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Optimal control of averaged state of a population dynamics

model

Cyrille KENNE ∗ Boniface NKEMZI †

November 1, 2021

Abstract

In this article, we study the average control of a population dynamic model with age dependence
and spatial structure in a bounded domain Ω ⊂ R3. We assume that we can act on the system
via a control in a sub-domain ω of Ω. We prove that we can bring the average of the state of
our model at time t = T to a desired state. By means of Euler-Lagrange first order optimality
condition, we expressed the optimal control in terms of average of an appropriate adjoint state
that we characterize by an optimality system.

Mathematics Subject Classification. 49J20, 92D25, 35Q93, 93C05
Key-words : Population dynamics, average control, Euler-Lagrange formula.

1 Introduction

The invasive species have a real impact on communities and ecosystems. They are viewed as a sig-
nificant component of global change and they have severe negative consequences for biodiversity. We
consider a model describing the dynamics of an invasive species with age dependence and spatial
structure, the invasive species are diffusing in the habitat with a diffusion coefficient depending of
the susceptibility of the habitat to invasion (ecological factors) and/or genetics factors of the species.
We then consider a population with age dependence and spatial structure, and we assume that the
population lives in a bounded domain Ω ⊂ R3. We denote by Γ the boundary of the domain and we
assume that it is of class C2. For the time T > 0, the life expectancy of an individual A > 0 and
θmin, θmax > 0, we set I = (θmin, θmax), U = (0, T )× (0, A), Q = U ×Ω, Σ = U ×Γ, QA = (0, A)×Ω,
QT = (0, T ) × Ω and Qω = U × ω, where ω is a non-empty open subset of Ω. for θ ∈ I, the system
reads as follows:

∂y

∂t
+
∂y

∂a
− d(θ)∆y + µy = f + vχω in Q,

y = 0 on Σ,
y(0, ·, ·, θ) = y0 in QA,

y(·, 0, ·, θ) =

∫ A

0

β(t, a, x)y(t, a, x, θ) da in QT ,

(1)

where
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• y = y(t, a, x, θ) is the distribution of individuals of age a ≥ 0, at time t ≥ 0 and location x ∈ Ω.

• The recruitment f ∈ L2(Q) is a positive periodic function.

• The control v ∈ L2(Qω) which corresponds to the removal of the individuals in a sub-domain ω
of Ω and χω denote the characteristic function of the control set ω.

• The mortality rate µ = µ(a) ≥ 0 is a known increasing positive function which is continuous on
[0, A], whereas the fertility rate β = β(t, a, x) ∈ L∞(Q) is known and positive.

• d(θ) > 0 is the diffusion coefficient of species dispersal in the environment and is assumed
depending of susceptibility θ ∈ I and d ∈ C(I).

Model (1) is a system with varying parameter and our question is: Let zd be a given age-dependent
distribution of species, can the average of the solution to (1) at time t = T be steered to zd upon
selecting a suitable control v corresponding to a removal (eradication) of species on the sub-domain
ω?

Remark 1 Set

W (T,A) =

{
ρ ∈ L2(U ;H1

0 (Ω));
∂ρ

∂t
+
∂ρ

∂a
∈ L2

(
U ;H−1(Ω)

)}
. (2)

Then we have (see [4]) that

W (T,A) ⊂ C([0, T ], L2(QA)) and W (T,A) ⊂ C([0, A], L2(QT )). (3)

Under the assumptions on the data, and for θ ∈ I fixed, (1) has a unique solution y(θ; v) = y(t, a, x, θ; v)
in W (T,A). More precisely, we are concerned in this paper by the following optimization problem:

inf
v∈L2(Qω)

J(v), (4)

where the cost function is given by

J(v) =

∥∥∥∥∫
I

y(θ; v)(T ) dθ − zd
∥∥∥∥2

L2(QA)

+N‖v‖2L2(Qω), (5)

with zd ∈ L2(QA) and N > 0 are given,

∫
I

y(θ; v)(T ) dθ ∈ L2(QA), for all v ∈ L2(Qω).

