Riccardo De Pascalis 
email: riccardo.depascalis@unisalento.it
  
Diffusion-induced stress in a functionally graded incompressible elastic sphere

Keywords: Solid state diffusion, incompressibility, solid graded sphere, linear elasticity, weakly nonlinear elasticity, lithium-ion battery subject: mathematical physics, applied mathematics

Diffusion-induced stress is investigated for an isotropic and elastic incompressible solid sphere which is charged by radial diffusion. The interaction between a diffused solute and the arising stress field is accounted for by a chemo-mechanical potential widely employed for describing the process of charge (or discharge) in lithium-ion batteries and which depends on the hydrostatic part of the stress field. Both linear and nonlinear theories of elasticity are considered in the model at their limit of incompressibility. Such a constraint, by relating the displacement and the stress fields analytically to the unknown solute concentration, allows us to derive analytical asymptotic behaviours near the centre of the particle as well as to simplify the equations, solved here by a simple finite difference numerical scheme. Linear and nonlinear predictions are compared for a spherical electrode subject to large deformations. Furthermore, in light of the great interest in engineering science applications, the equations are derived for the most general case of functionally graded materials. It is shown how the space varying elastic coefficient can be used as a tuning mechanism for controlling stress evolution, which in most cases might represent the main reason for degradation phenomena in solids.

Introduction

Transport of matter from one part to another part is a common process in nature as well as in many technologies, with numerous examples in molecular motions or heat conduction (in solids, liquids and gas). Diffusion in solids is an important topic of solid-state physics, physical chemistry, physical metallurgy, and materials science because of its relevance to the kinetics of many microstructure changes in the materials [START_REF] Mehrer | Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes[END_REF]. Under certain assumptions, this transfer obeys some fundamental principles of physics, understanding of which can be facilitated through an appropriate mathematical model. For example, to describe diffusion in isotropic substances, many models have been derived from Fick's laws [START_REF] Crank | The mathematics of diffusion[END_REF][START_REF] Smith | Foundations of materials science and engineering[END_REF][START_REF] Baehr | Heat and Mass Transfer[END_REF]. However, in the luckiest cases, solutions of such a model can be found, either analytically or numerically, and they establish useful benchmarks for predicting physical phenomena of interest.

In the last two decades, mechanical phenomena related to lithium-ion batteries (LIBs) have been extensively investigated because of their extreme capacity for the storage of portable renewable energies in electronic devices [START_REF] Zhao | A review on modeling of electrochemo-mechanics in lithium-ion batteries[END_REF]. During the charging and discharging cycles of such batteries, as a consequence of new compositional inhomogeneity, a field of stress can be generated in the electrodes which is coupled with electrochemical reactions [START_REF] Xu | Mechanical interactions regulated kinetics and morphology of composite electrodes in li-ion batteries[END_REF]. This stress field is known as diffusion-induced stress (DIS)(see [START_REF] Paukshto | Diffusion-induced stresses in solids[END_REF][START_REF] Lee | Diffusion-induced stresses in a hollow cylinder[END_REF][START_REF] Cheng | Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation[END_REF][START_REF] Zhang | Diffusion-induced stress of electrode particles with spherically isotropic elastic properties in lithium-ion batteries[END_REF][START_REF] Zhao | A review on modeling of electrochemo-mechanics in lithium-ion batteries[END_REF] and references therein). To investigate DIS, several models (see [START_REF] Lee | Diffusion-induced stresses in a hollow cylinder: Constant surface stresses[END_REF][START_REF] Wang | Effect of chemical stress on diffusion in a hollow cylinder[END_REF][START_REF] Hao | Diffusion-induced stresses of electrode nanomaterials in lithium-ion battery: The effects of surface stress[END_REF][START_REF] Malavé | Concentration-dependent chemical expansion in lithium-ion battery cathode particles[END_REF][START_REF] Zhang | Diffusion-induced stresses in transversely isotropic cylindrical electrodes of lithium-ion batteries[END_REF][START_REF] Zhang | Diffusion-induced stress of electrode particles with spherically isotropic elastic properties in lithium-ion batteries[END_REF] to name but a few more recent works), have adopted methods similar to the thermal stress models [START_REF] Timoshenko | Theory of Elasticity[END_REF][START_REF] Eslami | Theory of elasticity and thermal stresses[END_REF] following the pioneering work of Prussin [START_REF] Prussin | Generation distribution of dislocations by solute diffusion[END_REF].

Although thermal stress is related to a different physical phenomenon than DIS, the mathematical problem remains equivalent. When ionic or atomic diffusion is involved in a particle, its stoichiometric state changes and consequently the volume change generates mechanical stress, which in turn affects the diffusion process itself. Such interaction is governed by a thermodynamic equilibrium of the solid [START_REF] Anand | Continuum Mechanics of Solids[END_REF]. Li et al. [START_REF] Li | The thermodynamics of stressed solids[END_REF] and Larché and Cahn [START_REF] Larché | A linear theory of thermochemical equilibrium of solids under stress[END_REF][START_REF] Larche | The interactions of composition and stress in crystalline solids[END_REF] in order to account for this interaction introduced in their work a stress-dependent chemical potential by including in it only the hydrostatic Cauchy stress. Based on this assumption DIS has been also investigated in the finite deformation framework, for example, by Zhao et al. [START_REF] Zhao | Large plastic deformation in high-capacity lithium-ion batteries caused by charge and discharge[END_REF] and Zhong at al [START_REF] Zhong | Stress analysis in cylindrical composition-gradient electrodes of lithium-ion battery[END_REF]. To account for accompanying stress in the diffusion equation, Wu [START_REF] Wu | The role of eshelby stress in composition-generated and stress-assisted diffusion[END_REF] derived a different stress-dependent chemical potential by involving the Eshelby momentum tensor. Further generalisations of this latter model have been later considered by Cui et al. [START_REF] Cui | A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries[END_REF].

The choice of materials employed in electrodes is crucial in designing efficient LIBs. As an example, some materials, like graphite, exhibit lower capacity and respectively lower volume change, while elastomeric materials like silicon exhibit higher capacity but subject to higher change of volume. The latter materials can therefore generate inside higher inhomogeneous strains and consequently a higher stress with more risks of damage, fracture, instabilities and degradation in the medium [START_REF] Beaulieu | Colossal reversible volume changes in lithium alloys[END_REF][START_REF] Zhao | A review on modeling of electrochemo-mechanics in lithium-ion batteries[END_REF]. Nonlinear constitutive equations, being more accurate, must therefore be considered for all those materials that are subject to large deformations [START_REF] Zhao | Large plastic deformation in high-capacity lithium-ion batteries caused by charge and discharge[END_REF][START_REF] Cui | A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries[END_REF][START_REF] Cui | Interface-reaction controlled diffusion in binary solids with applications to lithiation of silicon in lithium-ion batteries[END_REF][START_REF] Chakraborty | Combining mechanical and chemical effects in the deformation and failure of a cylindrical electrode particle in a li-ion battery[END_REF][START_REF] Xu | Mechanical interactions regulated kinetics and morphology of composite electrodes in li-ion batteries[END_REF][START_REF] Mcdowell | The mechanics of large-volume-change transformations in high-capacity battery materials[END_REF].

