
ces. For the transverse Lagrangian density one finds the
structure

L⊥ = − I

2β0

( İ

2I

)2

+

(
ϑ̇

2

)2

+ Θ̇2 +

(
χ̇

2

)2

+ 2 cosϑ Θ̇
χ̇

2


− I

2β0

[
(KII)αα′

∂αI

2I

∂α′I

2I
+ (Kϑϑ)αα′

∂αϑ

2

∂α′ϑ

2
+ (KΘΘ)αα′∂αΘ ∂α′Θ + (Kχχ)αα′

∂αχ

2

∂α′χ

2

+ (KIϑ)αα′
∂αI

2I

∂α′ϑ

2
+ (KIΘ)αα′

∂αI

2I
∂α′Θ + (KIχ)αα′

∂αI

2I

∂α′χ

2

+ (KϑΘ)αα′
∂αϑ

2
∂α′Θ + (Kϑχ)αα′

∂αϑ

2

∂α′χ

2
+ (KΘχ)αα′∂αΘ

∂α′χ

2

]
+
β0

2
I − gd

2
I2 − gs

2
I2 cos2 ϑ ,

(7)

while the longitudinal Lagrangian density in the density-phase variables becomes

Lz = − 1

2β0

[
∂αÊ∗z ∂αÊz + ∂αΘ ∂αΘ|Êz|2 − i(Ê∗z ∂αÊz − Êz∂αÊ∗z )∂αΘ

]
−
√
I

β0
Re

{[
(SαSz)z+

(
cos

ϑ

2

İ

2I
− sin

ϑ

2

ϑ̇

2
+ i cos

ϑ

2
Θ̇ + i cos

ϑ

2

χ̇

2

)
eiχ/2

+ (SαSz)z−

(
sin

ϑ

2

İ

2I
+ cos

ϑ

2

ϑ̇

2
+ i sin

ϑ

2
Θ̇− i sin

ϑ

2

χ̇

2

)
e−iχ/2

]
(∂αÊ∗z − iÊ∗z ∂αΘ)

}
+
β0

2
|Êz|2 − gdI|Êz|2 −

gd
2
|Êz|4 − gsI|Êz|2 −

gs
2
I sinϑ(Ê2

z + Ê∗2z ) .

(8)

The K coefficients entering L⊥ are given in Appendix A
for clarity.

IV. LINEARIZED HELMHOLTZ EQUATION

In this section we develop the Bogoliubov theory for
a fluid of light described by the Helmholtz equation (1).
It consists in linearizing this equation about a stationary
(with respect to effective-time evolution) background so-
lution, which is given in Sec. IV A. We achieve this goal
by first expanding the Lagrangian density (7)–(8) up to
quadratic order in the fluctuations (Sec. IV B). Then, we

derive their (linear) evolution equations after switching
to the Hamiltonian framework (Sec. IV C). Finally, in
Sec. (IV D), we discuss some relevant properties of the
Bogoliubov modes and, in particular, their orthonormal-
ization relations.

A. Background field solution

As mentioned in Sec. III, the density-phase formalism
is well suited for studying the effective-time evolution of
the electric-field fluctuations about a fixed background
E0, henceforth assumed to be uniform, i.e., of constant
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optical intensity I0 = |E0|2. Specifically, from now on,
we will focus on the case of a linearly polarized back-
ground field describing a plane wave impinging on the
nonlinear medium at normal incidence that subsequently
propagates along the positive z direction with wave vec-
tor k = kêz. Without loss of generality, we take the
polarization parallel to the x axis and thus write

E0(r⊥, z) =
√
I0 eikzêx . (9)

Notice that E0 can be rewritten in the form (6) by taking,
for the density-phase variables, the values ϑ0 = π/2,
Θ0 = π/2 + kz, χ0 = π, and Êz,0 = 0. Inserting the
field (9) into the Helmholtz equation (1) yields the relation

k =
√
β2

0 − 2β0gdI0 , (10)

where the second term in the square root can be inter-
preted as the nonlinear contribution to the refractive index
felt by the background field. Equation (9)-(10) represents
an exact stationary solution of the Helmholtz equation,
which remains uniform at all z; thus, unlike nonuniform
backgrounds, it is not subject to self-focusing or defocus-
ing phenomena induced by the nonlinearity. Notice that
the input field E0(r⊥, z=0) =

√
I0 êx does not depend on

the nonlinearity, and is thus continuous at the air-medium
interface. On the other hand, its first-order derivative
Ė0(r⊥, z = 0) = ik

√
I0 êx depends on the nonlinearity

through k, which is given by Eq. (10) for z > 0, whereas
k = β0 for z < 0. Note, finally, that Eq. (9) implicitly
neglects any reflection or shift at the interface, which is
a reasonable approximation as long as the jump in the
nonlinearity at the interface is not too large.

B. Bogoliubov Lagrangian

We are now ready to investigate fluctuations on top
of the uniform background field introduced in Sec. IV A.
For this purpose, in the density-phase representation (6)
we assume that the intensity I and the relative weight
between the two transverse polarization components ϑ
undergo small fluctuations around the background values,

i.e., we write I = I0 + δI and ϑ = π/2 + δϑ, where
|δI|/I0 � 1 and |δϑ| � 1. However, such an expansion
does not hold for the global phase whose fluctuations
can be significant, as motivated earlier. Nevertheless,
it is convenient to redefine it as Θ → π/2 + kz + Θ in
order to isolate the background phase. At this stage,
let us point out that L⊥ and Lz do not depend on Θ
itself but only on its derivatives. Hence, in order to
develop the Bogoliubov theory, it is sufficient to assume
the derivatives of Θ to be small, which is the typical
situation of low-dimensional quantum systems [58–61].
A different situation occurs for the relative phase, since
the Lagrangian densities (7) and (8) explicitly depend on
χ because of the spin-orbit coupling terms. In order to
formulate the Bogoliubov approach we hypothesize that
such terms suppress the fluctuations of χ and make the
expansion χ = π + δχ with |δχ| � 1. In this respect,
we point out that a phenomenon of suppression of the
relative-phase fluctuations has been found in a model of
atomic gases with spin-orbit coupling [62]. Finally, the

emergence of the longitudinal field Êz is only caused by
the fluctuations of the transverse components, such that
we expect its magnitude to remain small.

Let us expand the contributions (7) and (8) of the
Lagrangian density up to second order in the above

small variables, L⊥(z) = L(0)
⊥(z) + L(1)

⊥(z) + L(2)
⊥(z). At

zero order one finds L(0)
⊥ = gdI

2
0/2 and L(0)

z = 0. The
first-order terms can be discarded as they have the

form of a total divergence, L(1)
⊥ = −kI0Θ̇/β0 and

L(1)
z =

√
I0/2(k/β0)∂α Re

{
[(SαSz)z+ − (SαSz)z−] Ê∗z

}
.

Hence, we focus our attention on the second-order
contributions. It is convenient to introduce the Fourier
transforms of the variables with respect to the transverse
plane coordinates. For the total intensity we write
δĨ(q⊥, z) =

∫
d2r⊥ δI(r⊥, z) e−iq⊥·r⊥ , with the property

δĨ(−q⊥, z) = δĨ∗(q⊥, z) due to the reality of δI. Analo-

gous expressions hold for δϑ̃, Θ̃, and δχ̃ (here and in the
following, tilded functions refer to Fourier transforms).
Correspondingly, one can define the transverse and
longitudinal Lagrangian densities in momentum space,
such that the corresponding total Lagrangians are given

by L
(2)
⊥(z) =

∫
d2r⊥ L(2)

⊥(z) =
∫

d2q⊥/(2π)2 L̃(2)
⊥(z). We

first compute the longitudinal Lagrangian density in
momentum space:

L̃(2)
z = − 1

2β0

[
(q2
⊥ − k2

0)Ẽ∗z (q⊥)Ẽz(q⊥) +
∆k2

0

2
Ẽz(q⊥)Ẽz(−q⊥) +

∆k2
0

2
Ẽ∗z (q⊥)Ẽ∗z (−q⊥)

]
−
√
I0 q⊥
2β0

[
A(q⊥)Ẽ∗z (q⊥) +A∗(q⊥)Ẽz(q⊥)

]
.