Optimal control for age-structured population was studied later by some authors like A. Ouedrogo
and al. [9]. In this paper the authors considered a nonlinear age-structured population dynamics
model and they study the existence of an optimal control making the density of the population as
close as possible of some given density. In [1] B. Ainseba and al. investigated the optimal harvesting
problem for a nonlinear age-dependent and spatially structured population dynamics model with a
constant diffusion coefficient, where the birth process is described by a nonlocal and nonlinear boundary
condition. The notion of averaged control was introduced by Zuazua [10] to analyse the problem of
controlling parameter dependent systems. In this notion, the aim is to find a control, independent of
the unknown parameter, so that the average of the state is controlled. For more literature on the topic,
we refer for instance to Lohac and Zuazua [6], Lazar and Zuazua [5], Hafdallah and Ayadi [2] and LU
and Zuazua [7], G. Mophou et al. [8] and the reference therein. In this paper, we are concerned with
the control of a parameter dependent age structured population dynamics system.

The rest of this paper is structured as follows. In Section 2, we give some regularity results.
In Section 3, we prove the existence and the uniqueness of the control and we characterize with an
optimality system. A conclusion is given in Section 4.
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2 Preliminary results

In order to solve the optimization problem (4), we need some preliminary results.
In what follows, we will sometime adopt the following notation

L =
∂

∂t
+

∂

∂a
− d(θ)∆ + µI,

L∗ = − ∂

∂t
− ∂

∂a
− d(θ)∆ + µI,

(6)

where I is the identity operator.

Remark 2 From now on, we use C(X) to denote a positive constant whose value varies from a line to
another but depends on X; the positive constant d0 = inf

θ∈I
d(θ) and we will denote by (·, ·)H the scalar

product in H.

Lemma 2.1 Let v ∈ L2(Qω) and y ∈ L2(U ;H1
0 (Ω)) be solution of (1), then we have the following

estimations:

‖y‖L2(U ;H1
0 (Ω)) ≤ C(T, ‖β‖L2(Q))

(
‖y0‖L2(QA) + ‖f‖L2(Q) + ‖v‖L2(Qω)

)
,

‖y(T, ·, ·, θ)‖L2(QA) ≤ C(T, ‖β‖L2(Q))
(
‖y0‖L2(QA) + ‖f‖L2(Q) + ‖v‖L2(Qω)

)
,

‖y(·, A, ·, θ)‖L2(QT ) ≤ C(T, ‖β‖L2(Q))
(
‖y0‖L2(QA) + ‖f‖L2(Q) + ‖v‖L2(Qω)

)
.

Proof. We procced as in [3]. We recall that y = y(t, a, x, θ; v) is solution of the problem

∂y

∂t
+
∂y

∂a
− d(θ)∆y + µy = f + vχQω

in Q,

y = 0 on Σ,
y(0, ·, ·, θ) = y0 in QA,

y(·, 0, ·, θ) =

∫ A

0

β(t, a, x)y(t, a, x, θ) da in QT .

By defining z = e−rty with r > 0, we obtain that z is solution of the problem

∂z

∂t
+
∂z

∂a
− d(θ)∆z + (µ+ r)z = f + vχQω

in Q,

z = 0 on Σ,
z(0, ·, ·, θ) = y0 in QA,

z(·, 0, ·, θ) =

∫ A

0

β(t, a, x)z(t, a, x, θ)da in QT .