Nevertheless, more sophisticated models are required for a better understanding of the physics behind a solid state diffusion, even if, they often complicate the mathematical model involved and consequently the search for their solutions. Thus, finite element procedures, frequently implemented in commercial codes, become needed and are very helpful for obtaining numerical solutions while more practical engineering applications might call for simpler approaches. In the theory of elasticity, incompressibility is an idealisation for describing the behaviour of all materials capable of deformations while their change of volume can be neglected and considered constant. Such a constraint is accounted for by introducing a Lagrange multiplier [START_REF] Ogden | Non-Linear Elastic Deformations[END_REF], which in turn, simplifies the search for such solutions [START_REF] Truesdell | The Nonlinear Field Theories of Mechanics[END_REF][START_REF] Saccomandi | Universal results in finite elasticity[END_REF]. The behaviour of rubbery materials which exhibit Poisson's ratio ν ≈ 0.5 is well described from incompressible theories [START_REF] Ogden | Elastic deformations of rubberlike solids[END_REF][START_REF] Marckmann | Comparison of hyperelastic models for rubber-like materials[END_REF] which in the isotropic case need only one elastic constant: the infinitesimal shear modulus G.

Anodes based on silicon material exhibit ν ≈ 0.29 while those based on indium material can exhibit ν ≈ 0.45 [START_REF] Koerver | Chemo-mechanical expansion of lithium electrode materials -on the route to mechanically optimized all-solid-state batteries[END_REF]. Some measurements in semiconductors [START_REF] Wortman | Young's modulus, shear modulus, and poisson's ratio in silicon and germanium[END_REF], microelectromechanical systems [START_REF] Hopcroft | What is the young's modulus of silicon?[END_REF] or polycrystalline Li 15 Si 4 produced in lithium-ion batteries [START_REF] Zeng | Elastic moduli of polycrystalline li15si4 produced in lithium ion batteries[END_REF] show that the Poisson's ratio can be ν ≈ 0.4 or higher [START_REF] Pan | Investigation of mechanical properties of silicone/phosphor composite used in light emitting diodes package[END_REF].

Since the volume of the material swells by ∼ 300% when silicon is fully lithiated, Zhao et al. [START_REF] Zhao | Large plastic deformation in high-capacity lithium-ion batteries caused by charge and discharge[END_REF] analysed the plastic behaviour of a silicon based electrode, charged and discharged at a constant rate, by including for the first time finite deformations and by neglecting the volumetric change due to elasticity, i.e. by setting ν = 0.5. Such a limit value has been considered also by Cheng et al. [START_REF] Cheng | Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation[END_REF] to analyse the evolution of the stress within a spherical insertion electrode when charged by potentiostatic and galvanostatic conditions. However LIBs are continuously evolving, and very recent studies show the researchers' strong interest in focusing on batteries with advanced features of stretchability and where materials used in electrodes can account for large mechanical strains whilst their functions are still retained. The most commonly used elastomeric polymer which, thanks to its high capacity for attaining such designer functionalities as flexibility, stretchability, chemical and thermal stability and biological compatibility, is the polydimethylsiloxane (PDMS). This material has indeed recently come to be commonly used as the substrate material for stretchable electronics [START_REF] Liu | 3d porous sponge-inspired electrode for stretchable lithium-ion batteries[END_REF][START_REF] Xu | Battery-free and wireless epidermal electrochemical system with all-printed stretchable electrode array for multiplexed in situ sweat analysis[END_REF][START_REF] Liang | Solution-processed pdms/swcnt porous electrodes with high mass loading: toward high performance all-stretchablecomponent lithium ion batteries[END_REF][START_REF] Qi | Stretchable electronics based on pdms substrates[END_REF]. However in most elastomeric polymers, including PDMS-based materials [START_REF] Dinh | Mechanical characterization of pdms films for the optimization of polymer based flexible capacitive pressure microsensors[END_REF] the Poisson's ratio can be very close to 0.5 to consider the material as an incompressible material.

The objective this paper is to investigate the DIS in an isotropic elastic spherical particle charged radially whose effects due to elastic volumetric change can be neglected and the stress dependence in the associated chemo-mechanical potential is given in terms of the hydrostatic part of the stress field (see relation [START_REF] Li | Effects of reversible chemical reaction on li diffusion and stresses in spherical composition-gradient electrodes[END_REF]). Both linear and nonlinear constitutive equations of elasticity are taken into account for solving the problem for infinitesimal and finite deformations respectively. In the latter case, by assuming hyperelasticity, the strain energy density function employed is the well known second-order weakly nonlinear elasticity (obtained by a Taylor expansion in terms of the Lagrangean tensor from the nonlinear incompressible theory of elasticity), which depends only on one elastic constant G [START_REF] Hamilton | Separation of compressibility and shear deformation in the elastic energy density (l)[END_REF][START_REF] Destrade | Third-and fourth-order constants of incompressible soft solids and the acousto-elastic effect[END_REF]. This energy is the equivalent incompressible energy of the compressible Saint Venant-Kirchhoff model widely employed to describe DIS in LIBs when small but finite deformations are considered. Elastic incompressibility allows us to obtain useful analytical expansions for all quantities of interest in terms of the solute concentration near the centre of the particle, which at first instance appear a singular point.

In 1984 in Japan, for the first time, functionally graded materials (FGMs) were proposed for preparing thermal barrier materials [START_REF] Koizumi | Fgm activities in japan[END_REF][START_REF] Niino | Recent development status of functionally gradient materials[END_REF], since their gradient microstructure offered possibilities for optimizing mechanical strengths and thermal conductivity. A few years later, a follow-up project envisaged FGMs as functional materials capable of improving energy conversion efficiency. The capacity of FGMs to reduce thermal stress under high heat loads has broadened their appeal and highlighted their potential in, for example, aerospace applications [START_REF] Koizumi | The concept of fgm[END_REF]. This same property has seen FGMs investigated for DIS and identified as promising materials in LIBs (see [START_REF] Zhou | The effects of elastic stiffening on the evolution of the stress field within a spherical electrode particle of lithium-ion batteries[END_REF][START_REF] Li | Stress analysis in spherical composition-gradient electrodes of lithium-ion battery[END_REF][START_REF] Li | Effects of reversible chemical reaction on li diffusion and stresses in spherical composition-gradient electrodes[END_REF][START_REF] Li | Interaction between diffusion and stresses in composition-gradient electrodes[END_REF][START_REF] Zhang | Effects of concentration-dependent elastic modulus on li-ions diffusion and diffusion-induced stresses in spherical composition-gradient electrodes[END_REF][START_REF] Zhang | Influence of maximum lithium ion concentration in compositiongradient electrodes on diffusion-induced stresses and electrochemical performances[END_REF][START_REF] Hu | Stress induced by diffusion and local chemical reaction in spherical composition-gradient electrodes[END_REF] for spherical and [START_REF] Zhong | Stress analysis in cylindrical composition-gradient electrodes of lithium-ion battery[END_REF][START_REF] Xing | Mechano-electrochemical analysis in cylindrical compositiongradient electrodes with varying young's modulus of lithium-ion battery[END_REF] for cylindrical electrodes, respectively) since they promise better mechanical durability of electrodes than homogeneous materials. In the same spirit and especially for the numerous engineering applications, equations derived here for the isotropic incompressible elastic solid sphere are generalized in order to include graded type materials. To this end, the infinitesimal shear modulus of elasticity G (or equivalently the Young modulus of elasticity E = 3G) is considered not as a constant but as a radial dependent function G(R).

