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Introduction

We begin the investigation of computable analysis on the space of marked groups. Our study presents interesting aspects both from the point of view of group theory, and from the point of view of computable analysis, as it is remarkable that a space that presents as much undecidability as the space of marked groups should appear naturally, as opposed to being a space defined specifically to provide an example of a Polish space with a bad algorithmic behavior.

Computable analysis is a concept that goes back to Turing's seminal 1936 paper ( [START_REF] Turing | On computable numbers, with an application to the Entscheidungsproblem[END_REF]), its aim is to study which functions of a real variable can be deemed computable or not. It was later extended to computability on the Cantor and Baire spaces, to recursive metric spaces, which we define in Section 3, and even to computable topological spaces.

The topology on the space of marked groups can be traced back to Chabauty in [START_REF] Chabauty | Limite d'ensembles et géométrie des nombres[END_REF]. It has by now become a standard tool in the study of group properties, see for instance [START_REF] Minasyan | Quasi-isometric diversity of marked groups[END_REF] and [START_REF] Osin | A topological zero-one law and elementary equivalence of finitely generated groups[END_REF] where tools of descriptive set theory are used to obtain far reaching group theoretical results. We will still include a brief introduction to describe the topology and the metric of the space of marked groups, which we denote by G throughout.

Our main purpose here is to show that the study of decision problems for marked groups described by word problem algorithms corresponds exactly to the study of computable analysis on the space of marked groups, and to show that several methods and results of computable analysis can be directly applied to the space of marked groups to obtain group theoretic results.

The most useful result in this regard is Markov's Lemma for groups (Lemma 5.5), which we state here without defining the terms that appear in its statement:

Date: 08/10/2021. Lemma 0.1 (Markov's Lemma for groups). If (G n ) n∈N is an effective sequence of marked groups that effectively converges to a marked group H, with G n = H for each n, then no algorithm can tell H from the groups in {G n , n ∈ N}, when those marked groups are described by word problem algorithms.

This result can be used in conjunction with the Higman-Clapham-Valiev Theorem to build finitely presented groups with solvable word problem but with various undecidable problems. We show for instance that the existence of a finitely presented group with solvable word problem but unsolvable order problem derives from Markov's Lemma applied to the sequence ((Z/nZ, 1)) n∈N , which converges to (Z, 1) in the space of Marked groups.

Decisions problems from word problem algorithms and finite presentations. In a previous paper ( [START_REF] Rauzy | Remarks and problems about algorithmic descriptions of groups[END_REF]), we stated that the most natural description of a (marked) group, in terms of developing the theory of global decision problems for groups, is a finite presentation of this group together with an algorithm that solves the word problem in it (provided, of course, that the group admits such a description). This statement was in part motivated by a result of Daniel Groves and Henry Wilton from [START_REF] Groves | Enumerating limit groups. Groups, Geometry, and Dynamics[END_REF], which states that this description of finitely generated groups allows to recognize free groups.

Theorem 0.2 (Groves, Wilton, [START_REF] Groves | Enumerating limit groups. Groups, Geometry, and Dynamics[END_REF], Corollary 4.3). There exists an algorithm that, given a finite presentation of a group G, together with an algorithm that solves the word problem in this group, decides whether or not this group is free.

This result is non-trivial, and its proof is elegant, (relying on advanced results in the study of limit groups), and it sheds new light on the fact that it is impossible to tell whether or not a given finite presentation defines a free group (a well known consequence of the Adian-Rabin Theorem): the impossibility of recognizing free groups (or even the trivial group) from finite presentations should not be considered as setting a baseline for what is computable from descriptions of groups, but as showing that the finite presentation description is inappropriately weak to develop a theory of global decision problems for groups.

This led us in [START_REF] Rauzy | Remarks and problems about algorithmic descriptions of groups[END_REF] to posing the following problem as a possible fruitful motivational problem in the study of decision problems for groups: Problem 0.3. Describe the groups that are recognizable in the class of finitely presented groups with solvable word problem, when we suppose that groups are described by pairs finite presentation -word problem algorithm.

While there exists an extensive literature on decision problems for groups described by finite presentations, the study of decision problems for groups described by finite presentations and word problem algorithms, in classes of groups where no uniform solution to the word problem exists, remains virtually untouched.

