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Abstract – We explore the quench dynamics of a two-dimensional, weakly interacting disordered
Bose gas for various relative strengths of interactions and disorder. This allows us to identify
two well distinct out-of-equilibrium regimes. When interactions are smaller than the disorder, the
gas experiences multiple scattering and exhibits a short-range spatial coherence. At short time
this coherence is only smoothly affected by interactions, via a diffusion process of the particles’
energies. When interactions are larger than the disorder, scattering ceases and the gas behaves
more and more like a fluid, ultimately like a superfluid at low energy. In the superfluid regime, the
gas exhibits a long-range algebraic coherence, characteristic of a pre-thermal regime in disorder.

Introduction. – In quantum gases, the interplay be-
tween disorder and interactions leads to a rich variety
of phenomena. At low temperature for instance, a one-
dimensional Bose gas in equilibrium behaves either as an
insulator or a superfluid depending on the relative strength
of disorder and interactions [1]. The insulating phase has
been predicted to be robust at finite temperature, up to a
critical point known as the many-body localization tran-
sition [2]. Initially described for interacting electrons in
dirty conductors [3, 4], many-body localization has, since
then, triggered a considerable interest in various fields of
physics [5]. Another intriguing problem is the dynamical
evolution of interacting disordered gases brought out-of-
equilibrium by an initial quench. In the homogeneous case,
out-of-equilibrium interacting gases generically thermalize
to a universal Gibbs ensemble [6]. For sufficiently strong
disorder and interactions on the other hand, many-body
localization may prevent thermalization to occur [5]. In
between these two limits, the quench dynamics of disor-
dered quantum gases remains largely unexplored, in par-
ticular in dimensions larger than one.

In this context, a yet poorly explored problem is the
out-of-equilibrium dynamics of weakly interacting disor-
dered gases. In this regime, mostly states in the ergodic
phase of the many-body-localization transition contribute
to the dynamics, so that thermalization is the rule. For

bosons, the weakly interacting regime can be tackled at
the mean-field level using the disordered Gross-Pitaevskii
equation. The dynamical establishment of thermalization
in this context was previously studied in one-dimensional
disordered chains [7,8] and in two-dimensional (2D) [9,10]
random potentials, in cases where the disorder is typically
larger than interactions. In this regime, the short-time
dynamics of the gas is governed by multiple scattering,
while interactions make the system thermalize on a longer
time scale. The opposite limit of a disorder smaller than
interactions has, on the other hand, little been explored
in an out-of-equilibrium context.

In this Letter, we study the quench dynamics of a 2D
weakly interacting disordered Bose gas by varying the rel-
ative strengths of disorder and interactions over a wide
range. We characterize this dynamics by numerically and
analytically computing the momentum distribution and
the coherence function of the gas, focusing on relatively
short times, before the system is fully thermalized. For a
disorder larger than interactions, we recover that the gas
experiences multiple scattering, while being slowly ther-
malized by interactions. The spatial coherence is low in
this limit. Upon increasing the strength of interactions, we
find that scattering diminishes and that the gas behaves
more and more like a fluid. Ultimately, when interactions
become larger than the disorder, the gas becomes a non-
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equilibrium disordered superfluid with a long-range, alge-
braic coherence emerging in a light-cone fashion, which is
typical of a 2D pre-thermalization process.

The model. – Following the approach of [9–15], we
consider a simple out-of-equilibrium protocol where a 2D
N -particle Bose gas, initially prepared in the plane-wave
state |k0〉, undergoes at t = 0 a simultaneous interaction
and disorder-potential quench. We describe the ensuing
dynamics for t > 0 with the time-dependent disordered
Gross-Pitaevskii equation

i∂tΨ(r, t) =

[
−∇2

2m
+ V (r) + gN |Ψ(r, t)|2

]
Ψ(r, t) (1)

for the Bose mean field Ψ(r, t), normalized according to∫
d2r|Ψ(r, t)|2 = 1. Here and in the rest of the Letter,

we set ~ = 1. We choose the random potential V (r) to
be a blue-detuned speckle, with mean value V (r) = 0 and
Gaussian correlation function V (r)V (r′) = V 2