For present purposes, we limit the analysis to charging a particle with a radial constant rate (similar to conditions used in [START_REF] Zhao | Large plastic deformation in high-capacity lithium-ion batteries caused by charge and discharge[END_REF][START_REF] Zhong | Stress analysis in cylindrical composition-gradient electrodes of lithium-ion battery[END_REF]). It is worth noting that the proposed solutions can be generalized not only by including more general (and physical) boundary and initial conditions but also by including for example other geometries (cylindrical or hollow materials), plastic, viscous ( [START_REF] Zhao | Large plastic deformation in high-capacity lithium-ion batteries caused by charge and discharge[END_REF][START_REF] Loeffel | A chemo-thermo-mechanically coupled theory for elastic-viscoplastic deformation, diffusion, and volumetric swelling due to a chemical reaction[END_REF][START_REF] Drozdov | Viscoplastic response of electrode particles in li-ion batteries driven by insertion of lithium[END_REF][START_REF] Narayan | A large deformation elastic-viscoplastic model for lithium[END_REF][START_REF] Poluektov | Modelling stress-affected chemical reactions in nonlinear viscoelastic solids with application to lithiation reaction in spherical si particles[END_REF]), surface effects ( [START_REF] Lee | Diffusion-induced stresses in a hollow cylinder: Constant surface stresses[END_REF][START_REF] Cheng | The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles[END_REF][START_REF] Hao | Diffusion-induced stresses of electrode nanomaterials in lithium-ion battery: The effects of surface stress[END_REF][START_REF] Zhang | Effects of surface stress on lithium-ion diffusion kinetics in nanosphere electrodes of lithium-ion batteries[END_REF]) or concentration dependent coefficients [START_REF] Dora | Stress evolution with concentrationdependent compositional expansion in a silicon lithium-ion battery anode particle[END_REF].

The plan of the paper is as follows. In Section 2, small displacements are assumed and a linear constitutive relation is used to account for the stress in the chemo-mechanical potential. The kinematics is derived at the limit of elastic incompressibility which imposes to the radial deformation the isochoric condition. Analytical expressions are derived for the displacement and the stress fields in terms of the diffused solute concentration, which in turn can be known by solving the evolution diffusion equation. That equation is therefore coupled with the evolution of the stress and displacement fields. Numerical solutions can be attained thanks to a very simple finite differences method, proposed in Appendix A. In Sec. 3 the model is generalized to include finite deformations and the stress is calculated by considering a nonlinear constitutive law. In particular, a second-order weakly nonlinear elasticity is considered by associating to the particle a strain energy density obtained as Taylor expansion to second-order of nonlinear incompressible theory. The equations, the displacement and stress fields are written in a fashion similar to that in the linear case, so that they can be straightforwardly compared. In Section 4, solutions are discussed further and linear and nonlinear predictions are compared by providing an example drawn from the context of LIBs. Some limitations for linear approximations are emphasized and discussed. Furthermore, by taking G as a power law function, and by thus varying the softening (or hardening) properties of the solid along the radial direction, the evolution of the maximum stress induced in the particle is illustrated, from which, remarkable conclusions can be drwan as applications of FGMs in LIBs. Concluding remarks are given in the last section, Section 5.

Linear elasticity 2.1 Diffusion and mechanical equilibrium

Let us consider a solid sphere of radius A described in its undeformed state by the coordinate system X and subject to the insertion (or the extraction) of atoms by a radial diffusion process which produces in its interior local strains and volumetric change (due only to inelastic deformations). Its current configuration is instead described by the lower coordinate system x and we denote by u = x -X the displacement of such a deformation. For small u there is no need to distinguish between two coordinate systems and since spherical symmetry is assumed, the solid can be described by using spherical coordinates with the origin of the axes in its centre

0 ≤ R ≤ A, 0 ≤ Θ ≤ π, 0 ≤ Φ < 2π, (1) 
(see the left side of Fig. 1 illustrating the plane section of the particle). The infinitesimal strain tensor ε given by

ε = 1 2 ∇u + ∇u T , (2) 
where superscript T denotes the transposition, includes: the elastic strain ε e and the inelastic strain ε i due to the insertion of atoms

ε(R, t) = ε e (R, t) + ε i (R, t). (3) 
From now on, subscripts 'i' and 'e' will be used to refer to the words 'inelastic' and 'elastic', respectively. Given the radial symmetry of the problem, the non zeroes strains are given only by the following three principal strains:

ε R (R, t) = ∂u(R, t) ∂R , ε Θ (R, t) = ε Φ (R, t) = u(R, t) R . (4) 
To the medium is associated a chemo-mechanical potential µ from which the flux governing the charging/discharging process of atoms can be derived according to

J f = -M C∇µ (5)
with ∇ denoting the gradient operator, C ≡ C(R, t) representing the solute concentration diffusing in the medium and M = D/(R g T ) the mobility of atoms, where D is the chemical diffusion coefficient, R g the universal gas constant, T the absolute temperature. The only non-zero component of the flux J f in ( 5) is given by its first (radial) component, which for simpler notation, we still denote as J f (without bolding it). Conservation law for the solute C reads, in spherical coordinates, as

∂C(R, t) ∂t + 1 R 2 ∂(R 2 J f (R, t)) ∂R = 0 (6) 
where

J f = - DC R g T ∂µ ∂R . (7) 
The diffusion of the concentration C through the particle induces a stress field similar to the thermal stress generated by conductivity (see for example [START_REF] Sadd | Elasticity: theory, applications, and numerics[END_REF][START_REF] Timoshenko | Theory of Elasticity[END_REF]) which is known in literature as diffusioninduced stress (DIS) (see [START_REF] Cheng | Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation[END_REF][START_REF] Zhao | A review on modeling of electrochemo-mechanics in lithium-ion batteries[END_REF] and references therein). We assume the chemo-mechanical potential to be

µ = µ 0 + R g T ln (γC) -Ωσ m (8) 
where µ 0 is the chemical potential at a reference state, Ω the volumetric strain per unit mole of the solute atoms, γ the activity coefficient which we set for simplicity γ = Ω, and

σ m = 1 3 Tr σ = 1 3 (σ R + σ Θ + σ Φ ) (9) 
the hydrostatic part of the stress, where σ R , σ Θ , σ Φ denotes the principal Cauchy stresses1 . The potential given in ( 8) is widely employed in the context of LIBs (see for example [START_REF] Zhao | Large plastic deformation in high-capacity lithium-ion batteries caused by charge and discharge[END_REF][START_REF] Gao | Strong stress-enhanced diffusion in amorphous lithium alloy nanowire electrodes[END_REF][START_REF] Yeerella | Role of in situ electrode environments in mitigating instability-induced battery degradation[END_REF] or the recent review [START_REF] Zhao | A review on modeling of electrochemo-mechanics in lithium-ion batteries[END_REF] and references therein for further details and its derivation, which is beyond the scope of this investigation). When potential ( 8) is stress-independent, the classical Fickian diffusion law in 6 can be recovered (see [START_REF] Malavé | Concentration-dependent chemical expansion in lithium-ion battery cathode particles[END_REF] for further details).

