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Abstract

We review recent theoretical and experimental progresses in the coherent multiple scat-
tering of weakly interacting disordered Bose gases. These systems have allowed, in the
recent years, a characterization of weak and strong localization phenomena in disorder
at an unprecedented level of control. In this paper, we first discuss the main physi-
cal concepts and recent experimental achievements associated with a few emblematic
“mesoscopic” effects in disorder like coherent back scattering, coherent forward scat-
tering or mesoscopic echos, focusing on the context of out-of-equilibrium cold-atom
setups. We then address the role of weak particle interactions and explain how, de-
pending on their relative strength with respect to the disorder and on the time scales
probed, they can give rise to a dephasing mechanism for weak localization, thermalize
a non-equilibrium Bose gas or make it become a superfluid.

1. Introduction

1.1. Coherent multiple scattering in solids

In disordered conductors, the question of how interference in multiple scattering
affects transport observables like the conductance has been central since the 70’s [1].
When temperature is not low enough interference is usually negligible due to the too
small electron coherence length Lφ: the conductance faithfully obeys Ohm’s law, which
describes electron multiple scattering as a classical diffusive process through the ma-
terial’s impurities. The conductance is also self-averaging: its value is independent of
the specific configuration of impurities because the material behaves as a superposition
of many incoherent sub-systems of size Lφ. The situation changes at low temperature,
in the mesoscopic regime where Lφ exceeds the conductor size and electrons genuinely
behave like coherent waves. The conductance is no longer self-averaging, and devia-
tions to Ohm’s law appear [2]. These deviations, known as weak localization correc-
tions, stem at leading-order from the enhanced probability for electrons to return to a
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point already explored, by constructive interference between reversed multiple scatter-
ing trajectories. Weak localization was observed in many systems, especially in thin
films where a magnetic field can be used as a knob to turn off weak localization in a
controlled way [3]. Its behavior in the presence of electron-electron interactions was
also extensively studied [4, 5] and, nowadays, weak localization measurements still
constitute a valuable tool to assess electronic coherence [6, 7].

In the 80’s, several experiments also reported a vanishing of the electron conduc-
tivity in the zero-temperature limit of strongly disordered conductors [8, 9, 10, 11], at-
tributed to Anderson localization of electrons. In three dimensions, this phenomenon,
discovered by Anderson in 1958 [12], manifests itself as a quantum phase transition:
the electron spectrum displays a mobility edge, a critical energy above which the eigen-
states of the disordered system are spatially extended, and below which they are expo-
nentially localized. The activity on Anderson localization surged with the development
of the celebrated scaling theory [13], based on precursory works by Thouless [14].
Beyond providing an elegant description of Anderson localization in terms of scaling
arguments, this approach also predicted, in addition to a mobility edge in three dimen-
sions, the localization of all eigenstates in one-dimensional (1D) and two-dimensional
(2D) disordered systems. Furthermore, the scaling theory made contact between An-
derson localization and the weak localization corrections, describing the latter as a
precursor of the former. Since then, several theoretical descriptions of the localization
problem have been developed, from diagrammatic formalisms [15], random-matrix ap-
proaches [16, 17], field theories [18], to approximate self-consistent treatments [19].
Today, a broad class of Anderson transitions has been identified beyond the histori-
cal “Wigner-Dyson” ensembles where only time-reversal and spin-rotation symmetries
matter [20, 21], and continue to be explored in a large spectrum of condensed-matter
systems.

1.2. Localization phenomena with cold atoms
The first experimental studies on Anderson localization of atomic matter waves

date back from the early 2000’s. These experiments involve clouds of cold atoms
evolving in far-detuned spatially disordered optical potentials usually produced from
laser speckles or bichromatic lattices. As compared to conduction electrons in solids,
cold-atom setups have the advantage of offering a great control of the disorder and
the possibility to measure local observables. Atomic interactions can also be tuned to a
large extent, and therefore studied in a systematic way [22, 23, 24]. In contrast, electron
interactions in solids are hardly controllable. Anderson localization of non-interacting
atomic matter waves was first observed in one dimension [25, 26]. These experiments
were accompanied by a number of theoretical works, [27, 28, 29] to cite a few. In three
dimensions, three experiments reported on Anderson localization of cold atoms as well
[30, 31, 32], although the results of [31] have been severely questioned [33]. These
observations were all based on a fundamental signature of Anderson localization, the
temporal freezing of a spreading wave packet. In these works, however, the properties
of the Anderson transition were not characterized in detail, mostly due to the rather
broad energy distribution of the atoms near the transition. This task was accomplished
in a different system, the “atomic kicked rotor”, in a series of experiments [34, 35, 36]
(see also [37] for an observation of Anderson localization in two dimensions). Unlike
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electronic systems, in atomic gases the observations of Anderson localization predated
the detection of weak localization. The latter was first observed and characterized in
2012 via the (atomic) coherent backscattering effect [38, 39], followed a few years
later by an observation of a related effect, the mesoscopic echo [40], in an experimen-
tal realization of the atomic kicked rotor. Alongside, a recent experimental feat was the
ability to selectively break the interference between time-reversed trajectories at play
in weak localization by means of a controlled dephasing for cold atoms [41]. Similar
in spirit, the application of an artificial gauge field was recently used to drive a local-
ized atomic system from the orthogonal to the unitary symmetry class and to foster the
emergence of a novel interference mechanism in disorder known as coherent forward
scattering [42]. These “spectroscopies” of interference scattering sequences [43] re-
call the conductivity measurements methods used in mesoscopic physics, but push the
experimental control to an unprecedented level.

In contrast with conduction experiments, usually based on conductivity measure-
ments that involve electrons in thermal equilibrium, many cold-atoms setups probe the
dynamics of a quantum gas put out-of-equilibrium after a “quench” [44, 45] (see, how-
ever, also [46, 47, 48] for stationary transport configurations more in the spirit of meso-
scopic physics). In the presence of both disorder and interactions, the non-equilibrium
dynamics of quantum gases is especially rich and yet largely unexplored, interactions
tending to thermalize the gas while disorder tending to localize it. This competition is
the essence of the many-body localization problem, which manifests itself as a dynam-
ical phase transition between an ergodic (thermal) phase and a many-body localized
phase at strong enough disorder [49, 50, 51, 52, 53], whose signatures were recently
observed experimentally [54, 55, 56].