(7)

Multiplying the first equation of system (7) by z and integrating by parts over Q, we get:

1

2
‖z(T, ·, ·, θ)‖2L2(QA) −

1

2
‖z(0, ·, ·, θ)‖2L2(QA) +

1

2
‖z(·, A, ·, θ)‖2L2(QT )

−1

2
‖z(·, 0, ·, θ)‖2L2(QT ) + d(θ)‖∇z‖2L2(Q) +

∫
Q

(r + µ)z2 dxdtda

=

∫
Q

(f + vχQω
)z dxdtda.
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Then using the fact that µ ≥ 0, it follows the inequality

1

2
‖z(T, ·, ·, θ)‖2L2(QA) +

1

2
‖z(·, A, ·, θ)‖2L2(QT ) + d0‖∇z‖2L2(Q) + r‖z‖2L2(Q)

≤ 1

2
‖y0‖2L2(QA) +

1

2
‖z(·, 0, ·, θ)‖2L2(QT ) +

1

2
‖f + vχQω‖2L2(Q)

+
1

2
‖z‖2L2(Q). (8)

On the other hand, one can write for (t, x) ∈ (0, T )× Ω

z(t, 0, x, θ) =

∫ A

0

β(t, a, x)z(t, a, x, θ) da,

then
‖z(·, 0, ·, θ)‖2L2(QT ) ≤ ‖β‖

2
L2(Q)‖z‖

2
L2(Q).

Thus (8) gives

1

2
‖z(T, ·, ·, θ)‖2L2(QA) +

1

2
‖z(·, A, ·, θ)‖2L2(QT ) + d0‖∇z‖2L2(Q)

+

(
r − 1

2
‖β‖2L2(Q) −

1

2

)
‖z‖2L2(Q) ≤

1

2
‖f + vχQω

‖2L2(Q)

+
1

2
‖y0‖2L2(QA).

By choosing r such that r =
1

2
‖β‖2L2(Q) +

1

2
, one has

‖z(T, ·, ·, θ)‖2L2(QA) + ‖z(·, A, ·, θ)‖2L2(QT ) + ‖z‖2L2(U ;H1
0 (Ω))

≤ C
(
‖y0‖2L2(QA) + ‖f‖2L2(Q) + ‖v‖2L2(Qω)

)
.

This implies

‖y(T, ·, ·, θ)‖2L2(QA) + ‖y(·, A, ·, θ)‖2L2(QT ) + ‖y‖2L2(U ;H1
0 (Ω))

≤ C(T, ‖β‖L2(Q))
(
‖y0‖2L2(QA) + ‖f‖2L2(Q) + ‖v‖2L2(Qω)

)
.

So that,

‖y‖L2(U ;H1
0 (Ω)) ≤ C(T, ‖β‖L2(Q))

(
‖y0‖L2(QA) + ‖f‖L2(Q) + ‖v‖L2(Qω)

)
,

‖y(T, ·, ·, θ)‖L2(QA) ≤ C(T, ‖β‖L2(Q))
(
‖y0‖L2(QA) + ‖f‖L2(Q) + ‖v‖L2(Qω)

)
,

‖y(·, A, ·, θ)‖L2(QT ) ≤ C(T, ‖β‖L2(Q))
(
‖y0‖L2(QA) + ‖f‖L2(Q) + ‖v‖L2(Qω)

)
.

Proposition 2.1 Let θ ∈ I, then the map v 7→ y(θ; v) is a continuous function from L2(Qω) onto
L2(U,H1

0 (Ω)).

4



Proof. Let θ ∈ I and v0 ∈ L2(Qω). We show that v 7→ y(θ; v) is continuous at v0. Set y =
y(θ; v)− y(θ; v0), then y is solution to the problem

Ly = vχQω − v0χQω in Q,
y = 0 on Σ,

y(0, ·, ·, θ) = 0 in QA,

y(·, 0, ·, θ) =

∫ A

0

β(t, a, x)yda in QT ,

(9)

In view of the Lemma 2.1, we have that

‖y‖L2(U ;H1
0 (Ω)) ≤ C(T, ‖β‖L2(Q))‖v − v0‖L2(Qω).