The particle is charged under a simple condition of radial constant rate control in the reference state (as it is considered in [START_REF] Zhao | Large plastic deformation in high-capacity lithium-ion batteries caused by charge and discharge[END_REF][START_REF] Zhong | Stress analysis in cylindrical composition-gradient electrodes of lithium-ion battery[END_REF]) which is equivalent in the linear case to charging the particle by a Galvanostatic process ([71, 10, 72, 5]) under free-traction conditions at the radial surface. Note that, by symmetry, the displacement u and the flux J f must vanish at R = 0, where the latter condition implies that the derivative ∂C/∂R = 0 must also vanish at the centre. More general conditions, as for example a linearized form of the Butler-Volmer conditions [START_REF] Cui | A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries[END_REF][START_REF] Chakraborty | Combining mechanical and chemical effects in the deformation and failure of a cylindrical electrode particle in a li-ion battery[END_REF][START_REF] Yeerella | Role of in situ electrode environments in mitigating instability-induced battery degradation[END_REF], can also be easily implemented but here we limit the analysis to the simplest case. We can summarize the initial and boundary conditions as follows:

C(R, 0) = C 0 , 0 ≤ R ≤ A, (10) 
J f (0, t) = 0, t ≥ 0, (11) 
J f (A, t) = -J 0 , t ≥ 0, ( 12 
) σ R (A, t) = 0, t ≥ 0, (13) 
u(0, t) = 0, t ≥ 0, (14) 
where C 0 is the initial concentration and J 0 a constant flux applied at the particle's surface. In particular, the case C 0 = 0, J 0 > 0 describes a charging process while C 0 = C max > 0, J 0 < 0 describes the discharging process. For the numerical example given in the following we will consider only the former case. Since a much slower velocity of the atomic diffusion over the elastic deformation is assumed, in absence of body-forces, the mechanical equilibrium of the medium reduces to the following single equation:

dσ R dR + 1 R (2σ R -σ Θ -σ Φ ) = 0. ( 15 
)
In the isotropic case σ Θ = σ Φ and then the equation ( 15) can be integrated easily, as shown in the next section (where condition (13) will be also considered).

Incompressible case

To satisfy the elastic constraint of incompressibility we require

trε e = 0. (16) 
However, the transfer of atoms, influencing the total volume change of the particle, is related to the condition (see [START_REF] Zhang | Numerical simulation of intercalation-induced stress in li-ion battery electrode particles[END_REF][START_REF] Cheng | The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles[END_REF][START_REF] Ryu | Size-dependent fracture of si nanowire battery anodes[END_REF]) trε = ΩC [START_REF] Eslami | Theory of elasticity and thermal stresses[END_REF] which allows us to obtain the relationship between u and the solute concentration C by

u(R, t) = 1 R 2 R 0 S 2 ΩC(S, t) dS. ( 18 
)
Note that in [START_REF] Prussin | Generation distribution of dislocations by solute diffusion[END_REF] the boundedness of the solution at R = 0 has been considered, as well as condition [START_REF] Malavé | Concentration-dependent chemical expansion in lithium-ion battery cathode particles[END_REF] and that such solution is consistent with that obtained for the equivalent thermal-stress problem [START_REF] Timoshenko | Theory of Elasticity[END_REF] (although the reference refers to the compressible case). By denoting the derivative with respect to R also by the 'prime'symbol, the displacement u is related to its first and second space derivative by

u (R, t) = ΩC(R, t) - 2 R u(R, t), u (R, t) = ΩC (R, t) - 2 R ΩC(R, t) + 6 R 2 u(R, t). ( 19 
)
By assuming isotropy for the inelastic deformation, from ( 3) and ( 17), it holds

ε eR (R, t) = u (R, t) - 1 3 ΩC(R, t), ε eΘ (R, t) = ε eΦ (R, t) = u(R, t) R - 1 3 ΩC(R, t). ( 20 
)
The Cauchy stress, in the incompressible limit (see for example [START_REF] Destrade | On the third-and fourth-order constants of incompressible isotropic elasticity[END_REF]), can be written by using only one infinitesimal elastic constant, i.e. the infinitesimal shear modulus G, which for the graded materials case we assume to be radial dependent, i.e. G ≡ G(R), so that

σ = 2Gε e -pI, (21) 
where p denotes an arbitrary Lagrange multiplier. From the balance equation ( 15) and the boundary condition ( 13) the radial and azimuthal component of the stress can be written as

σ R (R, t) = 2 R A F lin (S, t) dS, σ Θ (R, t) = σ Φ (R, t) = H lin (R, t) + σ R (R, t), (22) 
(the subscript 'lin' refers to the linearized elastic constitutive law [START_REF] Larché | A linear theory of thermochemical equilibrium of solids under stress[END_REF]) where

H lin (R, t) = σ Θ (R, t) -σ R (R, t) = RF lin (R, t) (23) 
and

F lin (R, t) = 2G(R) R 3 R u(R, t) -ΩC(R, t) (24) 
= -

2G(R) R 4 R 0 S 3 ΩC (S, t) dS, (25) 
where [START_REF] Anand | Continuum Mechanics of Solids[END_REF] and integration by part has been used in ( 24) and ( 25), respectively. Note that ( 22) is in agreement with the solution obtained for the equivalent thermal-stress problem for an isotropic shell (see eqs. ( 75) and ( 79) for radial and azimuthal stress components, respectively, in [START_REF] Moosaie | Thermal stresses in an incompressible fgm spherical shell with temperature-dependent material properties[END_REF]) and for the steady state sphere with temperature dependent properties (see eq. ( 25) for the radial stress component in [START_REF] Stanišić | The steady-state thermal stress field in an isotropic sphere with temperature dependent properties[END_REF]). Thus

σ m (R, t) = 2 F lin (R, t) + 1 3 H lin (R, t) (26) 
= 4 3 -G(R)ΩC (R, t) + G (R) 3 R u(R, t) -ΩC(R, t) , (27) 
where

H lin (R, t) = F lin (R, t) + RF lin (R, t), (28) 
and

F lin (R, t) = 2 R G(R) 4 R 4 R 0 S 3 ΩC (S, t) dS -ΩC (R, t) - G (R) R 3 R 0 S 3 ΩC (S, t) dS . (29) 
Finally, the flux J f in (7) can be written as

J f (R, t) = -D C (R, t) - Ω R g T C(R, t)σ m (R, t) . (30) 

Some asymptotic behaviours near the centre

The central point of the particle, whose position is given by R = 0, appears in all the above equations as a potential singular point and it therefore requires a particular attention (especially for computational implementations). However, since analytical solutions for the displacements and stress fields are given in terms of C, useful Maclaurin expansions can be derived, which also demonstrate some observed behaviours in compressible materials when only numerical procedures are used.