(11)

Here k2
0 = β2

0 − 2β0(gn + gs)I0, ∆k2
0 = 2β0gsI0, and

A = cosϕ

(
δ ˙̃I

2I0
+ ik

δĨ

2I0

)
− i sinϕ

(
δ

˙̃
ϑ

2
+ ik

δϑ̃

2

)

+ i cosϕ
(

˙̃Θ + ikΘ̃
)
− sinϕ

(
δ ˙̃χ

2
+ ik

δχ̃

2

)
.

(12)

In writing Eq. (11) we have used the polar form q⊥ =
q⊥(cosϕ êx + sinϕ êy) of the transverse momentum and

the identity [(q⊥ · S⊥)Sz]z± = ±q⊥e±iϕ/
√

2. Notice that
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L̃z only contains linear and quadratic terms in Ẽz, Ẽ∗z .

Hence, the Euler-Lagrange equations δL
(2)
z /δẼ∗z (q⊥) = 0

and δL
(2)
z /δẼz(−q⊥) = 0 are linear in the fields Ẽz(q⊥)

and Ẽ∗z (−q⊥). Solving these equations one gets

Ẽz(q⊥) = −
√
I0 q⊥

[
(q2
⊥ − k2

0)A(q⊥)−∆k2
0A∗(−q⊥)

]
(q2
⊥ − k2

0)2 − (∆k2
0)2

.

(13)

This result can be used to eliminate Ẽz in favor of the
other variables of the problem. Inserting it into Eq. (11)
one obtains

L̃(2)
z =

q2
⊥I0
4β0

(q2
⊥ − k2

0)
[
|A(q⊥)|2 + |A(−q⊥)|2

]
(q2
⊥ − k2

0)2 − (∆k2
0)2

− q2
⊥I0
2β0

∆k2
0 Re [A(q⊥)A(−q⊥)]

(q2
⊥ − k2

0)2 − (∆k2
0)2

.

(14)

In this expression, we have omitted terms that are
odd under exchange of q⊥ into −q⊥ and thus do not
contribute to the Lagrangian L

(2)
z =

∫
d2q⊥/(2π)2L̃(2)

z .
It now remains to substitute Eq. (12) into (14) and

rewrite L̃(2)
z as a function of the four variables δĨ, δϑ̃,

Θ̃, δχ̃, and their derivatives. Then, one has to com-
pute the transverse Lagrangian density L̃(2)

⊥ . The cal-
culation is straightforward and requires the use of the
identities [(q⊥ · S⊥)2]++ = [(q⊥ · S⊥)2]−− = q2

⊥/2 and
[(q⊥ ·S⊥)2]+− = [(q⊥ ·S⊥)2]∗−+ = q2

⊥e−2iϕ/2. After some
algebra one finally obtains the complete Lagrangian den-

sity in momentum space, L̃(2) = L̃(2)
⊥ + L̃(2)

z . It exhibits
the structure

L̃(2) = Ẋ†Λ2Ẋ + Ẋ†Λ1X +X†ΛT1 Ẋ −X†Λ0X , (15)

where X = (δĨ/2I0 δϑ̃/2 Θ̃ δχ̃/2)T is a four-component
column vector and Λ0, Λ1, and Λ2 are real 4× 4 matrices.
Their expressions are a bit cumbersome and are given in
Appendix B for clarity.

C. Bogoliubov equations in the Hamiltonian
framework

To study the evolution of the fluctuations, one could
write down the Euler-Lagrange equations associated with
the Lagrangian density (15). These are second-order lin-
ear equations in the effective time z, whose solution is
unique once the input values of the field and its deriva-
tive, namely X(q⊥, z = 0) and Ẋ(q⊥, z = 0), have been
specified. In the following, however, we will use a differ-
ent approach and work in the Hamiltonian framework,
which offers two advantages: the evolution equations are
of first order, and a direct procedure exists for determin-
ing the orthonormalization conditions of the Bogoliubov
amplitudes.

The starting point of the Hamiltonian scheme con-
sists in introducing the conjugate momenta for each
dynamical variable in X and then define a new

four-component column vector collecting them, Π =
(ΠδĨ/2I0

Πδϑ̃/2 ΠΘ̃ Πδχ̃/2)T . The formal definition of

this quantity is Π = ∂L̃(2)/∂ẊT , yielding

Π = Λ2Ẋ
∗ + Λ1X

∗ . (16)

One can now introduce an Hamiltonian density by per-
forming a Legendre transform on the Lagrangian density,
H̃(2) = ΠT Ẋ + Ẋ†Π∗ − L̃(2). The derivative of X can
be eliminated in favor of Π by inverting Eq. (16). After
some algebra one finds

H̃(2) = ΠTΛ−1
2 Π∗ −ΠT (Λ−1

2 Λ1)X −X†(Λ−1
2 Λ1)TΠ∗

+X†(ΛT1 Λ−1
2 Λ1 + Λ0)X .

(17)

With this expression at hand, it is straightforward to
explicitly derive the Hamilton equations Ẋ = ∂H̃(2)/∂ΠT

and Π̇∗ = −∂H̃(2)/∂X† governing the effective-time evo-
lution of X and Π∗. The final result can be written in
the compact form

i

(
Ẋ

Π̇∗

)
= B

(
X
Π∗

)
, (18)

where we have defined the 8× 8 Bogoliubov matrix

B = i

(
−Λ−1

2 Λ1 Λ−1
2

−(ΛT1 Λ−1
2 Λ1 + Λ0) (Λ−1

2 Λ1)T

)
. (19)

This system of eight linear homogeneous differential equa-
tions of first order in the z coordinate admits eight linearly
independent solutions. To identify a set of such solu-
tions we make the Ansatz X(q⊥, z) = X0(q⊥)e−iΩ(q⊥)z,
Π∗(q⊥, z) = Π∗0(q⊥)e−iΩ(q⊥)z, and rewrite Eq. (18) as an
eigenvalue problem,

B
(
X0

Π∗0

)
= Ω

(
X0

Π∗0

)
. (20)

We will use the subscript ` to distinguish between different
solutions of this problem. The set of eigenfrequencies Ω`
represents the Bogoliubov spectrum of the system, and
the X0,`’s and Π∗0,`’s are the corresponding amplitudes.

Any arbitrary solution of Eq. (18) can be represented as
a linear combination of these Bogoliubov modes,(

X(q⊥, z)
Π∗(q⊥, z)

)
=
∑
`

C`(q⊥)

(
X0,`(q⊥)
Π∗0,`(q⊥)

)
e−iΩ`(q⊥)z ,

(21)
where the sum runs over all the modes. The weights
C`(q⊥) characterizing this combination are uniquely fixed
by the choice of the input fields X(q⊥, z = 0) and
Π∗(q⊥, z = 0). Their evaluation requires the use of or-
thonormalization conditions derived in the next section.

D. Properties of Bogoliubov modes and
orthonormalization relations

An important property of the Bogoliubov formal-
ism is that, if (X0,`(q⊥),Π∗0,`(q⊥)) is a solution of the



7

eigenvalue problem (20) with frequency Ω`(q⊥), then
(X∗0,`(−q⊥),Π0,`(−q⊥)) also is a solution with frequency

−Ω∗` (−q⊥) [19].1 These two solutions correspond to the
same physical oscillation of the system. Their simulta-
neous appearance is necessary because X and Π∗ are
Fourier transform of real quantities, and must satisfy
X∗(−q⊥, z) = X(q⊥, z) and Π(−q⊥, z) = Π∗(q⊥, z).
For the same reason, the weight of the mode of fre-
quency −Ω∗` (−q⊥) in the combination (21) must be
C∗` (−q⊥) [this comes out automatically when calculating
the weights using Eq. (26)].