0 exp(−|r −
r′|2/2σ2), where V0 is the amplitude of disorder fluctua-
tions, σ the correlation length, and the overbar refers to
disorder averaging. In our numerical simulations, we gen-
erate this potential in a standard way, by convoluting a
spatially δ−correlated Gaussian random field with a Gaus-
sian cutoff function [16,17]. The temporal propagation of
the initial plane wave is performed using a split-step algo-
rithm that includes a Chebyshev expansion of the linear
part of the evolution operator, as explained in [10]. Sim-
ulations are performed on a 2D regular grid of size L× L
with periodic boundary conditions along x and y. A cell of
surface (πσ)2 is discretized in typically 5 to 7 steps along
both x and y. Throughout the paper, numerical values
of lengths, momenta, energies and times will be given in
units of σ, σ−1, 1/(mσ2) and mσ2, respectively. Finally,
all the results are averaged over 3200 to 4800 disorder re-
alizations.

Momentum distributions. – We first compute nu-
merically the disorder-averaged momentum distribution
nk(t) ≡ |〈k|Ψ(t)〉|2 from Eq. (1) using the procedure
explained above, for various relative values of the dis-
order potential fluctuations, V0, initial kinetic energy
ε0 ≡ k20/2m and initial interaction energy gρ0 ≡ gN/V ,
where V = L2 is the volume of the system. The distri-
bution is normalized according to

∫
d2k/(2π)2nk(t) = 1.

Density plots of nk(t) are shown in Fig. 1, with the
columns corresponding to different parameter regimes
and the rows to three successive times, chosen relatively
short compared to the time where the gas gets completely
thermalized by interactions.

• Regime ε0 > V0 > gρ0 (Figs. 1a): Particles of
energy ∼ ε0 experience elastic multiple scattering on
the disorder potential, which randomizes the direction
of their momenta. The distribution nk(t) thus quickly
becomes a ring of radius k0. As time increases (from
Fig. 1a-1 to a-3), the ring is slowly smoothed by particle

collisions (thermalization).

• Regime ε0 > gρ0 > V0 (Figs. 1b): When the interac-
tion strength is increased, particle collisions scramble the
distribution before the scattering ring is fully formed.

• Regime gρ0 > ε0 > V0 (Figs. 1c): When interactions
become larger than the initial kinetic energy, the gas
starts to behave as a superfluid. There is no longer
scattering, rather the disorder-induced field fluctuations
are coherently enhanced and manifest themselves as
interference rings, which become tighter and tighter as
time increases.

• Regime gρ0 > V0 > ε0 (Figs. 1d): Same as in Figs.
1c, but for a Bose gas initially almost motionless, at rest
on the plots (ε0 = 0).

To better understand the physics at play in the distri-
butions of Fig. 1, we now discuss more in details the two
extreme regimes of Figs. 1a and 1d.

Multiple-scattering regime. – We first address the
low-interaction regime of Figs. 1a. Since interactions are
typically the smallest energy scale in this limit, the physics
at short time is essentially a multiple-scattering process of
quasi-particles with energy εk ≡ k2/2m in the random
potential. The relevant time scale is here the scattering
mean free time τ , which gives the rate at which these
quasi-particles are elastically scattered. For the chosen
Gaussian potential, we have

1

τ
= 2πV 2

0 σ
2e−k

2
0σ

2

I0(k20σ
2) (2)

in the Born approximation [18], where I0 is the modi-
fied Bessel function of the first kind. When t � τ , the
disorder-averaged momentum distribution acquires a ring
shape, as seen in Figs. 1a. For weak interactions, it was
shown to be given by [10]

nk(t) =

∫
dεAε(k)fε(t)/ν, (3)

where fε(t) is the energy distribution of the quasi-particles
(normalized according to