For small R it holds

C(R, t) = C(0, t) + 1 2 C (0, t)R 2 + O R 3 , u(R, t) = 1 3 ΩC(0, t)R + O R 3 , (31) 
and consequently

F lin (R, t) = - 2 5 ΩC (0, t)G(0)R - 2 5 ΩC (0, t)G (0) + 1 6 ΩC (0, t)G(0) R 2 + O(R 3 ), (32) 
H lin (R, t) = - 2 5 ΩC (0, t)G(0)R 2 + O(R 3 ), (33) 
H lin (R, t) = - 4 5 ΩC (0, t)G(0)R - 6 5 ΩC (0, t)G (0) + 1 2 ΩC (0, t)G(0) R 2 + O(R 3 ), (34) 
so that

J f lin (R, t) = -DC (0, t) 1 + 4 3 Ω 2 R g T C(0, t)G(0) R -D 1 2 C (0, t) + 2 15 Ω 2 R g T C(0, t) 12C (0, t)G (0) + 5C (0, t)G(0) R 2 + O(R 3 ), ( 35 
)
where, clearly, the boundary conditions [START_REF] Lee | Diffusion-induced stresses in a hollow cylinder: Constant surface stresses[END_REF] are satisfied. Also it can be easily verified that

lim R→0 1 R 2 ∂(R 2 J f lin (R, t)) ∂R = -D 3 + 4Ω 2 R g T G(0)C(0, t) C (0, t), (36) 
which is in agreement with equation [START_REF] Zhang | Diffusion-induced stresses in transversely isotropic cylindrical electrodes of lithium-ion batteries[END_REF] in [START_REF] Hao | Diffusion-induced stresses of electrode nanomaterials in lithium-ion battery: The effects of surface stress[END_REF] (when the Poisson's ratio verifies ν = 1/2 and spherical geometry is considered). It is worth noting also that lim

R→0 F lin (R, t) = lim R→0 H lin (R, t) = lim R→0 H lin (R, t) = 0 ( 37 
)
and consequently from ( 22)

lim R→0 σ R (R, t) = lim R→0 σ Θ (R, t), lim R→0 σ R (R, t) = lim R→0 σ Θ (R, t) = 0 ( 38 
)
which shows that at R = 0 the stress is purely hydrostatic (see [START_REF] Cheng | The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles[END_REF] for similar observations in compressible materials).

3 Nonlinear elasticity

Diffusion and mechanical equilibrium

To consider finite deformations, the linearized constitutive equations in [START_REF] Larché | A linear theory of thermochemical equilibrium of solids under stress[END_REF] have to be replaced by the respective nonlinear constitutive equations. In this latter case the current configuration has to be distinguished from the reference configuration and in order to account for inelastic and elastic deformations, as we assumed in the linear case, another intermediate configuration must be considered. Thus the inelastic deformation maps the reference state B 0 to an intermediate state B i which is stress-free and at which the elastic deformation can be applied by mapping B i to the current state B by following a multiplicative decomposition assumption as established, for example, in [START_REF] Cui | A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries[END_REF]. This mechanism is used in this context with analogy to the phenomenological theory of plasticity explored by Lee and Liu [START_REF] Lee | Finite stain elastic-plastic theory particularly for plane wave analysis[END_REF] or to the morphoelastic growth theory [START_REF] Amar | Growth and instability in elastic tissues[END_REF]. For further details on the origins of the multiplicative decomposition gradient and some of its applications in describing inelastic phenomena, refer to [START_REF] Sadik | On the origins of the idea of the multiplicative decomposition of the deformation gradient[END_REF].

Lower spherical coordinates (r, θ, φ) are now used for describing a point x in the deformed sphere while (R, Θ, Φ) are still used as in (1) but they refer to the respective point X in the reference configuration (see Fig. 1). Thus, the whole deformation, in radial coordinates, can be described by the following radial symmetry assumption (see for example [START_REF] Faulkner | Finite dynamic deformations of an almost incompressible elastic spherical shell[END_REF][START_REF] Amar | Growth and instability in elastic tissues[END_REF][START_REF] De Pascalis | Predicting the pressure-volume curve of an elastic microsphere composite[END_REF])

r = r(R, t), θ = Θ, φ = Φ, (39) 
where dr/dR > 0 is also assumed. The total deformation gradient tensor associated to the radial deformation ( 39) is of diagonal form, includes both the elastic F e and the inelastic F i deformation tensors [START_REF] Cui | A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries[END_REF][START_REF] Gao | Phase-field model for the two-phase lithiation of silicon[END_REF], and can be written in physical components [START_REF] Truesdell | The physical components of vectors and tensors[END_REF] as

F = F e F i = diag(λ r , λ θ , λ θ ) (40) 
where

λ r (R, t) = r (R, t), λ θ (R, t) = r(R, t) R (41) 
are the principal stretches. The left Cauchy-Green deformation tensors are defined by

B = FF T , B h = F h F T h , h = i, e (42) 
and the right Cauchy-Green deformation tensors by

C = F T F, C h = F T h F h , h = i, e (43) 
and, in order to measure the local volume change, we define the scalar quantities

J = det F, J h = det F h , h = i, e. (44) 
The inelastic deformation, due to the insertion of solute atoms, as in the linear case, is assumed isotropic and of the following type (according to [START_REF] Zhao | Large plastic deformation in high-capacity lithium-ion batteries caused by charge and discharge[END_REF][START_REF] Cui | A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries[END_REF][START_REF] Cui | Interface-reaction controlled diffusion in binary solids with applications to lithiation of silicon in lithium-ion batteries[END_REF][START_REF] Chakraborty | Combining mechanical and chemical effects in the deformation and failure of a cylindrical electrode particle in a li-ion battery[END_REF]):

F i = (1 + ΩC) 1/3 I ( 45 
)
where C ≡ C(R, t) denotes the concentration of the solute atoms in the Lagrangian description. The solid is assumed hyperelastic and the strain energy density per unit volume of the intermediate state w e (where elastic deformation is applied) and that per unit volume of the reference state W e (where inelastic deformation is applied) are related by (see [START_REF] Gao | Phase-field model for the two-phase lithiation of silicon[END_REF][START_REF] Zhang | Large deformation analysis of diffusioninduced buckling of nanowires in lithium-ion batteries[END_REF])

W e = J i w e . (46) 
By appealing to (40),( 41) and ( 45), elastic principal stretches are defined by

λ er = λ r J 1/3 , λ eθ = λ eφ = λ θ J 1/3 . (47) 
The sphere being incompressible, only elastic isochoric deformations are permitted. This constraint is equivalent to requiring J e = 1, i.e.

λ er λ 2 e θ = 1 J ∂r ∂R r 2 R 2 = 1 (48) 
which allows us to relate the deformed radius r to both R and C in the following manner:

r(R, t) = 3 R 0 J(S, t)S 2 dS 1/3 , (49) 
where from ( 44) and ( 45)

J = λ r λ 2 θ = J e J i = 1 + ΩC. ( 50 
)
The balance equation ( 15) in terms of Cauchy stress becomes

dT r dr + 2 r (T r -T θ ) = 0, (51) 
which can be easily integrated to find the radial stress component

T r (R, t) = 2 R A F n-lin (S, t) dS, F n-lin (R, t) = λ r (R, t) r(R, t) (T θ (R, t) -T r (R, t)) . (52) 
This assures also the boundary condition ( 13) of radial free stress on the solid surface (the subscript 'n-lin' refers to 'nonlinear').