We additionally point out that complex frequencies in
the spectrum of B occur in complex conjugate pairs [19].
To prove this, we notice that, if Ω`(q⊥) is a complex
eigenvalue of B, then its conjugate Ω∗` (q⊥) must be an
eigenvalue of B†. However, the two matrices are related
by a unitary transformation,(

0 iI4
−iI4 0

)
B
(

0 iI4
−iI4 0

)−1

= B† , (22)

where I4 denotes the 4× 4 identity matrix. Hence, B and
B† must have the same spectrum, meaning that Ω∗` (q⊥)
is also an eigenvalue of B. It should be kept in mind that
complex-frequency modes correspond to perturbations
that either grow or decay exponentially in effective time.
In the former case the system rapidly deviates from the
linear regime where the Bogoliubov theory is applicable.

In physical systems whose time evolution is governed by
the standard Gross-Pitaevskii equation (including atomic
Bose-Einstein condensates and fluids of light in the parax-
ial approximation, see Sec. V) the Bogoliubov amplitudes
obey a set of orthonormalization conditions [19–21]. We
will now prove that this also happens in fluids of light
described by the Helmholtz equation (1). Writing Eq. (20)
for two fixed arbitrary modes ` and `′, taking appropri-
ate combinations of the resulting expressions, and using
Eq. (22), one ends up with the identity

[Ω`(q⊥)− Ω∗`′(q⊥)]×
i
[
X†0,`′(q⊥)Π∗0,`(q⊥)−ΠT

0,`′(q⊥)X0,`(q⊥)
]

= 0 .
(23)

For modes having real frequency, and in the absence of
degeneracy, the second factor on the left-hand side must
vanish if `′ 6= `. This provides an orthogonality relation
for the amplitudes. The `′ = ` case is instead used to
define the norm N`(q⊥) of the `-th Bogoliubov mode.
These conditions summarize as

i
[
X†0,`′(q⊥)Π∗0,`(q⊥)−ΠT

0,`′(q⊥)X0,`(q⊥)
]

= N`(q⊥)δ`′`
(24)

1 The matrix B and its spectrum are also symmetric under inversion
of q⊥ into −q⊥. However, this property is lost if the direction of
propagation of the background field is tilted with respect to the
z axis. Having in mind this more general case, in the formulas of
the present section we keep the explicit distinction between q⊥
and −q⊥.

(in this section we do not sum over repeated ` indices).
Notice that the norm is real and can be either positive
or negative. To understand this point, let us assume
that N`(q⊥) > 0 for some solution (X0,`(q⊥),Π∗0,`(q⊥))

of Eq. (20). Then, from Eq. (24) one finds that the
other solution (X∗0,`(−q⊥),Π0,`(−q⊥)) corresponding to
the same physical oscillation has negative norm equal to
−N`(−q⊥).

The orthonormalization condition of complex-frequency
modes is again deduced from Eq. (23) and reads

i
[
X†0,`′(q⊥)Π∗0,`(q⊥)−ΠT

0,`′(q⊥)X0,`(q⊥)
]

= N`(q⊥)δ`′ ¯̀ .
(25)

Here we use the subscript ¯̀ to denote the Bogoliubov
mode with frequency Ω¯̀(q⊥) = Ω∗` (q⊥). Different from
the case of real-frequency modes, here N`(q⊥) is generally
complex and such that N¯̀(q⊥) = [N`(q⊥)]∗.

The orthonormalization conditions of the amplitudes
can be used to express the weights in the linear superpo-
sition (21) in terms of the fields at the interface. Indeed,
taking Eq. (21) at z = 0 and projecting it onto the `-th
Bogoliubov mode using Eq. (24) or (25) one finds

C`(q⊥) =
i

N¯̀(q⊥)
×[

X†
0,¯̀

(q⊥)Π∗(q⊥, z=0)−ΠT
0,¯̀(q⊥)X(q⊥, z=0)

] (26)

(with ¯̀ replaced by ` in the case of a real-frequency mode).
Equations (20) and (21), together with the relation (26),
constitute the complete solution of the linearized problem.

V. PARAXIAL LIMIT

While the formalism developed so far is exact, in many
practical situations one can obtain a simplified description
by performing the so-called paraxial approximation (see,
e.g., Refs. [53, 54]). In this section we recall the main
elements of this approximation, and show how it relates
to the more general framework developed in the previous
sections. In particular, we show that taking into account
the polarization degrees of freedom in the paraxial ap-
proximation establishes a mapping between the fluid of
light and a binary Bose mixture described by two coupled
Gross-Pitaevskii equations.

A. Paraxial approximation and Gross-Pitaevskii
theory

Let us consider a light beam mostly propagating along
the z axis, and write the complex electric field in the form

E(r⊥, z) = ψ(r⊥, z)e
iβ0z . (27)

Here eiβ0z is a rapidly varying exponential and ψ(r⊥, z) a
slowly varying function of r⊥ and z. Taking the divergence
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on both sides of Eq. (1) and of its complex conjugate, one
finds after a few manipulations

∇ · E =

(
β0 − 2gI |ψ|2

)
G + 2gPψ

2e2iβ0zG∗(
β0 − 2gI |ψ|2

)2

− |2gPψ2|2
, (28)

where in the right-hand side we replaced E by ψ using
Eq. (27) and we defined

G = ψ · ∇
(

2gI |ψ|2
)

eiβ0z +ψ∗ · ∇
(
2gPψ

2e2iβ0z
)

e−iβ0z .

(29)
In typical situations, the quantity ∇ · E is small for two
reasons. First, because the nonlinear terms are weak,
|gI(P )| |ψ|2 � β0. Second, because it is proportional
to the derivatives of the slowly varying envelop ψ. We
further notice that in these conditions one can approxi-
mate |∇ ·E| ' β0|ψz|, which implies that the longitudinal
component of the electric field remains small inside the
medium, |ψz| � |ψ±|.

The paraxial approximation amounts to completely ne-
glecting contributions due to the longitudinal component
ψz, as well as those associated with the second term of
Eq. (1). As the latter couples spatial and polarization
degrees of freedom, it follows that any effect of spin-orbit
coupling is discarded at the paraxial level. By inserting
Eq. (27) into (2) and applying the paraxial approximation,
we obtain the paraxial Lagrangian density:

Lpar =
i

2

(
ψ∗βψ̇β − ψβψ̇∗β

)
−
∂αψ

∗
β ∂αψβ

2β0

− gd
2

(
|ψ+|2 + |ψ−|2

)2 − gs
2

(
|ψ+|2 − |ψ−|2

)2
.

(30)

This Lagrangian density is formally identical to that of a
two-dimensional Bose-Bose mixture [20, 21]. The parame-
ter β0 plays the role of the atom mass, which is the same
for the two components. The two intracomponent cou-
plings are equal and given by gd + gs, while the strength
of the intercomponent interaction is gd − gs. The Euler-
Lagrange equations for ψ± derived from the Lagrangian
density (30) have the standard form of two coupled non-
linear Schrödinger (or Gross-Pitaevskii) equations for the
two components of circularly polarized light:

iψ̇± = −∇
2
⊥ψ±
2β0

+
[
(gd + gs) |ψ±|2 + (gd − gs) |ψ∓|2

]
ψ± .