As v → v0, we have y → 0 strongly in L2(U ;H1
0 (Ω)). Hence y(θ; v) → y(θ; v0) strongly in

L2(U ;H1
0 (Ω)) as v → v0.

Proposition 2.2 Let λ > 0. Let v, w ∈ L2(Qω). Let also y = y(θ; v) be a solution of system (1). Set

yλ =
y(θ; v + λw)− y(θ; v)

λ
, then (yλ) converges strongly in L2(U ;H1

0 (Ω)) as λ → 0 to a function ȳ

which is solution of 
Ly = wχQω

in Q,
y = 0 on Σ,

y(0, ·, ·, θ) = 0 in QA,

y(·, 0, ·, θ) =

∫ A

0

β(t, a, x)y da in QT .

(10)

Proof. yλ is a solution to the problem
Lyλ = wχQω in Q,
yλ = 0 on Σ,

yλ(0, ·, ·, θ) = 0 in QA,

yλ(·, 0, ·, θ) =

∫ A

0

β(t, a, x)yλ da in QT .

Define yλ = yλ − y, where y is a solution to (10). Then yλ is a solution to
Lyλ = 0 in Q,
yλ = 0 on Σ,

yλ(0, ·, ·, θ) = 0 in QA,

yλ(·, 0, ·, θ) =

∫ A

0

β(t, a, x)yλ da in QT .

(11)

From the Lemma 2.1, we obtain that

‖yλ‖L2(U ;H1
0 (Ω)) ≤ 0. (12)

Passing to the limit in this latter identity when λ→ 0, it follows that yλ → 0 strongly in L2(U ;H1
0 (Ω)).

This means that (yλ) converges to y strongly in L2(U ;H1
0 (Ω)) as λ→ 0.
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3 Existence and characterization of the control

In this section, we will show that the optimization problem (4) has a unique solution. Moreover, we
will give the equations that characterize the control.

Proposition 3.1 There exists a unique control u ∈ L2(Qω) solution of (4).

Proof. Observing that we have J(0) ≥ 0, we have that the set {J(v) : J(v) ≥ 0, v ∈ L2(Qω)} is a non-
empty lower bounded subset of R, consequently α = inf

v∈L2(Qω)
J(v) exists. Let (vn)n be a minimizing

sequence such that
J(vn)→ α, when n→ +∞. (13)

Then we have that there exists C > 0 independent of n such that for all n ∈ N, J(vn) ≤ C. i.e.∥∥∥∥∫
I

y(θ; vn)(T ) dθ − zd
∥∥∥∥2

L2(QA)

+N‖vn‖2L2(Qω) ≤ C,

so

‖vn‖L2(Qω) ≤ C, (14)∥∥∥∥∫
I

y(θ; vn)(T ) dθ

∥∥∥∥
L2(QA)

≤ C. (15)

Now yn = y(t, a, x, θ; vn) is solution of the problem

∂yn
∂t

+
∂yn
∂a
− d(θ)∆yn + µyn = f + vnχQω

in Q,

yn = 0 on Σ,
yn(0, ·, ·, θ) = y0 in QA,

yn(·, 0, ·, θ) =

∫ A

0

β(t, a, x)yn(t, a, x, θ) da in QT .

(16)

In view of (14), we obtain from Lemma 2.1 that

‖yn‖L2(U ;H1
0 (Ω)) ≤ C(T, ‖β‖L2(Q), ‖y0‖L2(QA), ‖f‖L2(Q)), (17)

‖yn(T, ·, ·, θ)‖L2(QA) ≤ C(T, ‖β‖L2(Q), ‖y0‖L2(QA), ‖f‖L2(Q)), (18)

‖yn(·, A, ·, θ)‖L2(QT ) ≤ C(T, ‖β‖L2(Q), ‖y0‖L2(QA), ‖f‖L2(Q)). (19)