In this article, we review recent developments in the context of coherent multi-
ple scattering of out-of-equilibrium Bose gases. We here focus on the dilute regime
where particle interactions are weak. This implies that the gas either behaves as a non-
interacting system or as an interacting system on the “ergodic” side of the many-body
localization transition, where interactions typically lead to thermalization at long time.
In Sec. 2, we first recall how weak localization naturally emerges in non-equilibrium
momentum distributions of an ultracold, non-interacting gas. In Sec. 3, we extend this
discussion to the regime of Anderson localization, which, in momentum space, drives
another interference mechanism known as coherent forward scattering. Sec. 4 then
explains how these phenomena manifest themselves in the dual non-equilibrium con-
figuration of a wave packet spreading in position space. In Sec. 5, finally, we discuss
how interactions affect the out-of-equilibrium dynamics of a disordered Bose gas at the
mean-field level, by playing the role of a dephasing mechanism for weak localization
effects, promoting the emergence of thermalization or driving the gas to a pre-thermal
superfluid regime.

2. Weak localization in non-interacting quantum gases

A practical strategy for measuring weak localization of cold atoms was initially
proposed in [57], directly inspired of the experiments carried out in optics where weak
localization is detected through the coherent backscattering (CBS) effect [58, 59]. In

3



the optical context, CBS is usually observed by sending a beam of well-defined direc-
tion k0 into a disordered material and looking at the angular distribution of the reflected
signal. In the language of cold atoms, having a well-defined direction means preparing
an atomic cloud in a state |Ψ(t = 0)〉 ' |k0〉, which can be done by communicating a
mean momentum to the gas while making its dispersion of momenta around k0 very
small. Information about the angular distribution of scattered particles is then contained
in the disorder-averaged momentum distribution nk(t) ≡ |〈k|Ψ(t)〉|2. This suggests the
following experimental protocol. A gas is prepared in the state |k0〉, let evolve in a spa-
tially disordered potential and finally imaged by time of flight at the desired time. Fig.

Figure 1: Average momentum distribution nk(t) obtained after numerical propagation of a plane wave
|k0〉 with the time-dependent Schrödinger equation in a 2D random potential V(r) with speckle statistics
and correlation function V(r)V(r′) = [2V0 J1(|r − r′ |/σ)/(|r − r′ |/σ)]2 (σ is the speckle correlation length).
Chosen parameters are k0 = 1.5/σ and V0 = 5/(mσ2), and the propagation scheme involves an additional
energy filtering aimed at selecting a well defined energy (here ε = −2.5) for localized atoms [60]. The plots
show three different times: (a) t = 10mσ2, only the initial mode is visible (b) t = 30mσ2, diffusive regime, a
CBS peak has emerged on top of the diffusive ring, and (c) t = 3500mσ2, Anderson localization regime, both
CBS and CFS peaks are present and symmetric. Data are averaged over some 7200 disorder realizations.

1 shows the distribution nk(t) obtained by numerically evolving in time a plane-wave
state |k0〉 with the Hamiltonian H = p2/2m + V(r), choosing a speckle statistics for
the random potential V(r). The distributions correspond to three different times. At
t = 0, nk consists of a delta peak centered on k0. As particles are scattered on the ran-
dom potential, this initial mode gets quickly depleted as exp(−t/τ). Scattering occurs
at a rate governed by the mean free time τ ≡ `/(k0/m), where ` is the mean free time,
i.e. the typical distance between two consecutive scattering processes (here and in the
following, we set ~ = 1). These scattered atoms populate all other accessible k-space
modes and, after a few τ, lose the memory and their initial direction [61] and distribute
within a time-independent ring nD

k of radius |k| = k0 (Fig. 1(b)). This ring has a finite
width ∼ 1/` due to the dispersion of random potential’s energies. Precisely [57]:

nD
k =

∫ ∞

−∞

dε
Aε(k)Aε(k0)

νε
'

1
πνε0τ

1
(ε0 − εk)2 + 1/τ2 , (1)
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where Aε(k) ≡ 〈k|δ(E − H)|k〉 is the spectral function of a particle in the random po-
tential and νε is the density-of-states (dos) per unit volume. As long as t does not
exceed the localization time (see Sec. 3), multiple scattering essentially reduces to a
diffusive process. In this regime, the spectral function is given by Aε(k) = 1/(2πτ) ×
[(ε − εk)2 + 1/(4τ2)]−1, where εk = k2/2m and ε0 = k2

0/2m, yielding the second equality
in Eq. (1). The interpretation of Eq. (1) is the following. After the quench, at t = 0+,
the quantum gas prepared in the state |k0〉 acquires an energy distribution Aε(k0) in the
random potential. Since scattering is elastic, this distribution remains constant during
the time evolution. When the measurement is performed, finally, a particle with energy
ε is detected with momentum k with the probability density Aε(k)/νε .

Fig. 1(b) also shows that a CBS peak emerges in the distribution around k = −k0.
The CBS peak is associated to the weak-localization interference between two time-
reversed multiple scattering paths (see Fig. 2(b) below). At exact backscattering, this
interference is fully constructive and leads to a doubling of the momentum distribution:

n−k0 = 2nD
−k0
. (2)

In practice, detecting a well contrasted CBS peak requires the dispersion ∆k of particle
momenta to be much smaller than the CBS width, which is of the order of 1/`. Typi-
cal disordered optical potentials used in cold-atom setups have mean free paths of the
order of a few µm [62]. For a thermal gas of Rubidium atoms (∆k ∼

√
2mkBT ), the

condition ∆k � `−1 leads to a temperature T . few nK. Therefore, a clean observation
of CBS requires to use an ultracold cloud. This task was accomplished experimen-
tally in [38], starting from a non-interacting Rubidium Bose-Einstein condensate. The
gas was initially subjected to a brief harmonic pulse so to narrow its momentum dis-
tribution down to ∆k = 0.12 mm.s−1. Another observation of atomic CBS was also
reported [39]. In this experiment, however, no harmonic pulse was initially applied to
the atomic coud, so that significant position-momentum correlations were present in
the gas. In [63], these correlations were shown to be responsible for another, purely
classical “backscattering echo” showing up on top of the CBS signal.