Our present study of decision problems for groups described by word problem algorithms can be seen as a first step in the study of what can be deduced from a finite presentation together with a word problem algorithm, as knowing what can and cannot be deduced from either element of the pair (finite presentation-word problem algorithm) will shed some interesting light on what can be deduced from the whole pair.

Numberings of the space of marked groups. Another problem raised in [START_REF] Rauzy | Remarks and problems about algorithmic descriptions of groups[END_REF] is the systematic study of the various possible descriptions of groups. The present paper can be seen as participating in that study, by studying in particular the numberings of G that preserve its metric structure.

In computable analysis, the study of computable functions is transferred from functions whose variable is a natural number to functions that take arbitrary objects as input through the use of numberings.

A numbering ν of a set X is a partial map ν :⊆ N → X. The domain of ν is denoted dom(ν). (Contrary to what is customary, we do not suppose numberings to be surjective, this allows us to study the different numberings of G which often have different images.) A function f between two numbered sets (X, ν) and (Y, µ) is then called (ν, µ)-computable if there exists a recursive function F defined on dom(ν) which satisfies that, for any natural number n in dom(ν), one has

f • ν(n) = µ • F (n).
We give several definitions concerning numberings in Section 2, which will be useful mostly in our exposition of computable analysis on recursive metric spaces.

It is natural, in the study of numberings of G, to ask which of those numberings preserve the metric structure of G. This question, of course, should be taken in its computability theoretic meaning, we ask which numberings of G allow, given integers that define two marked groups G and H, to compute the distance from G to H. Since this distance is a real number, this again needs to be made precise, it exactly means that given two integers that define G and H, one should be able to compute arbitrary approximations of the distance from G to H in G.

The numbering ν W P associated to the word problem description of marked groups allows to compute several distances defined on the space of marked groups, we quote here a consequence of Proposition 1.4: This hierarchy resembles to the Borel hierarchy on G, which was for instance studied in [START_REF] Gökhan | Descriptive complexity of subsets of the space of finitely generated groups[END_REF]. We expect the following correspondence between those hierarchies: P is Clopen ←→ P is Decidable P is Open ←→ P is Semi-Decidable P is Closed ←→ P is co-Semi-Decidable Our main conjecture asks whether the top arrow between clopen and decidable can be replaced by the implication: P is Decidable =⇒ P is Clopen . The reverse implication, P is Clopen =⇒ P is Decidable , is known to be true in the compact case, if we fix bound on the number of generators of a marked group, but to fail in G.

All other arrows are known to fail as actual implications. However, they have the following informal meaning:

• A natural semi-decidable property in G is (very much) expected to be open, and a natural co-semi-decidable property in G is (very much) expected to be closed.

Semi-decidable properties that are not open are built using Kolmogorov complexity, those are sets one should not expect to run into when dealing with properties defined by algebraic or geometric constructions. (See SubSection 3.3 for an example.)

• A natural open property in G is (a little) expected to be semi-decidable, and a natural closed property in G is (a little) expected to be co-semi-decidable.

This second fact is rather of an empirical nature, and is justified by the results given in Subsection 5.6.6.

Results that establish that properties belong to the same level in the Borel and Kleene-Mostowski hierarchies are called correspondence results.

We are unable to give a natural example of an open property which fails to be semi-decidable, but we propose several candidates for which we conjecture that the topological classification does not capture the decidability status: Conjecture 0.11. The set of LEF groups is closed but not co-semi-decidable. The set of isolated groups is open but not semi-decidable.

We detail this conjecture in Section 7, where we establish in particular that the part of this conjecture that concerns LEF groups would imply Slobodkoi's Theorem about the undecidability of the universal theory of finite groups.

However, we give in Subsection 5.6 a table that contains a wide range of group properties for which the correspondence between the Borel and Kleene-Mostowski hierarchy holds perfectly.

The isomorphism problem from word problem algorithms. After having studied the decidability status of various group properties, we start the study of the isomorphism problem for groups described by word problem algorithms. This study is naturally preceded by the study of marked and abstract recognizability, which corresponds to the study of the problem of recognizing a fixed (abstract or marked) group.

We emphasize the role of isolated groups, which are semi-recognizable, a property that is shared by all finitely presented groups with respect to the finite presentation description, but which seems very hard to find in other possible group descriptions.