∫
dεfε(t) = 1), Aε(k) is their

spectral function and ν = m/2π is the 2D density of states
per unit volume. In the weak-disorder regime where k0`�
1, we have Aε(k) ' 1/(2πτ)×1/[(ε− εk)2 +1/4τ2]. In the
absence of interactions, fε(t) = Aε(k0) is independent of
time and coincides with the spectral function at k = k0.
Equation (3) then reduces to [11]

nk(g = 0) =
1

πντ

1

(εk − ε0)2 + 1/τ2
, (4)

which indeed describes a ring of half-width at half maxi-
mum ∆k ∼ 1/`, where ` = k0τ/m is the mean free path.
When g 6= 0, the energy distribution fε(t) evolves in time
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Fig. 1: Momentum distribution nk(t) of an interacting Bose gas launched with momentum k0 in a 2D random potential. Rows
correspond to three successive times, given either in units of the scattering mean free time τ or of the nonlinear time τNL. For
all plots the disorder amplitude is set to V0 = 0.4. (a) ε0 > V0 > gρ0: particles experience multiple scattering on the random
potential (with here k0` = 18.0). This gives rise to an incoherent elastic ring in momentum space. As time increases, the
distribution slowly thermalizes due to particle collisions. (b) ε0 > gρ0 > V0: increased interactions compete with disorder and
thermalize the distribution before the elastic ring is fully formed. (c) gρ0 > ε0 > V0: interactions are larger than the kinetic
energy, so that the gas starts to behave as a superfluid. The initial small disorder-induced field fluctuations are coherently
enhanced and yield an interference ring pattern in momentum space. (d) gρ0 > V0 > ε0 = 0: superfluid regime for a gas initially
at rest.

due to particle collisions. At weak disorder, its dynamics
is governed by a Boltzmann-like kinetic equation [9,10,19].
The particle collisions occur at a mean rate given by the
Fermi golden rule

1

τcol
=2π

∫
d2k

(2π)2
|〈k0|gN |Ψ|2|k〉|2δ(ε0−εk)∼ (gρ0)2

ε0
. (5)

While fε(t) ultimately becomes thermal when t� τcol [9],
as long as t < τcol the scattering ring remains well resolved
(as in Figs. 1a-1-3) and we have found that the time evo-
lution of fε(t) is approximately captured by a diffusion
process in the energy domain:

fε(t) '
∫
dε′

Aε′(k0)√
4πDt

exp

[
− (ε− ε′)2

4Dt

]
(6)

with a diffusion coefficient in energy space such that
2Dτcol ∼ 1/τ2. When g 6= 0, the momentum distribution
at short time is thus obtained by convoluting the non-
interacting result (4) with the Gaussian distribution in

Eq. (6). For τ � t < τcol this leads to a broadening of
the ring with half width ∆k(t) ∼ (1+Ct/τcol)/`, with C a
numerical constant. This broadening is visible in the left
panel of Fig. 2, which shows radial cuts of the scattering
ring, obtained numerically at successive times. As long
as t < τcoll we find that the widths extracted from these
cuts indeed increase linearly in time, as shown in the right
panel of Fig. 2.

It is also interesting to investigate the spatial coherence
of the Bose gas in the multiple-scattering regime. To this
aim, we consider the coherence function

g1(r, t) ≡ Ψ∗(0, t)Ψ(r, t) =

∫
d2k

(2π)2
nk(t)eik·r. (7)