3. Coherent forward scattering effect

3.1. Diffusive regime
A close look at the distribution in Fig. 1(b) reveals that, at intermediate time,

the momentum distribution is not only characterized by a diffusive ring and a CBS
peak, but also exhibits a smooth bump around k = +k0. This bump is called the
coherent forward scattering (CFS) peak. It was first discovered and characterized in
[64, 60] for matter waves, though signatures of enhanced forward scattering were also
noticed in the context of excitons in semiconductor nanostructures [65]. To understand
its origin, let us recall a few qualitative elements of the semi-classical description of
wave scattering in disorder. In the diffusive regime, the disorder-averaged momentum
distribution nk(t) ∼

∑
i, j ψiψ

∗
j can be expressed as a weak-localization perturbation

expansion involving interference between two multiple scattering paths ψi and ψ j. The
zeroth-order term of this expansion describes a co-propagation of the paths along the
same sequence of scattering events, schematized by the diagrams of Fig. 2(a). This
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Figure 2: Diagrams describing (a) classical diffusion and (b) coherent backscattering. (c) and (d) are the
leading-order diagrams contributing to the coherent forward scattering peak.

contribution does not involve any interference and leads to the diffusive ring in Fig.
1(a) and to Eq. (1). The leading-order correction is the first-order weak localization
diagram shown in Figs. 2(b), in which the paths ψi and ψ j respectively propagate
along the same scattering sequence but in opposite directions. It is responsible for
the CBS peak in Fig. 1(b). The contributions (a) and (b) are known as “diffuson”
and “Cooperon”. At next order, the two new types of interference processes shown
in Figs. 2(c) and (d) appear [66]. These processes are qualitatively different in that
they yield a contribution peaked around k = +k0. Indeed, diagram (c) involves the
direct concatenation of two Cooperons, such that an atom with initial momentum k0
is twice backscattered and ends up with a momentum k0 after the multiple scattering
sequence. The other correction (d) is the time-reversed version of diagram (c): both
are thus strictly equal in a time-reversal invariant system, but only diagram (d) survives
when this symmetry is broken.

The two-loop interference diagrams (c) and (d) constitute the leading-order con-
tributions to the CFS peak. This was initially postulated in [64] and later proven rig-
orously in [67] on the basis of the nonlinear σ-model in a quasi-1D geometry. The
two-loop structure of the CFS interference can be used to qualitatively estimate the
magnitude of the CFS peak at short time. To this end, let us invoke a simple geo-
metrical argument where a scattering trajectory in the random potential is seen as a
semi-classical “tube” of cross-section λd−1

0 and length v0t (v0 = k0/m, λ0 = 2π/k0).
The probability for the processes in Figs. 2(c) and (d) to occur is then essentially the
geometrical probability for the Cooperon loop (b) to cross itself at some point along the
trajectory. This probability P2-loop ∼ (λd−1

0 v0t)/Vtot is given by the ratio of the tube vol-
ume to the total volume accessible to the particles. At time t � τ and in the diffusion
regime, the latter is Vtot ∼ (Dt)d/2, so that:

P2-loop ∼
1

(k0`)d−1

( t
τ

)1−d/2
. (3)

This prediction reproduces the result of a rigorous, microscopic calculation [64], and
shows that in two and three dimensions the CFS peak contrast is always small in the
diffusive regime, as is indeed observed numerically in Fig. 1(b).

3.2. Anderson localization regime
The fate of the CFS peak in the Anderson localization regime can be assessed by

extrapolating the semi-classical formula P2-loop ∼ (λd−1
0 v0t)/Vtot. In the localization
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regime, the volume accessible to the particles becomes restricted to the localization
length ξ, so that Vtot ∼ ξ

d and

P2-loop ∼
k0`

(k0ξ)d

t
τ
. (4)

Although not rigorous, this equation suggests that the CFS peak grows in the localiza-
tion regime, and that its contrast becomes of the order of unity at the time

t ∼ mkd−2
0 ξd ∼ νξd ≡ tloc, (5)

which is nothing but the time scale on which Anderson localization shows up in di-
mension d. Such a growth of the CFS peak is well observed numerically, as seen in
Fig. 1(c) which shows the momentum distribution well beyond the localization time.
In practice, the CFS peak grows until it becomes symmetric to the CBS peak and the
distribution becomes fully independent of time.

To understand the long-time structure of Fig. 1(c), the semi-classical perturbation
theory –strictly valid when t � tloc– is no longer useful. Nonetheless, some insight
about the limit t � tloc can be inferred from a simple non-perturbative argument based
on the expansion of the state vector |Ψ(t)〉 of the gas over the basis of localized eigen-
states, |Ψ(t)〉 =

∑
n〈φn|k0〉e−iEnt |φn〉 [68, 60]. From this expansion it follows that:

nk(t)=
∑
m,n

φ∗n(k0)φm(k0)φn(k)φ∗m(k)e−i(En−Em)t '
t�tloc

∑
n

|φn(k0)|2|φn(k)|2. (6)

To write the second equality, we explicitly used that at long time particle motion be-
comes confined to a volume ξd due to Anderson localization. In this regime, localized
eigenstates are typically separated by |En − Em| ∼ (νξd)−1 ≡ 2π/tloc. Therefore, when
t � tloc the off-diagonal phase factors (En − Em)t oscillate very fast and vanish after
disorder averaging. The long-time structure of nk(t) follows from the simple result that
the localized eigenstates φn(k) are complex random Gaussian variables1, uncorrelated
at different k. Furthermore, due to time-reversal invariance the additional symmetry
relation φn(k) = φ∗n(−k) holds. Put together, these two properties lead to:

nk0 (t � tloc) = n−k0 (t � tloc) = 2nk,±k0 ≡ 2nD
k . (7)

In other words, the asymptotic distribution consists of a smooth background nD
k and of

two peaks at k = ±k0, in agreement with Fig. 1. In passing, time-reversal invariance
also implies that nk(t � tloc) = n−k(t � tloc) for all k, which confirms the symmetric
structure of the distribution at long time.