(31)
In the optical context, a further simplification is obtained
when the electric field is linearly polarized at any point
in space, that is, ψ+ = eiθψ− ≡ ψ/

√
2 for arbitrary θ. In

this case the coupled equations (31) reduce to a single
nonlinear Schrödinger equation for the wave function ψ,

iψ̇ = −∇
2
⊥ψ

2β0
+ g |ψ|2 ψ (32)

with g = gd. The same holds if the field is circularly
polarized, i.e., ψ+ ≡ ψ, ψ− = 0 (or ψ+ = 0, ψ− ≡ ψ), but

with a different nonlinear coupling g = gd + gs. These
observations suggest an interesting method to access the
values of gd and gs, by comparing measurements of the
coupling strength g of Eq. (32) performed using linearly
and circularly polarized light.

The density-phase formalism introduced in Sec. III can
be used within the paraxial approximation as well. The
parametrization of the fields ψ±,(

ψ+

ψ−

)
=
√
I eiΘ

(
cos ϑ2 eiχ/2

sin ϑ
2 e−iχ/2

)
, (33)

is analogous to that of E±, see Eq. (6), except that the
term β0z is subtracted from the global phase Θ because
of the definition (27). The Lagrangian density (30) as a
function of the density and phase variables reads

Lpar = − IΘ̇− I cosϑ
χ̇

2
− gd

2
I2 − gs

2
I2 cos2 ϑ

− I

2β0

( ∣∣∣∣∇⊥I2I

∣∣∣∣2 +

∣∣∣∣∇⊥ϑ2

∣∣∣∣2 + |∇⊥Θ|2 +

∣∣∣∣∇⊥χ2

∣∣∣∣2
+ 2 cosϑ∇⊥Θ · ∇⊥χ

2

)
.

(34)

B. Bogoliubov theory in the paraxial regime

The Bogoliubov theory for a fluid of light in the paraxial
limit mirrors that of a two-component Bose mixture, a
topic which has already been extensively explored (see,
e.g., the books [20, 21] and references therein). Let us take
again a background field propagating along z and with
linear polarization parallel to the x axis. Its expression is
readily found by solving Eq. (31):

ψ±(r⊥, z) = ∓
√
I0
2

e−igdI0z . (35)

It could be equally obtained from the beyond-paraxial
result (9) in the limit of weak nonlinearity, |gd|I0/β0 � 1,
in which one can approximate k ≈ β0 − gdI0. Notice
that this configuration mimics the behavior of a balanced
binary mixture of bosonic atoms.

As in Sec. IV, we consider small fluctuations of the
optical intensities of the two polarization components
about the background field and write I = I0 + δI and
ϑ = π/2 + δϑ. We also redefine the phases as Θ →
π/2− gdI0z + Θ and χ→ π + χ, and we assume that the
derivatives of the redefined variables remain small [here
χ is not expanded because the paraxial Lagrangian (34)
depends on its derivatives only]. This enables us to ex-
pand the Lagrangian density (30) up to second order in

the small fluctuations, Lpar = L(0)
par + L(1)

par + L(2)
par. As

usual, the zero-order term L(0)
par = gdI

2
0/2 is a constant

and the first-order one L(1)
par = −I0Θ̇ a total divergence.

Regarding the second-order contribution, we follow the
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same procedure as in Sec. IV B and work in momentum
space. The resulting Lagrangian density can be put in
the compact form

L̃(2)
par = Ẋ†Λpar,1X +X†ΛTpar,1Ẋ −X†Λpar,0X . (36)

Here X = (δĨ/2I0 δϑ̃/2 Θ̃ χ̃/2)T (notice that it differs
from the object defined in Sec. IV B because one has χ̃
instead of δχ̃ in the fourth component), and we have
introduced the two 4× 4 matrices

Λpar,1 = I0

 0 0 0 0
0 0 0 0
−1 0 0 0
0 1 0 0

 (37)

and

Λpar,0 = I0 diag

(
q2
⊥

2β0
+ 2gdI0,

q2
⊥

2β0
+ 2gsI0,

q2
⊥

2β0
,
q2
⊥

2β0

)
.

(38)
Alternatively, the paraxial Lagrangian density (36) can
be derived from Eq. (15) by expanding the latter up to

first order in the dimensionless quantities Ẋ/β0, (q⊥/β0)2,
and gd,sI0/β0, which are small in the paraxial limit.

Since the Lagrangian density (36) is now of first order
in the effective-time derivatives of X, unlike in Sec. IV C
it is here more convenient to work in the Lagrangian
framework. The effective-time evolution is governed

by the Euler-Lagrange equations d(∂L̃(2)
par/∂Ẋ†)/dz −

∂L̃(2)
par/∂X† = 0, that is,

(Λpar,1 − ΛTpar,1)Ẋ + Λpar,0X = 0 . (39)

As compared to Eq. (18), here we have four coupled
equations instead of eight leading to four linearly inde-
pendent solutions. They can be found making the Ansatz
X(q⊥, z) = X0(q⊥)e−iΩ(q⊥)z and rewriting Eq. (39) as
an eigenvalue problem, BparX0 = ΩX0 with

Bpar = i(ΛTpar,1 − Λpar,1)−1Λpar,0 . (40)

Most of the properties of the Bogoliubov modes dis-
cussed in Sec. IV C also hold in the paraxial description.
In particular, for the real-frequency modes, the orthonor-
malization conditions for the amplitudes read

iX†0,`′(q⊥)(Λpar,1 − ΛTpar,1)X0,`(q⊥) = ±δ``′
2
. (41)

Here the value of the norm of X0,`(q⊥) has been cho-
sen equal to ±1/2 to be consistent with the standard
convention adopted in the study of atomic Bose-Einstein
condensates [20, 21]. Then, if one represents a given
solution of Eq. (39) as a linear superposition of the kind

X(q⊥, z) =
∑
`

C`(q⊥)X0,`(q⊥)e−iΩ`(q⊥)z , (42)

the weights are related to the input value X(q⊥, z = 0)
by

C`(q⊥) = ±2iX†0,`(q⊥)(Λpar,1 − ΛTpar,1)X(q⊥, z = 0) .

(43)
The diagonalization of Bpar yields four eigenfrequencies,

denoted by ±Ωd and ±Ωs. The subscripts d and s here
stand for “density” and “spin”, in a sense that will be
clarified below. The eigenfrequencies have the well-known
Bogoliubov-like form

Ωd(s)(q⊥) =

√
q2
⊥

2β0

(
q2
⊥

2β0
+ 2β0c2d(s)

)
, (44)

where c2d(s) = gd(s)I0/β0 are the two sound velocities. In
fluids of light, this dispersion relation was recently mea-
sured in [17, 63].

The nature of density and spin modes can be under-
stood by looking at the eigenvectors of Bpar. The normal-
ized amplitudes associated with the positive eigenfrequen-
cies are given by

X0,d(q⊥) =

(
1

2

√
q2
⊥/2β0

Ωd(q⊥)
0

1

2i

√
Ωd(q⊥)

q2
⊥/2β0

0

)T
,

(45a)

X0,s(q⊥) =

(
0

1

2

√
q2
⊥/2β0

Ωs(q⊥)
0 − 1

2i

√
Ωs(q⊥)

q2
⊥/2β0

)T
.

(45b)

These expressions correspond to δϑ̃/2 = χ̃/2 = 0 for the d
modes, and δĨ/2I0 = Θ̃ = 0 for the s modes. Hence, the
d modes are indeed of pure density type, in the sense that
only the total optical intensity I and phase Θ oscillate with
z. In contrast, the s modes are of pure spin type, featuring
oscillations of the relative optical intensity |E+|2−|E−|2 =
−I0δϑ and phase χ.