The diffusion flux, from the theory of kinetics, can be described in the current state by

j f = - D R g T c∇ x µ (53) 
being ∇ x the gradient operator in current coordinate system, c the current concentration and µ the chemical potential given by

µ = µ 0 + R g T ln(γc) -ΩT m . ( 54 
)
By use of the conservation of the scalar concentration and the gradient transformation formulas (see for example [START_REF] Zhang | Large deformation analysis of diffusioninduced buckling of nanowires in lithium-ion batteries[END_REF])

C = Jc, J f = Jj f F -T , (55) 
the flux in the undeformed state is related to the flux in the current configuration by J f = λ 2 θ j f , and therefore the corresponding flux J f given in (7) now becomes

J f = - D R g T C λ 2 r ∂µ(R, C) ∂R . (56) 
Finally, by the use of ( 50) and ( 55) 1 the latter is equivalent to

J f = - D J 2 r R 4 C J - ΩC R g T T m (57) 
where

T m = 1 3 (T r + 2T θ ) (58) 
is the hydrostatic part of the stress (which replaces the linear hydrostatic stress σ m in ( 8)-( 9)).

2-order weakly nonlinear elasticity: incompressible case

In a similar fashion to the elastoplastic theories based on the multiplicative decomposition of the deformation gradient, the elastic response of the isotropic material is independent of the rotation superposed to the intermediate configuration. The Cauchy stress can therefore be written (see eqs. (11.6.1) in [START_REF] Lubarda | Elastoplasticity theory[END_REF] and (3.6) in [START_REF] Lubarda | Constitutive theories based on the multiplicative decomposition of deformation gradient: Thermoelasticity, elastoplasticity, and biomechanics[END_REF], respectively, for further details) as

T = 1 det F F e ∂W e ∂E e F T e -pI (59) 
or, equivalently, by the use of ( 46) and the multiplicative decomposition ( 40), as

T = F e ∂w e ∂E e F T e -pI, (60) 
where

E e = 1 2 (C e -I) (61) 
is the the elastic Green, or Lagrangean tensor.

To account for finite but small deformations, the constitutive equations can be derived from nonlinear elastic theory of incompressibility as a Taylor expansion in power of the strains which is known as Landau and Lifshitz expansion [START_REF] Landau | Theory of elasticity[END_REF] or weakly nonlinear elasticity [START_REF] Destrade | On the third-and fourth-order constants of incompressible isotropic elasticity[END_REF][START_REF] De Pascalis | Nonlinear correction to the Euler buckling formula for compressed cylinders with guided-guided end conditions[END_REF][START_REF] Destrade | Methodical fitting for mathematical models of rubberlike materials[END_REF]. Second-order weakly nonlinear elasticity can be written in terms of the strain energy density function w e in [START_REF] Dinh | Mechanical characterization of pdms films for the optimization of polymer based flexible capacitive pressure microsensors[END_REF] as

w e = G tr(E 2 e ). ( 62 
)
The elastic potential in ( 62) is the equivalent incompressible strain energy function used widely by many authors to investigate DIS when the chemical potential is stress-dependent (see for example [START_REF] Cui | A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries[END_REF][START_REF] Cui | Interface-reaction controlled diffusion in binary solids with applications to lithiation of silicon in lithium-ion batteries[END_REF][START_REF] Chakraborty | Combining mechanical and chemical effects in the deformation and failure of a cylindrical electrode particle in a li-ion battery[END_REF][START_REF] Zhang | Large deformation analysis of diffusioninduced buckling of nanowires in lithium-ion batteries[END_REF][START_REF] Zhong | Stress analysis in cylindrical composition-gradient electrodes of lithium-ion battery[END_REF][START_REF] Li | Analysis of large-deformed electrode of lithium-ion battery: Effects of defect evolution and solid reaction[END_REF]) and therefore the Cauchy stress in [START_REF] Loeffel | A chemo-thermo-mechanically coupled theory for elastic-viscoplastic deformation, diffusion, and volumetric swelling due to a chemical reaction[END_REF] becomes

T = 2GF e E e F T e -pI = GB e (B e -I) -pI. ( 63 
)
Thus, the radial component of the stress T r in ( 52) is now written as

T r (R, t) = 2 R A F wnl (S, t) dS, T θ (R, t) = T φ (R, t) = H wnl (R, t) + T r (R, t), (64) 
(the subscript 'wnl' refers to 'weakly nonlinear') where

H wnl = G λ 2 e θ λ 2 e θ -1 -λ 2 e r λ 2 e r -1 , F wnl = J 1 3 λ er r H wnl . (65) 
It holds

T m = 2(F wnl + 1 3 H wnl ), (66) 
where

H wnl = G λ 2 e θ λ 2 e θ -1 -λ 2 e r λ 2 e r -1 + G 2λ eθ λ eθ 2λ 2 e θ -1 -2λ er λ er 2λ 2 e r -1 (67) 
and

λ er = -2 λ eθ λ 3 e θ , λ eθ = 1 R λ er -λ eθ R 3 J J + 1 . ( 68 
)
All these results are clearly consistent with those given in Sec. 2.2 by considering r(R) = R + u and small displacements u. This is also assured by the choice of the strain energy function.

Some asymptotic behaviours near the centre

As in the linear case, here, some asymptotic behaviours can be easily derived as R → 0. Under the assumptions (31) 1 , it now holds

J(R, t) = J(0, t) + 1 2 J (0, t)R 2 + O(R 3 ), r(R, t) = J 1 3 (0, t)R + O R 3 , (69) 
which gives

λ er (R, t) = 1 + 2 15 
J (0, t) J(0, t) R 2 + O(R 3 ), λ eθ (R, t) = 1 - 1 15 
J (0, t) J(0, t) R 2 + O(R 3 ) ( 70 
)
and consequently

F wnl (R, t) = F lin (R, t) J(0, t) , H wnl (R, t) = H lin (R, t) J(0, t) , H wnl (R, t) = H lin (R, t) J(0, t) (71) 
J f wnl (R, t) = J f lin (R, t)) J 5 3 (0, t) , ( 72 
) so that lim R→0 1 R 2 ∂(R 2 J f wnl (R, t)) ∂R = 1 J 5 3 (0, t) lim R→0 1 R 2 ∂(R 2 J f lin (R, t)) ∂R ( 73 
)
corresponding to the limit in [START_REF] Marckmann | Comparison of hyperelastic models for rubber-like materials[END_REF]. The same conclusions can now be drawn for the stress field as in the linear case of Sec. 2.2.1.