We now have an almost complete picture of the time evolution of the CFS peak
from the diffusive to the localized regime: its contrast, CCFS(t) ≡ (nk0 (t) − nD

k0
)/nD

k0
,

slowly grows according to Eq. (3) when t � tloc, and eventually saturates at 1 when
t � tloc, Eq. (7). The question of its precise time dependence in between these two

1This statistical property can be inferred from the spatial structure of localized modes: φn(r) ∼
eiϕn(r)e−|r|/ξ , where the random phases ϕn(r) fluctuate at the scale of ` � ξ.
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Figure 3: Contrast of the CBS (green symbols) and CFS (red symbols) peaks as a function of t/tloc, obtained
from numerical simulations in a 2D speckle potential [60] (parameters are the same as in Fig. 2). The solid
curve is a fit to Eq. (9), using α and tloc are as fit parameters. The dashed line is the theoretical prediction
CCBS = 1 corresponding to Eq. (7).

limits is more tricky. It can be accessed by inserting the dos fluctuations δρ = ρ − ρ
in the mode expansion (6), assuming a statistical independence of eigenfunctions and
eigenenergies [68, 60]. This procedure leads to

CCFS(t) =

∫
dω e−iωt δρε0δρε0+ω

ρε0

. (8)

Eq. (8) underlines an interesting connection between the CFS peak contrast and the
Fourier transform of the correlator of dos fluctuations, a quantity known as the form
factor. Calculation of this quantity is still a complicated theoretical problem in general.
In quasi-1D systems, an analytical result was recently obtained on the basis of the non-
linear sigma-model [67, 69]. In dimensions two and three, no exact result is available
but an approximate expression can be found when t � tloc, based on a Mott argument.
Indeed, in this limit the form factor is dominated by the correlation of nearby levels
in the spectrum (|ω| � 1/νξd). This correlation can be estimated by diagonalizing the
2× 2 hybridization Hamiltonian coupling such pairs of levels, with a coupling strength
governed by the overlap of the two associated localized wave functions [70, 71, 72, 60].
In dimension two, this approach gives:

CCFS(t � tloc) ' 1 − α
ln(t/tloc)

t/tloc
, (9)

where α is a phenomenological prefactor whose precise determination would require a
microscopic calculation. Fig. 3 compares numerical results for the CFS contrast as a
function of time with Eq. (9).

Beyond 2D disorder, the CFS peak was also numerically studied in one dimension
[68] and in 3D random potentials. In the latter case, its contrast was shown to undergo
a jump in the vicinity of the Anderson transition, whose finite-time scaling gives access
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to the critical exponent of the Anderson transition [73]. At the mobility edge, the CFS
peak contrast was also related to multifractal dimensions [73, 74].

4. Coherent multiple scattering in position space: mesoscopic echo

4.1. Diffusion and localization of wave packets
The “dual” version of the non-equilibrium configuration of the previous section

corresponds to preparing a quantum gas in a narrow wave-packet state |r0〉 and follow-
ing its evolution in position space. Localization phenomena in the random potential are
then probed through the disorder-averaged density distribution nr(t) ≡ |〈r|Ψ(t)〉|2. This
scenario is frequently encountered in experiments. In the diffusive regime, the density
distribution is given by the well-known Gaussian law

nr(t) = nD
r (t) =

e−(r−r0)2/2Dt

(4πDt)d/2 . (10)

In the localization regime, on the other hand, the wave packet becomes time indepen-
dent and its density is exponentially localized at large distance,

nr(t) ∼ e−|r−r0 |/ξ. (11)

In one dimension, localization is the rule and the diffusive regime (10) never occurs,
the density qualitatively obeying Eq. (11) after a few mean free times. The temporal
freezing of wave packets was the criterion exploited in the first experimental demon-
strations of localization of cold atoms [25, 26]. In two dimensions, Eq. (10) holds at
times τ � t � tloc, while Eq. (11) applies at long times t � tloc, with the localization
time given by Eq. (5). In three dimensions, finally, the two regimes are separated by
a critical energy, the mobility edge of the Anderson transition, where the atoms move
sub-diffusively. At the onset of the transition, the disorder is typically very strong.
In cold-atom experiments searching for 3D Anderson localization [30, 32], this im-
plies that the quantum gases have rather broad energy distributions, and thus consist of
a complicated mixture of diffusive, localized and critical atoms. Localized atoms are
then detected after the diffusive atoms have moved away. The broad energy distribution
of the cloud nevertherless makes the transition difficult to identify [75], which partly
explains the remaining discrepancies between experiment and theory on the position of
the mobility edge [33].

4.2. Mesoscopic echo
In position space, exponential localization of wave packets is not the only signature

of coherent multiple scattering. Fig. 4(a) shows a typical profile nr(t) obtained after a
few mean free times by numerically propagating a narrow wave packet in a 2D speckle
potential with parameters close to those used for the plots in Fig. 1. The density
distribution displays a broad pedestal and a narrow peak around the origin r = r0.
In the diffusive regime, the pedestal is well described by Eq. (10). The peak at the
origin, on the other hand, is a manifestation of weak localization in position space.
This phenomenon, dubbed mesoscopic echo, was originally described in the context
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Figure 4: (a) Spatial distribution nr(t) obtained by numerical propagation of a narrow wave packet in a
2D speckle potential after a few τ. The mesoscopic echo is visible. (b) Illustration of the profile of the
density distribution at long time. When t � tloc the mesoscopic echo is governed by the Cooperon process,
yielding an enhancement factor of 2. When t � tloc, higher-loop diagrams proliferate, ultimately yielding
an enhancement factor of 3, Eq. (14).

of quantum dots [76]. In the diffusive regime of a disordered system it occurs because
the density probability for the particles to return to the origin point r0 is enhanced by
the interference between time-reversed paths, as illustrated by the Cooperon diagram
in Fig. 4(b). Due to time-reversal symmetry, this contribution equals its diffusive
counterpart, the first diagram in Fig. 4(b), so that the density at r = r0 is exactly
doubled:

nr0 (t) = 2nD
r0

(t). (12)

The description of the mesoscopic echo in terms of a Cooperon must be revisited at the
onset of Anderson localization t ∼ tloc, where interference diagrams involving more
than one loop start to proliferate. One of them is shown in Fig. 4(b): it is the exact
counterpart of the CFS diagram (c) in Fig. 2. In position space, such a higher-loop
process makes the enhancement factor of the mesoscopic echo grow beyond 2. The
fate of the peak in the limit t � tloc can be inferred from a mode decomposition over
localized states, similar to that used in Sec. 3.2: |Ψ(t)〉 =