VI. EXACT BOGOLIUBOV SPECTRUM

We now examine the Bogoliubov spectrum without us-
ing the paraxial approximation. This spectrum is found
by solving the exact eigenvalue problem (20). It includes
eight branches, corresponding to four different physical
oscillations of the system. The frequencies are easy to
compute in the absence of nonlinearities (gd = gs = 0).
In this limit each Bogoliubov mode is twofold degenerate,
thus one has only four distinct eigenfrequencies, ±Ω+(q⊥)

and ±Ω−(q⊥) with Ω±(q⊥) = β0±
√
β2

0 − q2
⊥. This spec-

trum can be represented by two circumferences in the
(q⊥,Ω) plane, having centers (0,±β0) and radius β0. Con-
sequently, the frequencies are real for q⊥ ≤ β0, whereas
they become complex when q⊥ > β0. At small q⊥, the
lowest positive-frequency branch exhibits the standard
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quadratic dispersion Ω−(q⊥) ' q2
⊥/2β0, whereas the up-

per one is characterized by a gap Ω+(0) = 2β0. In terms
of the solutions of the original problem [the Helmholtz
equation (1) without the nonlinear part] the lower branch
is associated with transmitted modes of the electric field
E whose wave vector q = (q⊥, qz) has positive component

along z, qz = β0 − Ω− =
√
β2

0 − q2
⊥. Conversely, modes

belonging to the upper branch have negative z component
β0 − Ω+ = −qz of the wave vector, and represent the
reflected part of the field. This branch does not show up
in the paraxial description of Sec. V B, which requires
slow effective-time variations of the field fluctuations (see
Sec. V). On the other hand, gapped excitations occur in
relativistic Bose-Einstein condensates, for which they de-
scribe the phenomenon of creation of particle-antiparticle
pairs [64].

The twofold degeneracy of the noninteracting Bogoli-
ubov spectrum is lifted when taking nonlinearities into ac-
count. One still finds four solutions with lower frequency,
±Ω−,d(q⊥) and ±Ω−,s(q⊥), and four with higher fre-
quency, ±Ω+,d(q⊥) and ±Ω+,s(q⊥). The lower-frequency
solutions reduce to the paraxial spectra (44) in the limit
|gd,s|I0/β0 � 1 and (q⊥/β0)2 � 1. At small q⊥, the
lower density branch is characterized by the phononlike
dispersion Ω−,d(q⊥) ' cdq⊥, with an isotropic sound
velocity

c2d =
gdI0

β0 − 3gdI0
. (46)

As in the paraxial limit, the existence of this phonon
mode is due to the fact that the background field (9)
spontaneously breaks the invariance of the Helmholtz
Lagrangian (2) under global U(1) transformations of the
kind E → eiθE. A similar phenomenon happens for the
lower spin branch, whose low-q⊥ behavior Ω−,s(q⊥) '
cs(ϕ)q⊥ is linear as well, with a sound velocity

c2s(ϕ) =
gsI0[β0 − 2(gd + 2gs cos2 ϕ)I0]

[β0 − (2gd + gs)I0][β0 − 2(gd + 2gs)I0]
, (47)

where we recall that ϕ is the angle between q⊥ and the x
axis. This second phonon mode arises because our linearly
polarized background spontaneously breaks the rotational
symmetry about the z axis exhibited by the Helmholtz
Lagrangian (2). As compared with the noninteracting
limit, we observe that the spin sound velocity (47) is
anisotropic, i.e. it depends on the direction of the wave
vector q⊥ relative to the background polarization vector
êx. This property is also a major difference compared
to the paraxial approximation, Eq. (44), and a direct
signature of spin-orbit coupling of light. A similar feature
is shared by several models of atomic Bose gases with
spin-orbit coupling [50, 51]. Note that in this work we
assume that both c2d and c2s are positive, which requires
gd and gs to be themselves positive and not too large.

The dispersion relations Ω±,d and Ω±,s are displayed in
Fig. 1 for a fixed choice of the nonlinear coupling strengths
(we do not show their explicit analytic expressions, which

are very cumbersome at arbitrary q⊥ and ϕ).2 At arbi-
trary values of q⊥, both dispersions are anisotropic. To
illustrate this property, we plot them for q⊥ oriented
along (upper panel) and perpendicular (lower panel) to
the x axis. Anisotropy of the dispersion relation is again
an important difference from the paraxial limit, already
visible at low q⊥ in the lower branches, see Fig. 1. Note
that the frequencies are real up to a critical value of the
transverse momentum. Once this value is exceeded they
turn complex and such that Ω+,d(s) = [Ω−,d(s)]

∗. This
is a manifestation of the phenomenon of total internal
reflection, occurring in light beams with large incident
angle against the interface between two media, which are
totally reflected back into the first medium. The criti-
cal transverse momentum coincides with β0 in the linear
problem, and becomes smaller in the presence of positive
nonlinear couplings gd and gs; besides, it is different for
the d and s modes and generally depends on ϕ.

Concerning the upper branches, finally, they remain
gapped but the value of the gap is changed by the
nonlinearity, Ω+,d(0) = 2

√
β2

0 − 3β0gdI0 and Ω+,s(0) =

2
√
β2

0 − β0(2gd + gs)I0.
We complete this section by briefly commenting on the

amplitudes of these Bogoliubov modes, focusing on the
regime where their frequencies are real. The amplitude
vectors have the structure

X0,±,d =

(
δĨ±,d
2I0

i
δϑ̃±,d

2
iΘ̃±,d

δχ̃±,d
2

)T
, (48a)

X0,±,s =

(
i
δĨ±,s
2I0

δϑ̃±,s
2

Θ̃±,s i
δχ̃±,s

2

)T
. (48b)

Here the δĨ`’s, δϑ̃`’s, Θ̃`’s, and δχ̃`’s are real functions
of q⊥. While we have not been able to derive a simple
analytical expression for these functions, in practice they
can be easily computed by numerically solving the eigen-
value problem (20). We find that when q⊥ is parallel or
orthogonal to the polarization direction (the x axis) one

has δϑ̃±,d/2 = δχ̃±,d/2 = 0 and δĨ±,s/2I0 = Θ̃±,s = 0.
Hence, in these situations the d’s are pure density modes,
while the s’s are pure spin modes. It turns out, however,
that for intermediate directions of q⊥ these modes gen-
erally exhibit an hybrid density and spin character, with
both the total and relative intensity oscillating simultane-
ously. This hybridization phenomenon will be discussed
in the next section.

VII. SPIN-ORBIT MODE HYBRIDIZATION

In this section, we apply the Bogoliubov formalism de-
veloped in the previous sections to unveil a phenomenon

2 The only exception is represented by the spin modes for gs = 0,
which keep the same circular shape as in the noninteracting case,

only with a different radius: Ω±,s(q⊥) = k ±
√

k2 − q2⊥ where k

is given by Eq. (10).
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FIG. 1. Bogoliubov spectrum of a linearly polarized fluid of
light as a function of the excitation momentum. The upper
(lower) panel reports the result for q⊥ oriented along the x
(y) axis, that is, parallel (perpendicular) to the polarization
direction of the background field. Notice the anisotropy of
the dispersion. The blue (green) curves correspond to density,
` = (±, d) [spin, ` = (±, s)] branches, as also indicated in their
labels. The solid parts of these lines (small q⊥) identify modes
having real frequency, while the dashed parts (large q⊥) are
associated with complex-frequency modes; in the latter case
only the real part of Ω` is shown. For the sake of comparison
we also plot the predictions (44) of the paraxial approxima-
tion (dotted curves). The nonlinear coupling strengths are
gdI0/β0 = 0.2 and gsI0/β0 = 0.05.

of mode hybridization in a spin-orbit-coupled fluid of light.
To this end, we consider a concrete experimental scenario
where a small probe beam is sent through a nonlinear
material driven by a homogeneous background field. Such
a strategy was recently used to experimentally measure
the Bogoliubov dispersion in a (single-component) fluid
of light [17]. Here we address both the cases where the
probe beam is a Gaussian wave packet, Sec. VII A, and a
pure phase perturbation, Sec. VII B. A schematic repre-
sentation of the two situations is given in Fig. 2. In both
protocols we choose the field profile at the air-medium
interface and we study its evolution inside the nonlinear
medium. We do the calculations both in the paraxial
regime and slightly beyond it, to show evidence for the
mechanism of mode hybridization. To this end, we focus
on small-momentum excitations that populate only the

nonlinear medium

a

b

FIG. 2. Schematic representation of the two experimental
scenarios considered in Sec. VII, involving (a) a small Gaus-
sian probe and (b) a pure phase perturbation on top of a
homogeneous background field sent through a bulk nonlinear
medium.

low-frequency (weakly nonparaxial) modes of the Bogoli-
ubov spectrum. From a theoretical point of view, the
latter condition can be fulfilled by appropriately choosing
the conjugate momenta at the interface, as detailed in
Appendix C.