Using (14), (17), (18) and (19) there exist u ∈ L2(Qω), y ∈ L2(U ;H1
0 (Ω)), yT ∈ L2(QA), yA ∈ L2(QT )

and extracted sequences from the sequences (vn)n, (yn)n, (yn(T, ·, ·, θ))n, (yn(·, A, ·, θ))n still denoted
(vn)n, (yn)n, (yn(T, ·, ·, θ))n, (yn(·, A, ·, θ))n such that the following convergences hold

vn ⇀ u weakly in L2(Qω), (20)

yn ⇀ y weakly in L2(U ;H1
0 (Ω)), (21)

yn(T, ·, ·, θ) ⇀ yT weakly in L2(QA), (22)

yn(·, A, ·, θ) ⇀ yA weakly in L2(QT ). (23)

Now let us prove that (u, y) satisfies (1). Let φ ∈ D(Q) a test function. Multiplying the first equation
in (16) by φ and integrating by parts over Q, we obtain

〈yn, L∗φ〉 = 〈f, φ〉+ 〈vnχω, φ〉 , ∀φ ∈ D(Q). (24)
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Taking the limit as n −→ +∞ in (24) and using (20) and (21) yields

〈y, L∗φ〉 = 〈f, φ〉+ 〈uχω, φ〉 , ∀φ ∈ D(Q).

That is
〈Ly, φ〉 = 〈f, φ〉+ 〈uχω, φ〉 , ∀φ ∈ D(Q).

Thus,
Ly = f + uχω in Q. (25)

Now on one hand as y ∈ L2(U ;H1
0 (Ω)), using (25), we have that

∂y

∂t
+
∂y

∂a
∈ L2(U ;H−1(Ω)). This

implies that y ∈ W (T,A), by (3) of Remark 1, y(T, ·, ·, θ), y(0, ·, ·, θ) exist and belong to L2(QA)
and y(·, A, ·), y(·, 0, ·, θ) exist and belong to L2(QT ). On the other hand y ∈ L2(Q) and d(θ)∆y ∈
H−1(U ;L2(Ω)); consequently y|Σ and ∂y

∂ν |Σ exist and belong respectively to H−1(U ;H−
1
2 (Γ)) and

H−1(U ;H−
3
2 (Γ)). Multiplying the first equation in (16) by φ ∈ C∞(Q) such that φ = 0 on Σ,

φ(·, A, ·) = 0 in QT and integrating by parts over Q and using initials and boundary conditions, we
obtain

(yn(T, ·, ·, θ), φ(0, ·, ·))L2(QA) − (y0, φ(0, ·, ·))L2(QA)

−(yn(·, 0, ·, θ), φ(·, 0, ·))L2(QT ) + (yn, L
∗φ)L2(Q) (26)

= (f, φ)L2(Q) + (vn, φ)L2(Qω)

∀φ ∈ C∞(Q), φ = 0 on Σ, φ(·, A, ·) = 0 in QT .

Note that

yn(·, 0, ·, θ) ⇀ y1 =

∫ A

0

β(t, a, x)y(t, a, x, θ) da weakly in L2(QT ). (27)

Indeed let φ ∈ L2(QT ), then∫
QT

yn(t, 0, x, θ)φ(x, t) dxdt =

∫
QT

(∫
A

β(t, a, x)yn(t, a, x, θ)da

)
φ(x, t) dxdt

=

∫
Q

yn(t, a, x, θ)ψ(t, a, x) dxdtda, (28)

where ψ(t, a, x) = β(t, a, x)φ(x, t) ∈ L2(Q). By letting n→ +∞ in (28) while using (21), we obtain

lim
n→+∞

∫
QT

yn(t, 0, x, θ)φ(x, t) dxdt =

∫
Q

y(t, a, x, θ)ψ(t, a, x) dxdtda

=

∫
Q

β(t, a, x)y(t, a, x, θ)φ(x, t) dxdtda

=

∫
QT

(∫
A

β(t, a, x)y(t, a, x, θ)da

)
φ(x, t) dxdt.