∑
n〈φn|r0〉e−iEnt |φn〉. Inserting

this expansion into the spatial density nr(t) = |〈r|Ψ(t)〉|2 and, as for Eq. (6), neglecting
the oscillating phase factors beyond the localization time, we obtain

nr(t � tloc) '
∑

n

|φn(r0)|2|φn(r)|2. (13)

We then use that the localized wave functions are random Gaussian variables, uncorre-
lated at different positions. This is the same argument as in momentum space, except
for one detail: the spatial eigenstates are here real due the time-reversal invariance of
the disordered system, so that the φn(r) can be viewed as real Gaussian random vari-
ables. This implies:

nr0 (t � tloc) = 3nr,r0 . (14)

In other words, from t ∼ tloc onward, the mesoscopic echo grows beyond the factor-2
enhancement expected from the sole account of the Cooperon, and reaches a factor-3
enhancement at long times. This phenomenon, which is the counterpart of the growth
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of the CFS peak in momentum space, is schematized in Fig. 4(b). The growth of the
mesoscopic echo in time is governed by the same curves as in Fig. 3: the factor-2
enhancement due to the Cooperon shows up over a few scattering times τ, while the
establishment of the factor 3 takes place over tloc.

4.3. Experimental observation
The fully constructive interference (12) and (14) hold for an initially narrow wave-

packet of well-defined de Broglie wavelength λ0 = 2π/k0. Under these conditions, the
width of the mesoscopic echo is of the order of λ0. In practice however, the spatial
distributions of cold gases prepared in optical traps are in general broader than λ0,
which leads to a reduction of the visibility of the mesoscopic echo. Even worse, the
energy distribution of cold gases in random potentials is often not peaked around a well-
defined energy ~2k2

0/2m but is instead broad, which further reduces the peak contrast.
For these reasons, to our knowledge the mesoscopic echo was so far not seen in any
cold-atom experiment involving disordered potentials.

The first successful observation of the mecoscopic echo in a quantum gas was
achieved in an experimental realization of the atomic “kicked rotor” [40]. In this exper-
iment, no spatial disorder was used, but rather a temporal form of disorder where the
atoms are subjected to an optical standing wave modulated by a temporally-periodic
sequence of pulses. This setup, the atomic kicked rotor, has played an important role in
the characterization of the Anderson transition with cold atoms [34, 35, 36]. Its physics
is the following. When subjected to a kick, an atom undergoes a change in momentum,
whose value becomes quickly unpredictable after a few kicks. This corresponds to a
chaotic motion, similar to a multiple scattering process but in momentum space. Like
in spatially disordered systems, interference between scattering paths may also occur
and lead to localization. In the atomic kicked rotor, the mesoscopic echo shows up
around the point p = 0 of the momentum distribution np(t) ≡ |〈p|Ψ(t)〉|2. Observing a
well-contrasted peak in this system requires np(t = 0) to be as narrow as possible, i.e.
a gas as cold as possible. The experiment [40] used a gas a of Cesium atoms cooled
down to ∼ 2µK. Even at this low temperature though, the contrast of the mesoscopic
echo is significantly decreased. For this reason, a differential measurement was carried
out, based on the following Hamiltonian

H =
p2

2
+ K

∑
n

[cos x δ(t−2n) + cos(x+a) δ(t−2n+1)] . (15)

Eq. (15) differs from the standard kicked-rotor Hamiltonian [77] owing to the additional
spatial phase a (the usual kicked rotor corresponds to a = 0). In [40], the blinking
standing wave was produced by two counter-propagating lasers periodically switched
on and off, the phase a stemming from a spatial shift of the standing wave every second
pulse. Experimental momentum distributions at two successive kicks are shown in the
left panel of Fig. 5. The value of the distribution at p = 0 is also shown in the right
panel as a function of time. Due to the phase shift a, the mesoscopic echo periodically
disappears and reappears every second kick. This blinking is due to an additional phase
exp(iΦ) = exp(iaδp) imprinted to an atom when its momentum is scattered by δp. For
an even number of kicks, the direct and reversed paths accumulate the same total phase
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Figure 5: Left: experimental momentum distribution np(t) measured in [40] at two successive kicks, using
an atomic realization of the kicked rotor based on the Hamiltonian (15). Right: Center of the wave packet
np=0(t) as a function of time, showing a periodic suppression and revival of the mesoscopic echo.

Φdir = Φrev, so that the interference is constructive, Φ ≡ Φdir − Φrev = 0. In contrast,
for an odd number of kicks, the accumulated phases Φdir and Φrev have opposite signs,
so that a finite phase difference Φ subsists: the interference is not constructive and the
average over all paths suppresses the mesoscopic echo in general.

Figure 6: Contributions of the Cooperon (green) and of higher-loop diagrams (red) to the contrast of the
mesoscopic echo, separately measured in the experiment [42].

As explained in Sec. 4.2, the enhancement factor of the mesoscopic echo crosses-
over from a factor 2 to a factor 3 at the onset of Anderson localization. At first sight,
distinguishing experimentally between these two regimes seems hard since the visibil-
ity of the peak is anyhow strongly suppressed by the too broad size of the initial wave
packet. A way to circumvent this difficulty was proposed in [42], based on the idea that
the Cooperon disappears when the temporal symmetry of the kick sequence is broken.
Precisely, in [42] the kick amplitude K in Eq. (15) was further periodically modulated
in time. This modulation was chosen so to break the time-reversal symmetry of the
kick sequence except at specific kicks where the Cooperon becomes nonzero. With
this strategy it was possible to temporally separate the contributions of the Cooperon
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and of higher-loop diagrams, and to access their individual time dependence. Those
are shown in Fig. 6, which should be compared with the numerical prediction of Fig.
3. The difference with Fig. 3 is explained by the presence of stray decoherence, which
scrambles the mesoscopic echo exponentially at long times.