A. Small Gaussian probe experiment

We first consider as the input field a small, Gaussian-
shaped wave packet fluctuation on top of a linearly po-
larized background, as illustrated in Fig. 2(a). More
specifically, the fluctuation has a purely Gaussian pro-
file along a given direction ê1 = (cosϕf , sinϕf ) in the
(x, y) plane, and it is flat in the orthogonal direction ê2.
The total field is (recall that we only need to specify the
transverse components)(
E+(r⊥, z = 0)
E−(r⊥, z = 0)

)
=

√
I0

[(
−1/
√

2

1/
√

2

)
+ ε

(
− cos

ϑf

2

sin
ϑf

2

)
exp

(
− x

2
1

w2

)]
.

(49)

Here 0 < ε� 1 is a small dimensionless parameter, and
x1 = r⊥ · ê1. The width w of the wave packet is taken
much larger than the two healing lengths (β0gd,sI0)−1/2.
We will see below that this condition makes the present
setup well-suited to study the low-q⊥ part of the Bogoli-
ubov spectrum, i.e., the sound modes. The components
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of the polarization vector of the fluctuation are controlled
by the angle ϑf . In terms of the density-phase variables,
the incident state (49) corresponds to

δI(r⊥, z = 0) = 2εI0 cos
∆ϑ

2
exp

(
− x

2
1

w2

)
, (50a)

δϑ(r⊥, z = 0) = 2ε sin
∆ϑ

2
exp

(
− x

2
1

w2

)
, (50b)

Θ(r⊥, z = 0) = δχ(r⊥, z = 0) = 0 , (50c)

where ∆ϑ = ϑf − π/2. Taking the Fourier transform
of Eqs. (50), one obtains the z = 0 value of the four-
component vector X,

X(q⊥, z = 0)

= ε


cos ∆ϑ

2

sin ∆ϑ
2

0
0

 2π
√
πw2 exp

(
−w

2q2
1

4

)
δ(q2) ,

(51)

with q1(2) = q⊥ · ê1(2). We subsequently take Π∗(q⊥, z =
0) as in Eq. (C6), so that only the low-frequency Bogoli-
ubov modes are excited. The weights of such modes are
given by Eq. (26) and can be written in the form

C`(q⊥) = εC̃`(q⊥)2π
√
πw2 exp

(
−w

2q2
1

4

)
δ(q2) . (52)

The exact expressions of the C̃`(q⊥)’s depend on those of
the amplitudes (48). However, in the next steps of the
calculation only their behavior at low q⊥ will be needed.
We now insert the weights (52) and amplitudes (48) into
the superposition (21) and take the inverse Fourier trans-
form. In carrying out the calculations we exploit the
fact that the Gaussian in Eq. (52) is very narrow, thus
one can approximate Ω−,d(s)(q1, q2 = 0) ' cd(s)(ϕf )q1.

Besides one can prove that C̃−,dδĨ−,d → cos(∆ϑ/2)/2

and C̃−,sδĨ−,s → sin(∆ϑ/2)/2 as q⊥ → 0, while both

C̃−,sδĨ−,d and C̃−,dδĨ−,s vanish in this limit. Using these
results one eventually obtains

δI(r⊥, z) = εI0 cos
∆ϑ

2

{
exp

[
− (x1 − cdz)2

w2

]

+ exp

[
− (x1 + cdz)

2

w2

]}
,

(53)

δϑ(r⊥, z) = ε sin
∆ϑ

2

{
exp

[
− (x1 − cs(ϕf )z)

2

w2

]

+ exp

[
− (x1 + cs(ϕf )z)

2

w2

]}
,

(54)

where cd and cs are given by Eqs. (46) and (47), respec-
tively. These equations describe the emission of pairs
of Bogoliubov quasiparticles from z = 0 onward. They
show that if the fluctuation at the interface has the same

polarization as the background, i.e., ∆ϑ = 0, only the
density sound mode is excited. The latter was observed
in the experiment of Ref. [17] through measurements of
the total intensity, I = I0 + δI. In order to excite the
spin sound mode only, one has to choose ∆ϑ = ±π. This
corresponds to a fluctuation polarized along the ±iêy
directions, i.e., perpendicular to the background and with
a phase difference of ±π/2. The spin sound mode can be
detected by measuring the relative intensity of the two
polarization components, |E+|2 − |E−|2 = −I0δϑ. If one
measures |E+|2 and |E−|2 separately, one finds that they
split into four Gaussian branches, having different weights
and propagating with velocities ±cd and ±cs.

We stress that Eqs. (53) and (54) do not assume any
paraxial approximation. In the paraxial regime, they
keep the same form, with the sound velocities replaced
by their paraxial counterparts. In particular, in both
the paraxial and nonparaxial descriptions the two sound
modes keep a pure density and spin nature, irrespective of
the propagation direction fixed by ϕf . In the next section
we will see that this is no longer true when larger-q⊥
modes are excited.

B. Phase shift experiment

A drawback of the previous configuration is the diffi-
culty to excite modes whose wavelength is of the order
or larger than the healing lengths (β0gd,sI0)−1/2. Such
higher-q⊥ modes, however, are precisely those expected to
display signatures of spin-orbit coupling. To circumvent
this issue, a possibility would be to consider a wave packet
carrying a finite mean momentum k1 such that k1w � 1.
For simplicity however, here we restrict ourselves to the
case of a pure phase perturbation of momentum k1, which
enables one to excite individual modes of given wavenum-
ber q⊥ = k1. The form of such an input field is(
E+(r⊥, z = 0)
E−(r⊥, z = 0)

)
=
√
I0

[(
−1/
√

2

1/
√

2

)
+ ε

(
− cos

ϑf

2

sin
ϑf

2

)
exp (ik1x1)

]
.

(55)

This is the same as Eq. (49), except that the Gaussian is
replaced by a plane wave with wave vector k1 = k1ê1, see
Fig. 2(b). The corresponding fluctuations of the density-
phase variables are

δI(r⊥, z = 0) = 2εI0 cos
∆ϑ

2
cos(k1x1) , (56a)

δϑ(r⊥, z = 0) = 2ε sin
∆ϑ

2
cos(k1x1) , (56b)

Θ(r⊥, z = 0) = ε cos
∆ϑ

2
sin(k1x1) , (56c)

δχ(r⊥, z = 0) = −2ε sin
∆ϑ

2
sin(k1x1) . (56d)
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The input value of the vector X can then be written as
X(q⊥, z = 0) = Xδ(q⊥) +X∗δ (−q⊥), where

Xδ(q⊥) = 2ε π2


cos ∆ϑ

2

sin ∆ϑ
2

−i cos ∆ϑ
2

i sin ∆ϑ
2

 δ(q⊥ − k1) , (57)

and that of Π∗ is given by Eq. (C6). The weights of
the various modes can be computed using Eq. (26), or
Eq. (43) in the paraxial framework. They are given by a
linear combination of δ(q⊥ − k1) and δ(q⊥ + k1). Again
we insert these weights and the amplitudes (48) into the
general expression (21) and invert the Fourier transform.
In the paraxial approximation, this procedure yields the
results

δI(r⊥, z) = 2εI0 cos
∆ϑ

2

{
λ

(+)
d (k1) cos[k1x1 − Ωd(k1)z]

+ λ
(−)
d (k1) cos[k1x1 + Ωd(k1)z]

}
,

(58)

δϑ(r⊥, z) = 2ε sin
∆ϑ

2

{
λ(+)
s (k1) cos[k1x1 − Ωs(k1)z]

+ λ(−)
s (k1) cos[k1x1 + Ωs(k1)z]

}
,

(59)

where λ
(±)
` (k1) = [Ω`(k1)± k2

1/2β0]/2Ω`(k1). Hence, the
total and relative intensity oscillate in effective time at a
single frequency, equal to Ωd(k1) and Ωs(k1), respectively.
As in the small Gaussian probe experiment, when the
background and fluctuation input fields have equal polar-
ization (∆ϑ = 0) the sole density mode is excited. The
experiment of Ref. [17] was performed in such conditions.
In more general situations one has to take the existence
of the spin mode into account. This effect becomes more
and more relevant as ∆ϑ increases. In particular, when
∆ϑ = ±π only the spin oscillation is visible, again in
agreement with the findings of Sec. VII A.