We then discuss the relation between group recognizability from word problem algorithms and an order relation on the set of finitely generated groups introduced by Bartholdi and Erschler in [START_REF] Bartholdi | Ordering the space of finitely generated groups[END_REF], called the "preform" relation.

We use their results to establish the following theorem (Theorem 6.12):

Theorem 0.12. There exits an infinite set of non-isomorphic groups with solvable word problems which are pairwise completely undistinguishable.

There remains however many open problems related to the recognizability of groups from word problem algorithms. In particular, we ask several questions regarding the relation between the topology of G and the topology that is seen looking only at groups with solvable word problem: can a marked group with solvable word problem be isolated from other marked groups with solvable word problems, while being the limit of a sequence of groups with unsolvable word problem? Any infinite group must preform a group that is non-isomorphic to it, but must an infinite group with solvable word problem preform another group with solvable word problem? Markovian computable analysis. Note that the term "computable analysis", which we have used already several times in this introduction, is ambiguous, because several approaches to computing with real numbers (and to computing in metric spaces) were considered and developed independently. The only notion which interests us here is what is known as Markov computability, or as the Russian approach, see [START_REF] Avigad | Computability and analysis: the legacy of Alan Turing[END_REF] for some historical remarks. The reason for this is that Markov computability is the only notion of computability which corresponds to what the theory of decision problems for groups aims at studying: what information can be computed about a group given a finite description of it, description which can be manipulated by a computer.

The Markovian definition of computable analysis was in fact the definition considered by Turing himself (and even by Borel as early as 1912...), and while it was studied in various countries by many mathematicians, an important body of word in Markovian computable analysis comes from Markov's school of mathematics, which is a school of constructive mathematics.

The tenant of Markov's school accept only a weak form of the excluded middle law, in the form of the following statement, known as Markov's Principle: "a Turing machine either halts or does not halt". They consider that objects exist only if their existence can be attested to by algorithmic means.

This fact renders a part of the literature that we refer to ([Abe80, Kus84, Cei67, Mar63, Mar54]) less accessible that it would be, had it been written in a classical language. This motivated us in writing a rather detailed exposition of computable analysis on metric spaces, which appears in Section 3, and which should be very accessible.

For instance, we include a simple proof of a theorem that says that computable functions defined on effective Polish spaces must be continuous. This simple proof cannot be found in the constructivists' works, as in those works, the statement "the function f is continuous" has to be interpreted as "the computable function f is effectively continuous", and Ceitin's Theorem on the effective continuity of functions defined on effective Polish spaces is significantly more complicated than the corresponding non-effective continuity theorem.

Note also that in the constructivist setting, objects very similar to numberings are studied, called notation systems, see [START_REF] Ceitin | Algorithmic operators in constructive metric spaces[END_REF][START_REF] Kushner | Lectures on Constructive Mathematical Analysis[END_REF][START_REF] Moschovakis | Notation systems and recursive ordered fields[END_REF], which use sets of word instead of real numbers, the theory remains virtually unchanged.

Contents of this paper.

In Section 1, we describe the space of marked groups, and give a few results related to computability: impossibility of deciding whether or not a basic clopen set is empty, etc.

In Section 2, we fix the vocabulary about numberings that is required to present the concepts of computable analysis.

In Section 3, we describe the main results of computable analysis, giving proofs for some of them and references for the others. We quote in particular Markov's Lemma, Mazur's Continuity Theorem, the Kreisel-Lacombe-Schoenfield-Ceitin Theorem, and Moschovakis' extension of this theorem.

In Section 4, we start investigating the space of marked groups as a computable metric space. We prove our most important theorems; which state that none of the continuity results given in the previous sections can be applied to the space of marked groups.

In Section 5, we start applying Markov's Lemma on the space of marked groups. We give a wide range of examples of open or closed group properties which are partially recognizable thanks to the word problem algorithm description.

In Section 6, we study the isomorphism problem for groups described by word problem algorithms, and the special problem of group recognizability.

In Section 7, we propose the sets of LEF groups and of isolated groups as groups for which the correspondence between the arithmetical hierarchy and the Borel hierarchy might fail, we motivate those conjectures.