When g = 0, nk is given by Eq. (4), so that g1(r, t) =
J0(k0r) exp(−r/`), with r ≡ |r| and J0 the Bessel function
of the first kind [18]. This expression is essentially the first-
order correlation function of the 2D matter-wave speckle
pattern formed by the particles scattered on the random
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Fig. 2: Left: radial cuts of the scattering ring, computed nu-
merically at times t = 10.9τ , 15.1τ and 19.8τ from top to
bottom (numerical data points have been joined for clarity).
Each cut involves an angular average of the momentum distri-
bution. Right: half width at half maximum (HWHM) of the
ring, obtained by fitting the radial cuts with a Lorentzian pro-
file in a k-window of width 0.8 centered on k0 (red symbols).
Error bars are deduced from the χ2 goodness of the fits. The
solid line is a linear fit ∆kfit(t) = 1/`[1 + 6.38(t− 5.84τ)/τcol],
which confirms the theoretical expectation. The dashed line
shows the g = 0 result, ∆k = 1/`. Here gρ0 = 0.07, V0 = 0.2,
k0 = 1.57, k0` = 36 and the chosen system size is L = 200π.
With these parameters, τ = 14.6 and τcol = 251.5.

potential [20]. It shows that the coherence length of the
Bose gas is rather short in the multiple-scattering regime,
of the order of the de Broglie wavelength 2π/k0. We show
in Fig. 3 the g1 function computed numerically from Eq.
(1) for g = 0, together with the above theoretical formula.
In the presence of interactions and as long as t < τcol, the
shape of nk remains close to the Lorentzian (4), with a
broadened width ∆k(t) ∼ (1 + Ct/τcol)/`, such that:

g1(r, t) ' J0(k0r) exp[−∆k(t)r]. (8)

As shown in Fig. 3, Eq. (8) describes very well the nu-
merical results for g1 at g 6= 0. Here the main effect of
interactions is to smooth the matter-wave speckle, with-
out significantly affecting the coherence of the gas. This
picture would of course change at long time t� τcol, where
the momentum distribution starts to significantly deviate
from Eq. (4) and approaches a thermal law [9].

Superfluid regime. – We now address the opposite,
superfluid regime where gρ0 � V0 � ε0. From now on, we
focus for simplicity on the case ε0 = 0 of a gas initially at
rest, corresponding to the numerical distributions in Figs.
1d-1-3. In such a low-energy regime, the natural approach
for describing the dynamics of the 2D Bose gas relies on the
density-phase representation of the wavefunction [22,23]:

Ψ(r, t) =
√
ρ(r, t) exp[iθ(r, t)− igρ0t], (9)

where −igρ0t is the dynamical phase of the uniform so-
lution in the absence of disorder (ρ ≡ ρ0). As the gas
evolves in time, the density ρ(r, t) and the phase θ(r, t)
fluctuate due to the presence of the disorder potential.

0
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0.8

0.6

0.4
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-0.2
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14

Fig. 3: Radial cut of the coherence function g1(r, t) of the
Bose gas in the multiple scattering regime [21] (the cut also
involves an angular average of g1). For g = 0 (outer black
symbols, numerics, and solid black curve, theory) the function
is independent of time after a few τ and exhibits oscillations
at the scale 2π/k0. In the presence of interactions, these os-
cillations are smoothed. Colored solid curves for g 6= 0 are
the theoretical prediction, Eq. (8), in which we take the value
∆k(t) = ∆kfit(t) given in the caption of Fig. 2. Parameters
are the same as in Fig. 2.

We then exploit that the disorder potential is the smallest
energy scale to make use of perturbation theory. Pre-
cisely, we write ρ(r, t) = ρ0 + δρ(r, t) and linearize the
Gross-Pitaevskii equation (1) with respect to δρ(r, t) and
∇θ(r, t) (without any assumption on the phase itself,
which may be strongly fluctuating in this regime) [24].
This leads to the Bogoliubov-de Gennes equations

∂δρ

∂t
= −ρ0

m
∇2θ (10)

∂θ

∂t
=

1

4mρ0
∇2δρ− V (r)− gδρ, (11)

which can be readily diagonalized to provide the density,

δρ(r, t) = −2ρ0

∫
d2k

(2π)2
V̂ (k)

1− cos(Ekt)