A novel phenomenon arises when one describes the
problem on the basis of the general formalism presented
in Secs. II, III, and IV, i.e., without resorting to the
paraxial approximation. In this case, we find that the
total and relative intensities have the structure

δI(r⊥, z) = 2εI0 cos
∆ϑ

2

∑
`=d,s

{
λ

(+)
I,` (k1) cos[k1x1 − Ω−,`(k1)z] + λ

(−)
I,` (−k1) cos[k1x1 + Ω−,`(−k1)z]

}
− 2εI0 sin

∆ϑ

2

∑
`=d,s

{
µ

(+)
I,` (k1) sin[k1x1 − Ω−,`(k1)z] + µ

(−)
I,` (−k1) sin[k1x1 + Ω−,`(−k1)z]

}
,

(60)

δϑ(r⊥, z) = 2ε sin
∆ϑ

2

∑
`=d,s

{
λ

(+)
ϑ,` (k1) cos[k1x1 − Ω−,`(k1)z] + λ

(−)
ϑ,` (−k1) cos[k1x1 + Ω−,`(−k1)z]

}
− 2ε cos

∆ϑ

2

∑
`=d,s

{
µ

(+)
ϑ,` (k1) sin[k1x1 − Ω−,`(k1)z] + µ

(−)
ϑ,` (−k1) sin[k1x1 + Ω−,`(−k1)z]

}
.

(61)

The values of the coefficients λ
(±)
I,` , λ

(±)
ϑ,` , µ

(±)
I,` , and µ

(±)
ϑ,` ,

which depend on the amplitudes (48), have to be com-
puted numerically in general. Only in the paraxial regime
of small momenta (k1/β0)2 � 1 and weak interactions
|gd,s|I0/β0 � 1 they reduce to a simple analytical expres-
sion, given by the coefficients in Eqs. (58)–(59).

Here one has to distinguish two cases. If k1 is paral-
lel or perpendicular to the x axis, i.e., ϕf = 0, π/2, π,
then λ

(±)
I,s = µ

(±)
I,s = 0 and λ

(±)
ϑ,d = µ

(±)
ϑ,d = 0. Hence, the

scenario is qualitatively similar to the paraxial one, where
δI and δϑ oscillate at a single frequency. This is illus-
trated in Figs. 3(a) and 3(c), where we plot the time
evolution of these two quantities evaluated at x1 = 0.

A dramatic change occurs when k1 is not oriented

along one of the special directions mentioned above. In
this case, one observes a phenomenon of mode hybridiza-
tion, as δI and δϑ oscillate at both frequencies Ω−,d(k1)
and Ω−,s(k1). This is depicted in Figs. 3(b) and 3(d),
where the oscillations are characterized by a beat that is
particularly visible in the behavior of δϑ(0, z). Another
remarkable feature is that both δI and δϑ oscillate even
when ∆ϑ = 0,±π, revealing once more the hybrid nature
of the d and s modes. Mode hybridization is one of the
most striking consequences of the spin-orbit coupling. A
similar phenomenon of beat between two hybrid modes
was recently studied in the context of trapped atomic spin-
orbit-coupled Bose-Einstein condensates, where it can be
observed when the gas is in the supersolid phase [52]. Our
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FIG. 3. Fluctuations of (a)-(b) the total and (c)-(d) the
relative optical intensity at x1 = 0 as functions of the effective
time z. We take ϕf = 0 in (a) and (c) (no mode hybridization),
and ϕf = π/4 in (b) and (d) (mode hybridization is present).
In each panel we show the results for ∆ϑ = 0 (blue solid
line), π/2 (red dashed line), and π (yellow dash-dot line).
Observe that in panel (b) [(d)], the fluctuation of the total
(relative) intensity oscillates when ∆ϑ = π (∆ϑ = 0), whereas
it strictly vanishes in case (a) [(c)]. This phenomenon is a
marked signature of spin-orbit coupling. For these plots we
choose the magnitude of the fluctuation wave vector equal to
k1 = 0.2β0 and the same nonlinear couplings gdI0/β0 = 0.2
and gsI0/β0 = 0.05 as Fig. 1.

setting provides an alternative and viable way to study
the impact of spin-orbit coupling on the collective modes
of an interacting optical system.

VIII. CONCLUSION

We have developed a density-phase, Bogoliubov formal-
ism for studying the propagation of light in a bulk Kerr
nonlinear medium. Unlike usual approaches employed
to address this problem, our formalism is general and
does not rely on the paraxial approximation. Within this
framework, we have derived the Bogoliubov equations
governing the effective-time evolution of fluctuations on
top of a linearly polarized background field. By solving
these equations, we have obtained the frequencies and
amplitudes of the Bogoliubov modes, whose formal prop-
erties have been carefully investigated. The Bogoliubov
spectrum is made of several anisotropic branches, each as-
sociated with a density- or spin-like oscillation of the two

polarization components of the light. For slowly varying
electric fields and weak nonlinearities, one recovers the
results of the paraxial approximation, for which the fluid
of light behaves like an out-of-equilibrium binary Bose
mixture.

Our description has also allowed us to reveal the exis-
tence of a mechanism of spin-orbit coupling arising beyond
the paraxial approximation. This phenomenon, naturally
present in inhomogeneous media, here manifests itself
in the context of a weakly inhomogeneous fluid of light,
where a small fluctuation of the fluid couples to the light
polarization to modify the fluid properties. In particular,
it leads to an anisotropy of the Bogoliubov spectrum and
to the hybridization of the density and spin modes. By
finally investigating a simple experimental protocol in-
volving a probed beam sent through a nonlinear medium,
we have proposed a simple strategy to 1) separately in-
vestigate the density and the so far never measured spin
mode, and 2) detect the hybridization of these modes by
optical spin-orbit coupling.