So that (27) holds. Moreover by taking the limit as n→ +∞ in (26) and by using (20)-(22) and (27)
we are lead to

(yT , φ(0, ·, ·))L2(QA) − (y0, φ(0, ·, ·))L2(QA)

−(y1, φ(·, 0, ·))L2(QT ) + (y, L∗φ)L2(Q) = (f, φ)L2(Q) + (u, φ)L2(Qω) ,

∀φ ∈ C∞(Q), φ = 0 on Σ, φ(·, A, ·) = 0 in QT .
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an integration by parts gives

(yT , φ(T, ·, ·))L2(QA) − (y0, φ(0, ·, ·))L2(QA) − (y1, φ(·, 0, ·))L2(QT )

−(y(T, ·, ·, θ), φ(T, ·, ·))L2(QA) + (y(0, ·, ·, θ), φ(0, ·, ·))L2(QA)

−(y(·, 0, ·, θ), φ(·, 0, ·))L2(QT ) + (Ly, φ)L2(Q)

−
〈
y,
∂φ

∂ν

〉
H−1(U ;H−

1
2 ),H1

0 (U ;H
1
2 )

= (f, φ)L2(Q) + (u, φ)L2(Qω) ,

∀φ ∈ C∞(Q), φ = 0 on Σ, φ(·, A, ·) = 0 in QT .

That is in view of (25),

(yT , φ(T, ·, ·))L2(QA) − (y0, φ(0, ·, ·))L2(QA) − (y1, φ(·, 0, ·))L2(QT )

−(y(T, ·, ·, θ), φ(T, ·, ·))L2(QA) + (y(0, ·, ·, θ), φ(0, ·, ·))L2(QA)

−(y(·, 0, ·, θ), φ(·, 0, ·))L2(QT ) −
〈
y,
∂φ

∂ν

〉
H−1(U ;H−

1
2 ),H1

0 (U ;H
1
2 )

= 0,

∀φ ∈ C∞(Q), φ = 0 on Σ, φ(·, A, ·) = 0 in QT . (29)

Choosing respectively in (29), φ such that φ(T, ·, ·) = 0, φ(·, 0, ·) = 0,
∂φ

∂ν
= 0 and φ(·, 0, ·) = 0,

∂φ

∂ν
= 0

and
∂φ

∂ν
= 0; we successively obtain

y(0, ·, ·, θ) = y0 in QA. (30)

yT = y(T, ·, ·, θ) in QA. (31)

y(·, 0, ·, θ) =

∫ A

0

β(t, a, x)y(t, a, x, θ)da in QT . (32)

and finally from (29)

y = 0 on Σ. (33)

By (25), (30)-(33), it follows that (u, y) solves (1). Moreover if we set

Vn =

∫
I

yn(T, ·, ·, θ) dθ,

then in view of (15), there exist a subsequence of the sequence (Vn)n still denoted (Vn)n and V ∈
L2(QA) such that as n→ +∞, ∀φ ∈ L2(QA),∫

QA

Vn(a, x)φ(a, x) dadx =

∫
I

(∫
QA

yn(T, ·, ·, θ)φ(a, x)dadx

)
dθ

→
∫
QA

V (a, x)φ(a, x) dadx. (34)
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Now using (18), we deduce that the sequence (yn(T, ·, ·, θ))n is bounded independently of θ. Morover
using (22) and (31) it follows that

lim
n→+∞

∫
QA

yn(T, a, x, θ)φ(a, x) dadx =

∫
QA

y(T, a, x, θ)φ(a, x) dadx,

for all φ ∈ L2(QA). If we set zn =

∫
QA

yn(T, a, x, θ)φ(a, x) dadx, then using (18) we get for all n ∈ N,

|zn| ≤ C‖φ‖L2(QA).