εk + 2gρ0
eik·r (12)

and the phase fluctuations,

θ(r, t) = −
∫

d2k

(2π)2
V̂ (k)

sin(Ekt)

Ek
eik·r. (13)

These expressions involve the well-known Bogoliubov dis-
persion relation, Ek ≡

√
εk(εk + 2gρ0), where we recall

that εk = k2/2m. The coherence function follows from
Eqs. (12) and (13) using standard procedures [23–25]:

g1(r, t) = ρ0 exp

{
−
∫

d2k

(2π)2
B(k)(1− cosk · r)

×

([
1− cos(Ekt)

εk + 2gρ0

]2
+

[
sin(Ekt)

Ek

]2)}
, (14)
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where B(k)≡
∫
dreik·rV (0)V (r)=2πV 2

0 σ
2e−q

2σ2/2 is the
disorder power spectrum. The physical content of Eq. (14)
is the dynamical spreading of correlations in a Bose gas ini-
tially quenched from a weakly fluctuating state [26], here
in two dimensions. Unlike quench configurations more
commonly encountered in the literature however [25–30],
in our case the fluctuations are neither of quantum or ther-
mal origin, but come from the random potential. In the
present regime, scattering does not take place, so that the
mean free time τ is no longer a relevant time scale. In-
stead, the short-time dynamics of the Bose gas is governed
by the nonlinear time τNL ≡ 1/gρ0. For t � τNL and at
the intermediate separations ξ � r ≡ |r| � 2cst, where
ξ ≡ 1/

√
gρ0m is the healing length and cs =

√
gρ0/m

is the speed of sound, Eq. (14) simplifies to the time-
independent algebraic law

g1(r, t) ' ρ0
[
G(σ/ξ)

ξ

r

]α
(15)

where α ≡ (V0σ/
√

2gρ0ξ)
2 and G(x) =

√
2x exp{[(6x2 +

1) exp(2x2)E1(2x2) − 3 − γ]/2}, with γ being the Euler-
Mascheroni constant and E1 the first-order exponential
integral. A similar 2D algebraic scaling was found in [31],
in a configuration where the fluctuations were however en-
coded in the initial state and not in a disorder potential.
Note that Eq. (15) is both independent of time and of
the precise shape of the disorder spectrum B(k). It only
depends on the small set of parameters {ξ, σ, gρ0, V0} and
is thus, to a large extent, universal. Time independence
and universality are characteristic properties of a pre-
thermalization process, where a quenched system quickly
converges to a fixed, thermal-like point, from where it only
departs very slowly [27–30]. In the present scenario, the
existence of a pre-thermalization regime requires the dis-
order amplitude to be very weak, so that the system is
nearly integrable at short time. In the pre-thermal regime,
the correlation function (15) looks like the one of a uni-
form 2D Bose superfluid at equilibrium and finite temper-
ature [32], and the gas exhibits an algebraically-decaying
coherence [23], in strong contrast with the multiple scat-
tering regime (compare with Eq. (8)). Eq. (15) breaks
down at r = 2cst, the boundary of a light cone within
which correlations can spread. Out of the light cone,
g1(r, t) ' ρ0[G(σ/ξ)ξ/4cst]

α reaches a time-dependent
plateau, reminiscent of the perfect coherence of the ini-
tial plane-wave state. Let us mention that to observe the
algebraic law (15), it is required to use of a correlated po-
tential with σ ≤ ξ so to select the low-k phonon modes
Ek ' csk in Eq. (14). In particular, for an uncorrelated
potential we have found no numerical evidence of algebraic
decay in the coherence function.