In Section 8, we use Markov's Lemma in conjunction with various versions of Higman's Embedding Theorem, in order to give short and elegant proofs of some well known results, for instance of the existence of a group with solvable word problem but unsolvable order problem, etc.

1. The topological space of marked groups 1.1. Definitions. Let k be natural number. A k-marked group is a finitely generated group G together with a k-tuple S = (s 1 , ..., s k ) of elements of G that generate it. We call S a generating family. Note that repetitions are allowed in S, the order of the elements matters, and S could contain the identity element of G. A morphism of marked groups between k-marked groups (G, (s 1 , ..., s k )) and (H, (t 1 , ..., t k )) is a group morphism φ between G and H that additionally satisfies φ(s i ) = t i . It is an isomorphism of marked groups if φ is a group isomorphism, and of course marked groups are considered up to isomorphism. We call a group an abstract group when we want to emphasize the fact that it is not a marked group.

It is in fact convenient, when studying k-marked groups, to fix a free group F k of rank k, together with a basis S for F k . A k-marking of a group G can then be seen as an epimorphism ϕ : F k → G, the image of S by ϕ defines a markings with respect to the previous definition. Two k-marked groups are then isomorphic if they are defined by morphisms with identical kernels: the isomorphism classes of k-marked groups are classified by the normal subgroups of a rank k free group. The set S can be thought of as a set of generating symbols, and we often consider that all groups are generated by those letters.

Remark that a word problem algorithm for a group G is thus a description of a marking of G, and similarly, a presentation of a group defines a marked group.

We note G k the set of isomorphism classes of k-marked groups, and G the disjoint union of the G k .

For an abstract group G, we denote [G] k the set of all its markings in G k , and [G] the set of all its markings in G (as in [START_REF] Champetier | Limit groups as limits of free groups[END_REF]). We also write

[G] k or [G] for a marked group G, it is the abstract isomorphism class of G in G k or in G.
1.2. Topology on G. For each k, consider a finite set {s 1 , ..., s k }, choose arbitrarily an order on the set {s 1 , ..., s k }∪ {s -1 1 , ..., s -1 k }, and enumerate lexicographically with respect to that order the elements of the free group F k over S. Denote by i k (n) the nth element obtained in this enumeration, i k is thus a bijection between N and F k . To a normal subgroup N of F k we can associate its characteristic function χ N : F k → {0, 1}, and composing it with the bijection i k , we obtain an element of the Cantor space C = {0, 1} N . This defines an embedding:

Φ k : { G k -→ {0; 1} N N ◁ F k -→ χ N • i k
of the space of k-marked groups into the Cantor space. We call the image Φ k (G) of a k-marked group G the binary expansion of G.

With the Cantor set being equipped with its usual product topology, the topology we will study on G k is precisely the topology induced by this embedding.

It is easy to see that

Φ k (G k ) is a closed subset of {0; 1} N of empty interior. It is thus compact.
The product topology on {0; 1} N admits a basis which consists of clopen sets: given any finite set A ⊆ N and any function f : A → {0; 1}, define the set Ω f by: (u n ) n∈N ∈ Ω f ⇐⇒ ∀n ∈ A; u n = f (n). Sets of the form Ω f are clopen and form a basis for the topology of {0; 1} N . Sets of the form G k ∩ Ω f thus define a basis for the topology of G k . The set G k ∩ Ω f is defined as a set of marked groups that must satisfy some number of imposed relations, while on the contrary a fixed sets of elements must be different from the identity.

We fix the following notation. For m and m ′ natural numbers, and elements r 1 , ..., r m ; s 1 , ..., s m ′ of F k , we note Ω k r1,...,rm;s1,...,s m ′ the set of k-Marked Groups that satisfy the relations r 1 , ..., r m , while they do not satisfy s 1 , ..., s m ′ . We call s 1 , ..., s m ′ irrelations.

The sets Ω k r1,...,rm;s1,...,s m ′ are called the basic clopen sets. In what follows, we call the set r 1 , ..., r m ; s 1 , ..., s m ′ of relations and irrelations coherent if Ω k r1,...,rm;s1,...,s m ′ is not empty. The Boone-Novikov theorem which implies that there exists a finitely presented group with unsolvable word problem directly implies the following: Theorem 1.1 (Boone-Novikov reformulated). No algorithm can decide whether or not a given finite set of relations and irrelations is coherent. More precisely, there is an algorithm that stops exactly on incoherent sets of relations and irrelations, but no algorithm can stop exactly on coherent sets of relations and irrelations.