Results and discussions

To illustrate, compare and discuss further the results obtained in the above sections 2 and 3, we can consider an elastomeric electrode of a LIB charged at constant radial rate. Moreover, to simplify the notation, stress components (both from linear and nonlinear theory) can be denoted by the same letter T (where lower subscripts r or θ are added to refer to the radial or to the hoop component, respectively) while in the plots we will distinguish between linear and nonlinear predictions by using dashed and solid lines, respectively. By considering the non dimensional space variable R = R/A, the solid sphere is described by 0 ≤ R ≤ 1 and we introduce the other non dimensional parameters as follows:

ũ = u/A, r = r/A, C = ΩC, δ = ΩG/(R g T ), t = Dt/A 2 , (74) 
T = T /G, Jf = J f AΩ/D. (75) 
We assume a spherical particle capable of high storage capacity which, fully lithiated, can exhibit large volume change (generally of about 300%, see [START_REF] Zhao | Large plastic deformation in high-capacity lithium-ion batteries caused by charge and discharge[END_REF][START_REF] Zhao | A review on modeling of electrochemo-mechanics in lithium-ion batteries[END_REF]). To show our results we can fix the parameters as in the Cui et al. study [START_REF] Cui | A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries[END_REF] where they fixed the maximum theoretical concentration of lithium to Cmax ≈ 4.4. This choice of parameters (summarized in Table 1) give δ ≈ 145.17. Furthermore we assume the non dimensional infinitesimal shear modulus according to the following power law function:

G( R) = G( R)/G = 1 + R2 α , α ∈ R. (76) 
Note that α > 0 means hardening towards the edge while α < 0 means hardening towards the centre of the particle. Homogeneous materials are covered when α = 0. By denoting with τ the nominal time needed to charge the particle to its maximal concentration C max , it holds

4πA 2 J 0 τ = 4 3 πA 3 C max (77) Parameter Value Unit A 200 nm D 10 -16 m 2 s -1 R g 8.314 J K -1 mol -1 T 300 K Ω 1.2052 × 10 -5 m 3 mol -1 G 30.

GPa

Table 1: Parameters setting as in [START_REF] Cui | A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries[END_REF]. and τ therefore represents the charge time rate. Smaller τ means less time to obtain a fully charged particle while larger τ means more time to charge the particle fully to its maximum concentration C max . We fix (unless otherwise stated) a constant flux applied to the spherical surface J0 = 0.33 which from (77) means τ ≈ 0.5 h. A numerical scheme (further details of which are given in Appendix A) is applied to solve the diffusion equation ( 6) which governs the concentration C and which is coupled with the arising stress field (dependent in turn on the concentration C). The incompressible elastic constraints ( 16) and [START_REF] Destrade | Third-and fourth-order constants of incompressible soft solids and the acousto-elastic effect[END_REF] allow us to find an analytical relationship for the displacement field (ũ in [START_REF] Prussin | Generation distribution of dislocations by solute diffusion[END_REF] for the linear theory and r in [START_REF] Koizumi | Fgm activities in japan[END_REF] for the nonlinear theory, respectively) in terms of the unknown C. The numerical procedure (which is similar to that proposed in the appendix of [START_REF] Zhao | Large plastic deformation in high-capacity lithium-ion batteries caused by charge and discharge[END_REF]) used for the computation of the solute C is therefore simplified by the use of the constraint of incompressibility (compressible materials would require more sophisticated procedures). At each time step, the C solution is then used to update the other fields of interest in the problem: displacements, stress and flux. Here, domains 0 ≤ R ≤ 1 and t > 0 are discretized by considering a uniform space step δ R = 10 -2 and a uniform time step δ t = 10 -6 .

Figures 2 and3 show the evolution of the concentration C, the displacement ũ and both radial and hoop stress components Tr , Tθ vs (versus) R at several times t (as it is shown by a common legend for all the respective subplots where curves of the same colour refer to the same time t) when G is constant (α = 0) and in the following two conditions for the chemo-mechanical potential µ in [START_REF] Lee | Diffusion-induced stresses in a hollow cylinder[END_REF] and in (54): i) stress-independent (Fig. 2) and ii) stress-dependent (Fig. 3). Both figures use the same parameters setting as above. At sight, between dashed and solid (linear and nonlinear predictions) are larger in Fig. 2 than in Fig. 3 and this demonstrates that the more complex form of chemo-mechanical model (i.e. stress-dependent) reduces the differences in using linear or nonlinear theories. We can observe that the stress dependence in the potential implies also a flattening of the C-curves as well as their reversal in time, i.e. after a certain time the stress the medium can be reduced (from a certain maximum value). Indeed, as will be shown in Fig. 6, the maximum radial stress occurring at R = 0 evolves by increasing to a certain peak (at a certain time) and then decreasing. These behaviours are not observed when the potential is instead stress-independent. These effects are consistent with existing results in literature for compressible materials.

Predictions discrepancy for the solute concentration C when the potential is stress-dependent appear two orders of magnitude lower than when potential is stress-independent. This is clearly shown in Fig. 4, where only the curves at t = 0.1 on the left and curves at t = 0.2 on the right, respectively, are reported and examined closely. It will be interesting to investigate whether linear theories can be considered accurate enough or whether they instead diverge from nonlinear predictions. To this end, the time evolution displacement gradient ∇ũ = ((ũ ) 2 + 2ũ/ R) 1/2 computed from linear predictions is plotted in Fig. 5 for several values of the constant applied flux J0 (as shown in the respective legend) when the parameters are set as in Table 1 and G constant (α = 0). The yellow curve is obtained by considering the particular case of stress-independent potential µ. For the other curves, J0 = 0.65 represents a charge time τ ≈ 15 min and J0 = 1 represents the case when τ ≈ 10 min. Since linearized theories are valid for small ∇ũ , we can assume as a reasonable threshold to validate the linear theory, the range ∇ũ ≤ 0.03 (note that the line ∇ũ = 0.03 is represented in the plot by a horizontal solid red line). Fig. 5 shows that for larger J0 the valid range of time is reduced. For example if J0 = 1 the range of time where linear predictions closely follow those from nonlinear theory is approximately t ∈ [0, 0.005] while if J0 = 0.33 this time range is larger, i.e. t ∈ [0, 0.045]. In the particular case when the potential µ is stress-independent, this range of time is much more greatly reduced (although the same flux is applied Jf = 0.33) and this is consistent with the comparison of Fig. 2 and Fig. 3. Indeed when potential is stress-independent, the difference between linear and nonlinear predictions is much more pronounced.

Stiffer or softer materials employed for example in electrodes can exhibit a different mechanical response as well as different thermal, acoustic or conductivity proprerties. The prior knowledge of the mechanical response of such materials when one or more parameters involved in the model is varied can present advantages for designing optimal media. In the context of LIBs, the stress generated during the charging process might induce failure because instabilities, cavitation, or damage phenomena can occur at electrodes (or to its other components) at certain levels of stress. The knowledge of such critical thresholds can therefore protect electrodes from degradation phenomena. To this end, we consider the elastic shear modulus G to vary along the radial direction so that part of the particle preserves its stiffness. The variation of G can be therefore used as a mechanism for tuning the softening (or hardening) along the particle radius. We consider G as a power law function given in [START_REF] Destrade | On the third-and fourth-order constants of incompressible isotropic elasticity[END_REF] and plotted at the top left of Fig. 6 for several values of the parameter α as shown in the respective legend (which is common to the other subplots). The same figure shows the respective concentration C vs R at t = 0.1 as well as the time evolution of both the radial stress at R = 0 (remembering Tr = Tθ at R = 0) and the hoop stress at R = 1. The stress Tr increases in time to a certain maximum value and then decreases. Clearly, this stress peak can be controlled by tuning the elastic coefficient G, which being radial dependent can preserve some stiffness at the edge or at the interior of the particle. Similar behaviour is given for the hoop stress, where instead the maximum compressive value is given at the particle surface. Softening the particle towards the surface, therefore, allows better control of high stresses. Estimation of linear predictions validity is instead shown in Fig. 7 where the time evolution of the gradient ∇ũ for the displacement field obtained from linear predictions given in Fig. 6 is plotted. Note here how the validation time for linear approximation is reduced by softening the particle towards the edge. An accurate model used to describe the diffusion process involved in electrodes should therefore take into account these estimations. 