It follows from the Lebesgue dominated convergence theorem that

lim
n→+∞

∫
I

zn dθ =

∫
I

lim
n→+∞

zndθ

=

∫
I

(∫
QA

y(T, a, x, θ)φ(a, x) dadx

)
dθ.

So

∫
QA

Vn(a, x)φ(a, x) dadx converges towards

∫
I

(∫
QA

yT (a, x, θ)φ(a, x)dadx

)
dθ =

∫
QA

(∫
I

y(T, a, x, θ)dθ

)
φ(a, x)dadx,

∀φ ∈ L2(QA).

Using (34) and the uniqueness of the limit, we have that for (a, x) ∈ QA

V (a, x) =

∫
I

y(T, a, x, θ) dθ,

so we can write ∫
I

yn(T, ·, ·, θ) dθ ⇀
∫
I

y(T, ·, ·, θ)dθ weakly in QA. (35)

According to (13), from the weak lower semi-continuity of the function v 7→ J(v), (20) and (35),
we obtain J(u) ≤ lim inf

n−→+∞
J(vn). Which implies that J(u) ≤ α. But since α is the lower bound, we

then have α = J(u). In addition, the function J is strictly convex. Therefore u is unique.
We can now characterize the control u.

Proposition 3.2 Let u be the solution of (1). Then there exists q ∈ L2(U ;H1
0 (Ω)) such that

∫
I

q(θ) dθ ∈

L2(Q) and {y, q} is solution to

∂y

∂t
+
∂y

∂a
− d(θ)∆y + µy = f + uχQω in Q,

y = 0 on Σ,
y(0, ·, ·, θ) = y0 in QA,

y(·, 0, ·, θ) =

∫ A

0

β(t, a, x)y(t, a, x, θ) da in QT ,

(36)
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−∂q
∂t
− ∂q

∂a
− d(θ)∆q + µq = β(t, a, x)q(·, 0, ·, θ) in Q,

q = 0 on Σ,

q(T, ·, ·, θ) =

∫
I

y(θ, u)(T ) dθ − zd in QA,

q(·, A, ·, θ) = 0 in QT ,

(37)

and

u = − 1

N

∫
I

q(θ) dθ in Qω. (38)

Proof. We write the Euler-Lagrange first order optimality condition which characterize the optimal
control u.

lim
λ→0

J(u+ λv)− J(u)

λ
= 0, ∀v ∈ L2(Qω).

Let v ∈ L2(Qω) and λ > 0. We have

J(u+ λv)− J(u) =

∥∥∥∥∫
I

[y(θ;u+ λv)(T )− y(θ;u)(T )] dθ

∥∥∥∥2

L2(QA)

+N2λ2‖v‖2L2(Qω) + 2Nλ

∫
L2(Qω)

uv dadxdt

+2

(∫
I

[y(θ;u+ λv)(T )− y(θ;u)(T )] dθ;

∫
I

y(θ;u)(T ) dθ − zd
)
L2(QA)

.

Then

J(u+ λv)− J(u)

λ
= λ

∥∥∥∥∫
I

[
y(θ;u+ λv)(T )− y(θ;u)(T )

λ

]
dθ

∥∥∥∥2

L2(QA)

+N2λ‖v‖2L2(Qω) + 2N

∫
L2(Qω)

uv dadxdt

+2

(∫
I

[
y(θ;u+ λv)(T )− y(θ;u)(T )

λ

]
dθ;

∫
I

y(θ;u)(T ) dθ − zd
)
L2(QA)

. (39)

Let us set zλ := zλ(θ; v) =
y(θ;u+ λv)− y(θ;u)

λ
, then using Proposition 2.2, we obtain that zλ

converges strongly in L2(U ;H1
0 (Ω)) as λ→ 0 to z = z(θ; v) solution of

∂z

∂t
+
∂z

∂a
− d(θ)∆z + µz = vχQω in Q,

z = 0 on Σ,
z(0, ·, ·, θ) = 0 in QA,

z(·, 0, ·, θ) =

∫ A

0

β(t, a, x)z(t, a, x, θ) da in QT .