We will call a set r 1 , ..., r m ; s 1 , ..., s m ′ of relations and irrelations word problem coherent, or wp-coherent, if the basic clopen set Ω k r1,...,rm;s1,...,s m ′ contains a group with solvable word problem. The remarkable fact that the notions of coherence and wp-coherence differ follows from a theorem of Miller ([Mil92, Corollary 3.9]) which we expose in details in SubSection 4.3 (see Theorem 4.11).

The fact that coherence and wp-coherence differ can be equivalently formulated as: "groups with solvable word problem are not dense in G". This is stated in Proposition 4.1.

This remark calls for the following theorem:

Theorem 1.2 (Boone-Rogers reformulated). No algorithm can stop exactly on wp-coherent sets of relations and irrelations.

Proof. This follows from the Boone-Rogers theorem ( [START_REF] Boone | On a problem of J.H.C. Whitehead and a problem of Alonzo Church[END_REF]) which states that there is no uniform solution to the word problem on the set of finitely presented groups with solvable word problem. Indeed, it is easy to see that an effective way of recognizing wp-coherent sets of relations and irrelations would provide an uniform algorithm for the word problem on finitely presented groups with solvable word problem. □

The following theorem shows that wp-coherence is a property that is more complex than coherence.

Theorem 1.3. No algorithm can stop exactly on those sets of relations and irrelations which are not wp-coherent.

The proof of this theorem relies on the construction of Miller mentioned above (from [Mil92, Corollary 3.9]). We will use this construction to prove another important result, Theorem 4.9. Because of this, the proof of Theorem 1.3 is postponed until SubSection 4.3. 1.3. Different distances. The topology defined above on the space of marked groups is metrizable. We describe here two possible distances which generate this topology, and which we may most of the time use interchangeably throughout this paper.

1.3.1. Ultrametric distance. For sequences (u n ) n∈N and (v n ) n∈N in {0; 1}
N that are different, denote n 0 the least number for which u n0 = v n0 , and set d((

u n ) n∈N , (v n ) n∈N ) = 2 -n0 . If the sequences (u n ) n∈N and (v n ) n∈N are equal, set d((u n ) n∈N , (v n ) n∈N ) = 0.
This defines an ultrametric distance on {0; 1} N which generates its topology. For two groups G and H, generated by the same family S, consider the respective Cayley graphs of G and H, Γ G and Γ H . The balls centered at the identity in Γ G and Γ H agree up to a certain radius, call r the radius for which the balls of radius r of Γ G and Γ H are identical, while their balls of radius r + 1 differ. Then put d Cay (G, H) = 2 -r . If Γ G and Γ H are identical, r is infinite, and we put d Cay (G, H) = 0. It is easy to check that d Cay is an ultrametric distance which induces the topology of the space of marked groups.

The distance d Cay could be preferred to d, as it brings a visual dimension to proofs, however in most cases it is just less precise than d: the only difference between d and d Cay is that, in the computation of d Cay , the relations are considered "in packs", corresponding to their length as elements of the free groups, while they are considered each one by one when using d, the choice of an order of the free group being precisely what allows to give more or less "weight" to relations of the same length. 1.3.3. The space G is a recursive metric space. The following proposition is fundamental in the study of the space of marked groups as a recursive metric space. We give the definition of a computable real in Section 3, we still include here the proof of Proposition 1.4, as it is simple enough to be grasped without needing a precise understanding of computable reals, and on the contrary, it can motivate the introduction of the computable reals.

Proposition 1.4. The distances d is computable from the Cantor space to the set of computable reals. In particular, it is computable on G k , when seen as taking as input word problem algorithms, and having as images computable reals. Similarly, the distance d Cay is computable on G k .

Proof. We sketch the proof for the distance d, the proposition is proven similarly for d Cay .