5. Weak interactions in out-of-equilibrium disordered gases

5.1. Wave-packet spreading
The effect of weak interactions on the dynamics of spreading wave packets in dis-

order (Sec. 4.1) has been explored in a number of works, with special interest for the
case of 1D disordered chains [78, 79]. From a theoretical point of view, this problem
is most easily tackled with bosons, which at low temperature and in the mean-field
approximation obey the nonlinear Gross-Pitaevskii equation

i∂tΨ(r, t) =

[
−
∇2

2m
+ V(r) + gN|Ψ(r, t)|2

]
Ψ(r, t) (16)

for the mean field Ψ(r, t) in a disordered potential V(r), with g the interaction strength
and N the number of atoms. Here the field is normalized according to

∫
dr|Ψ(r, t)|2 = 1.

Despite the relative simplicity of the Gross-Pitaevskii equation, the problem turned out
to be non-trivial, even in one dimension, at both the numerical and theoretical levels.
In [78, 79], it was numerically found that for a small nonlinearity and strong disorder,
wave packets are no longer localized at long time, but instead spread sub-diffusively
in one-dimensional lattices,

∫
dr|Ψ(r, t)|r2 ∝ tα with α < 1. In other words, Anderson

localization is destroyed, but classical diffusion is not fully recovered. The precise
value of α was somewhat debated [78, 79, 80, 81, 82, 83], for the sub-diffusion process
establishes very slowly and the precise estimation of α requires to run simulations
over enormously long times (in the recent numerical work [84] aimed to determine
α, the time scale probed would correspond to 2.109s in a real experiment!) Numerics
nevertheless seems to suggest α = 0.3 − 0.4 in one dimension. The problem was
also tackled in a random potential in three dimensions in the vicinity of the Anderson
transition, where it was found that weak interactions also lead to sub-diffusion on the
localized side of the transition, while they leave the critical point and the diffusive side
of the transition essentially unaffected [85, 86]. The question of wave-packet spreading
is not fully clarified though, since other works also put forward that sub-diffusion could
be non-algebraic and eventually become slower than any power law at arbitrarily long
times [87, 88]. Experimentally, signatures of sub-diffusion of a weakly interacting
Bose-Einstein condensate were found in [89].

5.2. Thermalization and dephasing
A different, and somewhat simpler out-of-equilibrium scheme addresses the effect

of weak bosonic interactions following a quench from a plane-wave state. In this con-
figuration, the average density |Ψ(r, t)|2 remains uniform at all times. This problem
was originally examined in 1D disordered chains, where it was shown that the nonlin-
ear coupling of localized modes always leads to a thermalization of the system at the
mean-field level [90, 88]. We here discuss it in the 2D scenario of Sec. 2, where the
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Bose gas is prepared in the plane-wave state |k0〉 and the dynamics at weak disorder is
built upon diffusive modes.

When the initial state is a plane wave, the impact of interactions on the dynamics
is entirely due to the random fluctuations of the nonlinear potential gN|Ψ(r, t)|2 in Eq.
(16). These fluctuations, which are time dependent, lead to inelastic particle collisions
that modify the energy distribution of the Bose gas as it evolves in the disordered
potential. At weak disorder these collisions occur with the time scale

1
τcol
∼

∫
d2 k
2π
|〈k0|gN |Ψ|2|k〉|2δ(ε0 − εk) ∼

(gρ0)2

ε0
(17)

where ρ0 = N/V with V the volume of the system. In this configuration, the main
effect of particle collisions is to thermalize the momentum distribution nk(t). This can
be seen in the insets of Fig. 7, which show numerical distributions obtained by solv-
ing the Gross-Pitaevskii equation (16) in a random potential: the diffusive ring slowly
evolves in time, and eventually becomes a smooth distribution centered on k = 0. A

Figure 7: Radial cuts of the momentum distribution nk(t) of a Bose gas at four increasing times, obtained
by numerically propagating the plane-wave state |k0〉 with the Gross-Pitaevskii equation (16) in a Gaussian,
uncorrelated random potential V(r) with V(r)V(r′) = γδ(r− r′). Insets show the corresponding density plots
in the plane (kx, ky). Chosen parameters are k0 = 0.314 and γ = 0.01, corresponding to a mean free time
τ ' 100, and the interaction energy is set to gρ0 = 0.002. The distributions involve an angular average and
are further averaged over 1680 disorder realizations. Solid red curves are solutions of the kinetic theory, Eqs.
(18) and (19), in which the maximum of the spectral functions is set to ε = k2/2m (see main text).

theoretical description of the thermalization process visible in the insets of Fig. 7 was
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first developed in [91] based on a classical version of the Keldysh field theory, and later
in [92, 93] by means on a non-pertubative diagrammatic technique built upon diffusion
modes. In the latter approach, it was shown that for g , 0, the diffuson sequences of

Figure 8: Typical elementary diagrams governing the dynamics of a weakly interacting, disordered Bose gas
initially prepared in a plane-wave state |k0〉. Upper diagrams are of diffuson type (two scattering paths, solid
and dashed lines, co-propagate along an identical sequence of disorder scattering events) while lower ones
are of Cooperon type (the paths propagate along the same scattering sequence but in opposite directions). In
diagrams (a) and (c), a single sequence of the pair (here the solid one) is interrupted by two particle-collision
events, represented by the wavy lines. On the contrary, in diagrams (b) and (d), both sequences of the pair
are affected. In the case of diagram (d), this property imposes the two collisions to occur at exactly half the
sequence, i.e. at t1 = t2 = t/2, which is very unlikely and makes this diagram negligible.

Fig. 2(a) are modified by nonlinear processes as those shown in Figs. 8(a) and (b).
In such processes, a pair of multiple scattering paths is interrupted by two successive
particle collisions occuring in between any two scattering events on the disordered po-
tential. The collisions may affect a single path (diagram of type (a)) or both paths (type
(b)) [94]. A kinetic equation was then derived from a diagrammatic resummation tak-
ing into account an arbitrary number of such elementary processes along the diffusive
sequence. As a net result, the diffusive component (1) of the momentum distribution
becomes, in the presence of interactions [93],

nD
k =

∫
dε Aε(k) fε(t), (18)

where fε(t) is, up to a density-of-state factor νε , the energy distribution of the Bose
gas, normalized according to

∫
dε νε fε(t) = 1. In the absence of interactions, fε(t) =

Aε(k0)/νε is independent of time and reduces to the spectral function of the gas in the
disorder, so that Eq. (1) is recovered. When g , 0 on the other hand, it becomes time
dependent and obeys the Boltzmann-like kinetic equation