(40)

Moreover since

∫
I

y(θ;u)(T ) dθ ∈ L2(QA), then we also have

∫
I

z(θ; v)(T ) dθ ∈ L2(QA). Taking (40) in

account, passing to the limit as λ→ 0 in (39) and using the Lebesgue dominated convergence theorem,
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we are lead to(∫
I

z(T, ·, ·, θ) dθ;
∫
I

y(θ;u)(T ) dθ − zd
)
L2(QA)

+N

∫
L2(Qω)

uv dadxdt = 0, (41)

∀v ∈ L2(Qω).

To interpret (41), we consider the following adjoint system
L∗q = β(t, a, x)q(·, 0, ·, θ) in Q,
q = 0 on Σ,

q(T, ·, ·, θ) =

∫
I

y(θ;u)(T ) dθ − zd in QA,

q(·, A, ·, θ) = 0 in QT ,

(42)

where q = q(θ, u) is such that

∫
I

q(θ) dθ ∈ L2(Q). Since β(t, a, x) ∈ L∞(0, A) and q(·, 0, ·, θ) ∈ L2(QT ),

then β(t, a, x)q(·, 0, ·, θ) ∈ L2(Q) and using that

∫
I

y(θ;u)(T ) dθ − zd ∈ L2(QA), it follows that q ∈

L2(U ;H1
0 (Ω)) and

∂q

∂t
+
∂q

∂a
∈ L2(U ;H−1(Ω)). So if multiply the first equation in (40) by q solution

of (42) and integrate by parts over Q, we obtain

(z(T, ·, ·, θ), q(T, ·, ·, θ))L2(QA) + (z(·, A, ·, θ), q(·, A, ·, θ))L2(QT )

−(z(·, 0, ·, θ), q(·, 0, ·, θ))L2(QT ) −
∫

Σ

q
∂z

∂ν
dσdxdt+ (z, L∗q)L2(Q) = (v, q)L2(Qω) .

That is

(z(T, ·, ·, θ), q(T, ·, ·, θ))L2(QA) + (z(·, A, ·, θ), q(·, A, ·, θ))L2(QT )

−(z, β(t, a, x)q(·, 0, ·, θ))L2(Q) −
∫

Σ

q
∂z

∂ν
dσdxdt+ (z, L∗q)L2(Q) = (v, q)L2(Qω) . (43)

Using (42), (43) rewrites as(
z(T, ·, ·, θ);

∫
I

y(θ;u)(T ) dθ − zd
)
L2(QA)

=

∫
Qω

vq dxdt, (44)

then an integration by parts with respect to θ on J lead us to(∫
I

z(T, ·, ·, θ) dθ;
∫
I

y(θ;u)(T ) dθ − zd
)
L2(QA)

=

(
v,

∫
I

q(θ) dθ

)
L2(Qω)

. (45)

Combining (41) and (45), we obtain∫
L2(Qω)

v

(∫
I

q(θ) dθ

)
dadxdt+N

∫
L2(Qω)

uv dadxdt = 0 ∀v ∈ L2(Qω).

That is ∫
L2(Qω)

(∫
I

q(θ) dθ +Nu

)
v dadxdt = 0 ∀v ∈ L2(ωT ),
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which implies that

u = − 1

N

∫
I

q(θ) dθ in Qω. (46)

4 Conclusion

In this paper, we proved that after averaging the cost function related to our model, the system is still
controllable and gives an optimal control which does not depends on the unknown parameter.
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[6] J. Lohéac ,& E. Zuazua , Averaged controllability of parameter dependent conservative semi-
groups, Journal of Differential equations, 262(2017), pp. 1540-1574.

[7] Q. Lu , & E. Zuazua, Averaged controllability for random evolution partial differential equations,
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