Our results pave the way to future studies on non-
paraxial effects, spin-orbit coupling and related chiral
phenomena [65, 66] in cavityless fluids of light. In this
context, a natural extension of our work would be to study
the interplay between nonparaxial effects and the phe-
nomenon of nonlinear birefringence, which occurs when
the background field is elliptically polarized [54]. It would
be equally interesting to consider fields propagating at an
angle with respect to the optical axis, which would enable
one to characterize light superfluidity and its interplay
with spin-orbit coupling. In atomic gases such an inter-
play gives rise to novel configurations, including quantum
phases with supersolid features [67, 68]. Implemented in
a context of optical fluid mixtures, it might open a path
to the possible phenomenon of light supersolidity.
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Appendix A: Coefficients of the kinetic Lagrangian

The coefficients of the transverse Lagrangian (7) are
given by:
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(KII)αα′ = (KΘΘ)αα′ = (SαSα′)++ cos2 ϑ

2
+ (SαSα′)−− sin2 ϑ

2
+ (SαSα′)+−

sinϑ

2
e−iχ + (SαSα′)−+

sinϑ

2
eiχ ,

(Kϑϑ)αα′ = (Kχχ)αα′ = (SαSα′)++ sin2 ϑ

2
+ (SαSα′)−− cos2 ϑ

2
− (SαSα′)+−

sinϑ

2
e−iχ − (SαSα′)−+

sinϑ

2
eiχ ,

(KIϑ)αα′ = − 2 Re

[
(SαSα′)++

sinϑ

2
− (SαSα′)−−

sinϑ

2
− (SαSα′)+− cos2 ϑ

2
e−iχ + (SαSα′)−+ sin2 ϑ

2
eiχ

]
,

(KIΘ)αα′ = − 2 Im

[
(SαSα′)++ cos2 ϑ

2
+ (SαSα′)−− sin2 ϑ

2
+ (SαSα′)+−

sinϑ

2
e−iχ + (SαSα′)−+

sinϑ

2
eiχ

]
,

(KIχ)αα′ = − 2 Im

[
(SαSα′)++ cos2 ϑ

2
− (SαSα′)−− sin2 ϑ

2
− (SαSα′)+−

sinϑ

2
e−iχ + (SαSα′)−+

sinϑ

2
eiχ

]
,

(KϑΘ)αα′ = 2 Im

[
(SαSα′)++

sinϑ

2
− (SαSα′)−−

sinϑ

2
+ (SαSα′)+− sin2 ϑ

2
e−iχ − (SαSα′)−+ cos2 ϑ

2
eiχ

]
,

(Kϑχ)αα′ = 2 Im

[
(SαSα′)++

sinϑ

2
+ (SαSα′)−−

sinϑ

2
− (SαSα′)+− sin2 ϑ

2
e−iχ − (SαSα′)−+ cos2 ϑ

2
eiχ

]
,

(KΘχ)αα′ = 2 Re

[
(SαSα′)++ cos2 ϑ

2
− (SαSα′)−− sin2 ϑ

2
− (SαSα′)+−

sinϑ

2
e−iχ + (SαSα′)−+

sinϑ

2
eiχ

]
.

Appendix B: Expression of the matrices in the
Bogoliubov Lagrangian

In this appendix we provide the expressions of the three
matrices entering the Bogoliubov Lagrangian density (15).
Such matrices have the following structure (k = 0, 1, 2):

Λk = I0

(Λk)1,1 (Λk)1,2 (Λk)1,3 (Λk)1,4

(Λk)2,1 (Λk)2,2 (Λk)2,3 (Λk)2,4

(Λk)3,1 (Λk)3,2 (Λk)3,3 (Λk)3,4

(Λk)4,1 (Λk)4,2 (Λk)4,3 (Λk)4,4

 .

Hence, each matrix has 16 entries, but we find that half
of them are zero. The nonvanishing entries of Λ0 are

(Λ0)1,1 =
q2
⊥

4β0

[
(1− cos 2ϕ)− k2 (1 + cos 2ϕ)

q2
⊥ − (k2

0 −∆k2
0)

]
+ 2gdI0 ,

(Λ0)1,4 = (Λ0)4,1 =
q2
⊥

4β0
sin 2ϕ

[
1 +

k2

q2
⊥ − (k2

0 −∆k2
0)

]
,

(Λ0)2,2 =
q2
⊥

4β0

[
(1 + cos 2ϕ)− k2 (1− cos 2ϕ)

q2
⊥ − (k2

0 + ∆k2
0)

]
+ 2gsI0 ,

(Λ0)2,3 = (Λ0)3,2 =
q2
⊥

4β0
sin 2ϕ

[
1 +

k2

q2
⊥ − (k2

0 + ∆k2
0)

]
,

(Λ0)3,3 =
q2
⊥

4β0

[
(1− cos 2ϕ)− k2 (1 + cos 2ϕ)

q2
⊥ − (k2

0 + ∆k2
0)

]
,

(Λ0)4,4 =
q2
⊥

4β0

[
(1 + cos 2ϕ)− k2 (1− cos 2ϕ)

q2
⊥ − (k2

0 −∆k2
0)

]
.

The nonzero entries of Λ1 are

(Λ1)1,2 = (Λ1)4,3 =
q2
⊥

4β0

k sin 2ϕ

q2
⊥ − (k2

0 + ∆k2
0)
,

(Λ1)1,3 = − q2
⊥

4β0

k (1 + cos 2ϕ)

q2
⊥ − (k2

0 + ∆k2
0)
,

(Λ1)2,1 = (Λ1)3,4 = − q2
⊥

4β0

k sin 2ϕ

q2
⊥ − (k2

0 −∆k2
0)
,

(Λ1)2,4 =
q2
⊥

4β0

k (1− cos 2ϕ)

q2
⊥ − (k2

0 −∆k2
0)
,

(Λ1)3,1 = − k

β0
+

q2
⊥

4β0

k (1 + cos 2ϕ)

q2
⊥ − (k2

0 −∆k2
0)
,

(Λ1)4,2 =
k

β0
− q2

⊥
4β0

k (1− cos 2ϕ)

q2
⊥ − (k2

0 + ∆k2
0)
.

Finally, the nonvanishing entries of Λ2 are

(Λ2)1,1 = − 1

2β0
+

q2
⊥

4β0

1 + cos 2ϕ

q2
⊥ − (k2

0 + ∆k2
0)
,

(Λ2)1,4 = (Λ2)4,1 = − q2
⊥

4β0

sin 2ϕ

q2
⊥ − (k2

0 + ∆k2
0)2

,

(Λ2)2,2 = − 1

2β0
+

q2
⊥

4β0

1− cos 2ϕ

q2
⊥ − (k2

0 −∆k2
0)
,

(Λ2)2,3 = (Λ2)3,2 = − q2
⊥

4β0

sin 2ϕ

q2
⊥ − (k2

0 −∆k2
0)
,

(Λ2)3,3 = − 1

2β0
+

q2
⊥

4β0

1 + cos 2ϕ

q2
⊥ − (k2

0 −∆k2
0)
,

(Λ2)4,4 = − 1

2β0
+

q2
⊥

4β0

1− cos 2ϕ

q2
⊥ − (k2

0 + ∆k2
0)
.
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Appendix C: Conjugate momenta at the interface

In this appendix we explain how one can choose the
interface value Π∗(q⊥, z=0) of the conjugate momenta
such that the upper Bogoliubov modes, having frequency
Ω+,d and Ω+,s, remain unpopulated. The procedure is
the following. First, we consider the matrix P bringing B
into diagonal form,

P−1BP = BD =

(
BD+ 0

0 BD−

)
, (C1)

where

BD± = diag
(
Ωd,±(q⊥),−Ω∗d,±(−q⊥),Ωs,±(q⊥),

− Ω∗s,±(−q⊥)
)
.

(C2)

P and P−1 are 8×8 matrices that can be split into several
4× 4 blocks,

P =

(
PX+ PX−
PΠ+ PΠ−

)
, P−1 =

((
P−1

)
X+

(
P−1

)
Π+(

P−1
)
X−

(
P−1

)
Π−

)
.

(C3)

The columns of PX± (PΠ±) coincide with the amplitudes
X0,` (Π∗0,`) written in the proper order. We now define
the new variables

(
YD+

YD−

)
= P−1

(
X
Π

)
, (C4)

whose effective-time evolution is trivial,

YD±(q⊥, z) = e−iBD±zYD±(q⊥, z=0) . (C5)

Inverting Eq. (C4) we can express the original variables
X and Π as combinations of YD+ and YD−. In order not
to excite the high-frequency modes one has to impose the
condition YD+(q⊥, z=0) = 0, that is,

Π∗(q⊥, z=0) = −
[(
P−1

)
Π+

]−1 (
P−1

)
X+

X(q⊥, z=0) .

(C6)
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