∂t fε =

∫
ε1,ε2,ε3≥0

dε1dε2 W(ε, ε1, ε2)
[
( fε + fε1+ε2−ε) fε1 fε2 − fε fε1+ε2−ε( fε1 + fε2 )

]
(19)
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with ε3 = ε1 + ε2 − ε and the initial condition fε(0) = Aε(k0)/νε . The interaction kernel
is given, in two dimensions and at weak disorder (Born approximation), by

W(ε, ε1, ε2) =
m3(gρ0)2

2π4νε

K
(

2 4√εε1ε2ε3
√
ε1ε2+

√
εε3

)
√
ε1ε2 +

√
εε3

, (20)

where K is the complete elliptic integral of the first kind. It should be noted that the
integrals in Eqs. (18) and (19) in principle run over all energies allowed by the dos.
At the level of the Born approximation where the kernel W is derived however, only
positive energies are included [91, 93], which leads to a poor estimation of nk(t) at low
values of k. To address this difficulty, an approximate method is to set the energy where
the spectral functions Aε(k) are maximum at ε = k2/2m when computing Eq. (18) and
the dos νε =

∫
d2 k/(2π)2Aε(k) in Eq. (20). Roughly speaking, this approximation

amounts to including a finite real self-energy into the theory (neglected at the Born
approximation). A comparison between the Gross-Pitaevskii simulations and Eqs. (18)
and (19) using this approach is shown in the main panels of Fig. 7 at four increasing
times. The agreement is very good, except at very low k-values.

The impact of interactions on the CBS peak in Fig. 1(a) is slightly more tricky but,
at weak disorder, it can also be tackled by means of a resummation of particle-collision
diagrams. Typical scattering sequences to be considered are shown in Fig. 8(c) and (d).
They are essentially the coherent counterparts of diagrams (a) and (b). The diagram
(d), however, deserves a special attention. Let us assume that the particle collision on
the direct path occurs at a time t1 and the collision on the reversed path at t2. As these
two events are typically bound to occur within a scattering mean free time, we have
t1 ' t2. Then, by definition of the time-reversed paths, t2 also equals t − t1 so that
t1 = t − t1. In other words, in such a process any particle-collision event is forced to
occur exactly at half the sequence, t1 = t/2, which is extremely unlikely at long time.
Diagrams of type (d) are therefore negligible, and only coherent diagrams of type (c)
should be considered. Because of the “missing” diagrams of type (d), the contribution
of the CBS peak to the momentum distribution at k = −k0 is not controlled by the
distribution fε(t) but is instead given by

nC
−k0

=

∫
dε Aε(k0) f C

ε (t), (21)

where the new energy distribution f C
ε (t) , fε(t) obeys the kinetic equation

∂t f C
ε = f C

ε

∫
ε1,ε2,ε3≥0

dε1dε2 W(ε, ε1, ε2)
[
fε1 fε2 − fε1+ε2−ε( fε1 + fε2 )

]
. (22)

The asymmetry between the kinetic equations (18) and (21) implies that the CBS con-
trast is no longer one, but instead decays in time in the presence of interactions. Indeed,
while Eq. (18) typically drives fε(t) to a time-independent Rayleigh-Jeans distribution
at long time [92], Eq. (21) on the contrary makes f C

ε (t) evolve to zero. Inelastic parti-
cle collisions thus reduce to an effective dephasing mechanism for weak localization.
In spirit, this effect is similar to what is observed for thermal equilibrium electrons in
good conductors, where electron-electron interactions lead to a finite coherence time
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that suppresses weak localization [95]. A difference is that the dephasing mechanism
here occurs for an isolated system and in an out-of-equilibrium configuration. Fig. 9

Figure 9: Contrast of the CBS peak versus time for increasing values of gρ0 from top to bottom (colored
curves). As in Fig. 7, the data are obtained by propagating the plane wave |k0〉 with the Gross-Pitaevskii
equation (16) using a Gaussian, uncorrelated random potential V(r) with V(r)V(r′) = γδ(r − r′), here for
k0 = 0.628 and γ ' 0.0182, corresponding to a mean free time τ ' 51.84. Data are averaged over about
16000 disorder realizations. Solid smooth black curves are fits to the theory, Eqs. (18), (21), (19) and (22),
using g as a fit parameter [93]. Dotted curves are the exponential law (23).

shows the contrast of the CBS peak as a function of time, numerically computed from
the Gross-Pitaevskii equation, for increasing values of the interaction strength. The
numerical data are well described by the kinetic approach described above, shown as
solid curves. While there is no obvious analytical solutions of the kinetic equations
(19) and (22) at finite time, we find the the decay of the CBS contrast is rather well
captured by an exponential law:

nC
−k0(t)

nD
−k0(t)

= exp(−t/τφ) (23)

where τφ = 5(gρ0)2/ε0 is the time scale governing the effective dephasing of CBS.
Quite naturally, this time scale is found to be directly proportional to the particle colli-
sion time τcol, defined through Eq. (17).

5.3. Emergence of superfluidity

In the previous section, we discussed an out-of-equilibrium regime where particles
essentially experience multiple scattering, and where interactions are so weak that they
thermalize the system and dephase weak localization effects over a time scale much
longer than the scattering mean free time, τcol � τ. In terms of microscopic energy
scales, in such a “mesoscopic” regime one typically has ε0 = k2

0/2m > V0 > gρ0, where
V0 is the magnitude of disorder fluctuations and gρ0 is the mean interaction energy.
Since multiple scattering is the dominant mechanism, in this regime the Bose gas has
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Figure 10: Cut along x of the coherence function g1(r, t), computed numerically by letting a plane-wave
state |k0 = 0〉 evolve with the Gross-Pitaevskii equation in a speckle potential (see [97] for the detailed
parameters). Here gρ0/V0 = 3.75 > 1 (V0 is the standard deviation of the random potential), so that the
disordered Bose gas is typically superfluid. Its correlations are long-range and spread within a light cone.
Symbols are the numerical results obtained at times t = 15/(gρ0), 30/(gρ0) and 60/(gρ0) from bottom to top.
Solid curves are the theoretical prediction (27), using β as a fit parameter for describing phonon collisions.
The inset shows a density plot of the corresponding momentum distribution nk(t) for t = 30/gρ0.