Conclusions

LIBs (lithium-ion batteries) are nowadays employed in most all portable electronic devices and there is strong and sustained interest in their continuous improvement in terms of both energy efficiency and durability. One major cause of failure in LIBs is degradation phenomena [START_REF] Zhang | A review of the electrochemical performance of alloy anodes for lithium-ion batteries[END_REF][START_REF] Zhao | A review on modeling of electrochemo-mechanics in lithium-ion batteries[END_REF] and this has led researchers to a better understanding of the physics behind the charging/discharging cycle. Since the first models, in which DIS was modeled in a way similar to the generation of thermal stress through heat conduction [START_REF] Prussin | Generation distribution of dislocations by solute diffusion[END_REF], and in which infinitesimal constitutive equations were employed [START_REF] Lee | Diffusion-induced stresses in a hollow cylinder[END_REF][START_REF] Cheng | Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation[END_REF], many models have been proposed in the literature to predict stresses induced in the medium. However, the increasing use of elastomeric materials, capable of higher capacity and consequently of larger deformations, moved the research towards more complex models which can, from one side, include large deformations, and from the other, capture better the interaction between diffused solute and the stress induced in the medium, leading to more and more sophisticated chemo-mechanical interactions [START_REF] Wu | The role of eshelby stress in composition-generated and stress-assisted diffusion[END_REF][START_REF] Cui | A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries[END_REF]. Such models can also include effects like plasticity and viscoelasticity as well as (especially for for nano-electrodes) effects arising from surface tensions [START_REF] Stein | Effects of surface tension and electrochemical reactions in li-ion battery electrode nanoparticles[END_REF]. However, to analyse DIS, the general compressible elasticity has been employed in most all models.

Capable of large volume transformations and consequent high-capacity, in the last decade, elastomeric materials such as silicon have been widely employed in electrodes. Very recently, attention has been paid to PDMS materials which show high stretchability and great promise for their application in lithium-ion batteries [START_REF] Liang | Solution-processed pdms/swcnt porous electrodes with high mass loading: toward high performance all-stretchablecomponent lithium ion batteries[END_REF]. These latter materials can exhibit Poisson's ratio ν close to 0.5 [START_REF] Dinh | Mechanical characterization of pdms films for the optimization of polymer based flexible capacitive pressure microsensors[END_REF] so that they can be considered incompressible. To describe their elastic behaviour a special theory for constrained materials is required.

Here DIS (diffusion-induced stress) has been investigated for an isotropic elastic incompressible spherical particle charged radially at constant rate. A chemo-mechanical potential is assumed dependent on the hydrostatic part of the stress generated in the medium and the equations are obtained when firstly linear and then nonlinear elastic constitutive equations are employed. In the latter case, by assuming hyperelasticity in the solid, the strain energy is obtained as Taylor (second-order) expansion in terms of a Lagrangean strain tensor and known also as weakly nonlinear elasticity which is consistent with the linearized theory. In both cases the displacement and the stress field can be written analytically in terms of the solute concentration which, instead, has to be computed numerically from an evolution equation. The constraint of incompressibility simplifies the numerical procedure involved and allows us to solve the evolution equation by means of a simple finite difference scheme. Since the strong analogy to the thermal stress problem and the large (and also historical) interest to employ FGMs (functionally graded materials) in LIBs (as well as in conductivity materials), equations are derived when the infinitesimal shear modulus G is radial dependent. By a specific example inspired by observation of LIBs, a comparison between the predictions made from infinitesimal and finite deformations is drawn, showing some limitations when linear theory is employed. By considering a power law function for G, we plot the evolution of the peak stress in the medium and observe how G can be considered as a tuning mechanism for better control of stress. This is of great consequence in optimizing the design of LIBs to mitigate against their risk of failure.

Although the analysis developed here considers a very simple model, it provides a further step forward in our understanding of diffusion in incompressible materials, a research area in which there seems to be a shortage of literature. Furthermore, the model establishes a theoretical framework for studying, in future research, instabilities of constrained electrodes subject to DIS. Future work could also include within its scope other geometries and all the other effects (plastic, viscous and surface) already mentioned above, which can certainly affect the DIS. by using [START_REF] Cui | A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries[END_REF] or [START_REF] Zhang | Effects of surface stress on lithium-ion diffusion kinetics in nanosphere electrodes of lithium-ion batteries[END_REF] for the computations of the hydrostatic stress in Jf . Since 

where F = F/G and H = H/G. Procedure can be repeated in a recursive way for the next time step n + 1 and so on until the final step N .
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 11 Figure 1: Figure illustrating the plane section of the spherical particle in its reference state (left) and its current state (right) under a charging process.
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 12 Figure 2: Evolution of C, ũ, Tr , Tθ vs R when µ is stress-independent and J0 = 0.33. Curves of the same colour refer to the same time t .
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 134 Figure 3: Eevolution of C, ũ, Tr , Tθ vs R in the same parameters conditions of Fig. 2 but µ stressdependent.
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 15 Figure 5: Evolution in time of ∇ũ computed by linear predictions when µ is stress-dependent (black, green and blue dashed curves) and when µ is stress-independent (yellow dashed curve). Solid red line represents ∇ũ = 0.03.
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 6 Figure 6: C vs R at t = 0.1 (Top-right) and evolution in time of the radial stress Tr computed at R = 0 (bottom-left) and hoop stress Tθ computed at R = 1 (bottom-right) when G is given in (76) (top-left) and J0 = 0.33. Curves with same colours refer to the same α.

Figure 7 :

 7 Figure 7: Evolution in time of ∇ũ computed by linear predictions as in Fig. 7 by varying α in (76).

T

  r (R, t) = 2F(R, t),[START_REF] De Pascalis | Nonlinear correction to the Euler buckling formula for compressed cylinders with guided-guided end conditions[END_REF] by a backwards recursive method it holdsTr [m -1, n] = Tr [m, n] -2δ R F[m, n], 0 ≤ m ≤ M,(90)taking into account condition[START_REF] De Pascalis | Predicting the pressure-volume curve of an elastic microsphere composite[END_REF], while for the hoop stress it holdsTθ [m, n] = Tr [m, n] + H[m, n], 0 ≤ m ≤ M,

In the following when we will refer to µ as stress-independent potential we will refer to µ = µ0 + RgT ln (γC).
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A Some notes on the numerical procedure Space domain [0, 1] (for R) can be discretized in M steps of same size δ R and the time domain [0, t] (for a fixed t > 0) in N steps of same size δ t. For the given space-time dependent functions f ( R, t) and by considering the integers m ∈ [0, M ], n ∈ [0, N ] we use the following notation:

so that equation ( 6) can be written as

whilst initial and boundary conditions ( 10)-( 13) can be written as

respectively. By applying finite central, forward or backward (depending if it is computed at the inner or boundary of the domain) difference derivatives, at a fixed time step n, the evolution equation ( 79) can be solved by implementing