Within the linearization approach that led us to Eq.
(14), the disorder fluctuations are described in terms of
independent Bogoliubov quasi-particles, which reduce to
phonons at low-energy. Collisions between these phonons
make the system slowly depart from the pre-thermal
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Fig. 4: Cut along x of the coherence function g1(r, t) in the su-
perfluid regime. Symbols show the numerical results obtained
at times t = 15τNL, 30τNL and 60τNL from bottom to top. Solid
curves are the theoretical prediction, Eq. (14), including a phe-
nomenological β(t)/k correction accounting for phonon colli-
sions, as discussed in the main text. Fit values are β(15τNL) =
−0.0055, β(30τNL) = −0.094 and β(60τNL) = −0.152. Insets
show cuts along kx of the numerical momentum distributions at
the same times (corresponding to Figs. 1d-1-3), together with
the theory, Eq. (16). Here gρ0 = 1.5, V0 = 0.4, k0 = 0, and
the chosen system size is L = 250π. With these parameters,
τNL = 0.67 and σ/ξ = 1.22.

regime described by Eq. (15) [33]. While the effect of
these collisions remains small at short time, it was found
in [31] that even at short time it is necessary to take them
into account in order to achieve a quantitative agreement
with numerical simulations for g1. Collisions slowly change
the momentum distribution of the quasi-particles [33]. We
account for this change by adding a phenomenological,
fitting parameter β(t)/k in the second line of Eq. (14),
which becomes (β(t)/k + [(1− cos(Ekt))/(εk + 2gρ0)]2 +
[sin(Ekt)/Ek]2). The factor 1/k is here introduced some-
what arbitrarily to reduce the weight of phonon collisions
at short scale. We have verified that an alternative fit-
ting option, independent of k, also allows us to reproduce
the numerical results [31], albeit less accurately at short
scale. A comparison between Eq. (14), modified accord-
ing to this procedure, and the exact simulations for g1, is
shown in Fig. 4 (parameters are here the same as those
in Figs. 1d). The agreement is excellent, except for the
small spatial variations of g1 in the vicinity of the light-
cone boundary, which are not present in the simulation
results. One reason might be a smoothing of these varia-
tions due to particle collisions.

When V0/gρ0 � 1, one can expand the exponential in
Eq. (14), so that the momentum distribution nk(t) at
k 6= 0 is in first approximation given by the simple law

nk(t) ' ρ0B(k)

([
1−cos(Ekt)

εk + 2gρ0

]2
+

[
sin(Ekt)

Ek

]2)
. (16)

Such a profile consists of concentric rings whose min-
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ima are located at positions kn = (
√

2/ξ){−1 + [1 +
(πn/gρ0t)

2]1/2}1/2, where n is a non-zero positive integer.
These rings are well visible in the distributions of Figs.
1d-1-3. Physically, they originate from both the interfer-
ence between phonons (interference pattern ∼ cos(2Ekt))
and between the phonons and the mean field (∼ cos(Ekt)).
The spacing ∼ π/(cst) between the rings decreases in time,
signaling that the interfering particles are further and fur-
ther apart as time grows. Equation (16) is displayed in
the inset of Fig. 4, together with cuts along kx of the
distributions in Figs. 1d-1-3 extracted from simulations.
The agreement is again very good, in particular for the
positions of the minima, indicated by vertical lines.

Conclusion. – We have theoretically described the
dynamics of a 2D, weakly interacting Bose gas in the
presence of a random potential, and have identified two
qualitatively different non-equilibrium regimes depending
on the relative strengths of disorder and interactions.
For interactions weaker than the disorder, the physics is
that of multiple scattering, with interactions slowly ther-
malizing the energy distribution and a short-range co-
herence at short time. When interactions are stronger
than the disorder, on the other hand, we recover a low-
energy-physics regime: scattering ceases, the gas becomes
a non-equilibrium superfluid, with long-range correlations
spreading within a light cone.
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Miniatura C. and Delande D., Euro-physics Letters,
100 (2012) 66001.

[14] Müller K., Richard R., Volchkov V. V.,
Denechaud V., Bouyer P., Aspect A. and Josse V.,
Phys. Rev. Lett., 114 (2015) 205301.

[15] Ghosh S., Cherroret N., Grémaud B., Miniatura
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