a very poor spatial coherence. This coherence is encoded in the first-order correlation

g1(r, t) ≡ VΨ∗(0, t)Ψ(r, t) =

∫
d2 k

(2π)2 nk(t)eik·r. (24)

When g = 0, nk is approximately given by Eq. (1), which leads to

g1(r, t) = J0(k0r) exp(−r/`), (25)

with r ≡ |r| and J0 the Bessel function of the first kind. Eq. (24) coincides with
first-order correlation function of a 2D speckle pattern, which is here a “matter-wave”
speckle formed by the particles scattered on the random potential [96]. The coherence
length is very short in the multiple scattering regime, of the order of the de Broglie
wavelength 2π/k0. In the presence of weak interactions and as long as t � τcol, the
diffusive ring (of radial width 1/`) broadens, while the energy distribution remains
approximately centered on the initial kinetic energy k2

0/2m. The argument of the expo-
nential envelope in Eq. (25) therefore increases slowly in time while the J0 function is
hardly modified, which scrambles the spatial oscillations of g1 [97].

A completely different physics shows up in the opposite limit gρ0 > V0 > ε0 [97].
Since the interaction energy is now the largest energy scale, one expects the Bose gas
to behave more like a superfluid. This implies, in particular, that multiple scattering
ceases and that the gas acquires a long-range spatial coherence. A manifestation of
this coherence is visible in the momentum distribution shown in the inset of Fig. 10,
here obtained for ε0 = 0: in the superfluid regime, the disorder-induced field fluctua-
tions are coherently enhanced and give rise to interference rings in momentum space.
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Such interference occurs because the Bose gas dynamics is now controlled by low-
lying phonon excitations. These phonons both interfere with one another and with the
Bose mean field. To see this quantitatively, one has to rely on the density-phase repre-
sentation of the Bose gas, to be substituted for Ψ in the Gross-Pitaevskii equation (16):

Ψ(r, t) =
√
ρ(r, t) exp[iθ(r, t) − igρ0t]/

√
N. (26)

In this representation the phase −igρ0t describes the evolution of the uniform solution
in the absence of disorder (ρ(r, t) = ρ0). In the presence of disorder, the phase θ and the
density ρ fluctuate. As long as V0 � gρ0 however, the density fluctuations remain small
and one can resort to perturbation theory, writing ρ(r, t) = ρ0 + δρ(r, t) with δρ � ρ0.
By linearizing the Gross-Pitaevskii equation, we then obtain a closed set of differential
Bogoliubov-de-Gennes equations for θ and δρ. Solving them together with the initial
conditions ρ(r, 0) = ρ0 and θ(r, 0) = 0 and averaging over disorder eventually gives
access to the coherence function. In two dimensions one finds:

ln g1(r, t) = −

∫
d2 k

(2π)2 B(k)(1 − cos k · r)

[1 − cos(Ekt)
εk + 2gρ0

]2

+

[
sin(Ekt)

Ek

]2

+
β(t)

k

 , (27)

where B(k) ≡
∫

dreik·rV(0)V(r) is the disorder power spectrum, εk = k2/2m and
Ek =

√
εk(εk + 2gρ0) is the Bogoliubov dispersion relation. The parameter β(t)/k is a

phenomenological correction term that takes into account corrections to the lineariza-
tion approach, i.e. phonon collisions [97]. Eq. (27) describes the dynamical spreading
of correlations in a 2D Bose gas initially quenched from a weakly fluctuating state
[98, 99, 100, 101]. In the present case however, the fluctuations are are neither quan-
tum or thermal but stem from the random potential. The prediction (27) is compared
with direct simulations of the Gross-Pitaveskii equation, using β as a fitting parameter.
The curves demonstrate the spreading of correlations within a light cone of transverse
size 2cst, where cs =

√
gρ0/m is the speed of sound. At large separations r > 2cst, the

correlation function displays a plateau reminiscent of the perfect coherence of the ini-
tial plane-wave state. Within the light cone on the other hand, the coherence function
decays algebraically:

g1(r, t) ∝
(
ξ

r

)α
(28)

where ξ ≡ 1/
√

gρ0m is the healing length and α ≡ (V0σ/
√

2gρ0ξ)2. Interestingly,
the algebraic law (28) is independent of the precise shape of the disorder spectrum
B(k) and is thus, to a large extent, universal (it nevertheless depends on the disorder
correlation length σ). Furthermore, the interior of the light cone varies very slowly in
time. These properties are characteristic of a pre-thermalization process of the Bose gas
[98, 99, 100], which here shows up in a disordered potential. The long-range coherence
within the light cone reflects the superfluid character of the gas, in strong contrast with
the multiple scattering regime discussed in Sec. 5.2 (compare with Eq. (25)).

6. Conclusion

We have reviewed, in a cold-atom context, a few emblematic mesocopic phenom-
ena that show up when a Bose matter wave dynamically evolves in a random potential:
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coherent backscattering, coherent forward scattering and the mesoscopic echo. While
some of these phenomena were already known in condensed-matter and optical sys-
tems, their experimental observation in quantum gases is more recent and was achieved
with an unprecedented control thanks to the versatility of cold-atom setups. Our un-
derstanding of the interplay between disorder and interactions in out-of-equilibrium
configurations remains, on the other hand, in its early stages. In this paper we have
addressed this question for bosons at the mean-field level. While in this limit long-time
thermalization seems to be the rule whatever the disorder strength, the results pre-
sented in this paper show that the transient dynamics leading to this final state can be
non-trivial. For a quenched Bose gas initially prepared in a uniform state, in particular,
we have identified two well distinct non-equilibrium scenarios. A mesoscopic regime
at weak enough interaction strength, where particle collisions reduce to an effective
dephasing mechanism for weak localization, and a superfluid regime where multiple
scattering is absent and the disordered Bose gas displays long-range spatial correlations
spreading within a light cone. Even though strong enough disorder in one dimension
is known to give rise to many-body localization and to suppress thermalization at the
many-body level, a full picture of the non-equilibrium dynamics of disordered of quan-
tum gases is still missing. The cross-over from the mean-field to the many-body level
or the dynamics of quantum gases in dimensions larger than one remain, in particular,
major challenges.
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