It suffices to show that given two descriptions of computable sequence (u n ) n∈N and (v n ) n∈N in {0; 1} N , and an integer N , it is possible to compute a rational approximation of d((u n ) n∈N , (v n ) n∈N ) within 2 -N . Given descriptions for (u n ) n∈N and (v n ) n∈N , it is possible to enumerate their N first digits. If they are identical, one can conclude that d((u n ) n∈N , (v n ) n∈N ) < 2 -N . On the other hand, if their first N digit differ, we can compute the index of the first digit on which they differ, and thus compute the distance d((u n ) n∈N , (v n ) n∈N ) exactly. In any case one obtains an approximation of d((u n ) n∈N , (v n ) n∈N ) within 2 -N . □ 1.4. Some references. The topology on the space of marked groups can be traced back to Chabauty in [START_REF] Chabauty | Limite d'ensembles et géométrie des nombres[END_REF].

It was later used in different contexts, for instance to study torsion groups [START_REF] Rostislav | Degrees of growth of finitely generated groups, and the theory of invariant means[END_REF], limit groups [START_REF] Champetier | Limit groups as limits of free groups[END_REF] or to build groups with non-uniformly exponential growth [START_REF] Nekrashevych | A group of non-uniform exponential growth locally isomorphic to img(z 2 + i)[END_REF]. Note the remarkable result of Christophe Champetier in [START_REF] Champetier | L'espace des groupes de type fini[END_REF], that there is no measurable function from G k (k ≥ 2) to R which is constant exactly on (abstract) isomorphism classes of groups. We will use results from this article that concern hyperbolic groups.

We will also see that the isolated groups of G k , that were characterized by Cornulier, Guyot and Pitch in [START_REF] De Cornulier | On the isolated points in the space of groups[END_REF], play an important role in our study, as they are recognizable from the word problem algorithm. We quote right away an important Lemma that appears in that same article, and which we use several times throughout this paper: Lemma 1.5. [START_REF] De Cornulier | On the isolated points in the space of groups[END_REF], Lemma 1) Consider two marked groups G 1 ∈ G m1 , G 2 ∈ G m2 . Suppose that they are (abstractly) isomorphic. Then there are clopen neighborhoods V i , i = 1, 2 of G i in G mi and a homeomorphism φ : V 1 → V 2 mapping G 1 to G 2 and preserving isomorphism classes, i.e. such that, for every H ∈ V 1 , φ(H) is isomorphic to H (as abstract groups).

Other articles related to the space of marked groups which we will quote are: [BCGS14, BGdlH13, MOW19, BK19].

2. Vocabulary about numberings 2.1. Numberings and numbering types.

2.1.1. First definitions. We will now introduce numbered spaces and numbering types, which will be useful throughout this paper. For more details, see the chapter on numberings in Weihrauch's book [START_REF] Weihrauch | Computability[END_REF].

Definition 2.1. Let X be a set. A numbering of X is a function ν that maps a subset A of N to X. We denote this by: ν :⊆ N → X.

It is important for us not to impose on numberings to be surjective, contrary to what is customary, as this allows for a much more natural approach to the study of the different numberings of G.

The pair (X, ν) is a numbered set. The domain of ν is a subset of N denoted by dom(ν).

The image ν(X) of ν is called the set of ν-computable points of X, and denoted X c,ν or X c when there is no ambiguity as to which numbering of X is considered. Given a point x in X, an integer n such that ν(n) = x is called a ν-name, or a ν-description, of x. Definition 2.2. Let (X, ν) and (Y, µ) be numbered spaces. A function f : X → Y is called (ν, µ)-computable if and only if there exists a recursive function

F :⊆ N → N such that for all n in the domain of ν, f • ν(n) = µ • F (n).
That is to say, there exists F which renders the following diagram commutative:

X Y N N f ν F µ
Notice how this definition resembles that of a manifold, and in particular how the notion of differentiability is defined on a manifold using only differentiability in a Euclidian space.

Of course, whether a function f between numbered spaces (X, ν) and (Y, µ) is computable only depends on its behavior on the set of computable points of X.

The identity function id on N defines its most natural numbering.

Definition 2.3. If (X, ν) is a numbered set, a ν-computable sequence is an (id, ν)-computable function from N to X.

We consider a partial order on the numberings of a set X:

Definition 2.4. A numbering ν of a space X is stronger than a numbering µ of this same space if the identity on X is (ν, µ)-computable. We denote this ν µ. Those numberings are equivalent if ν µ and µ ν both hold. We denote this by ν ≡ µ.

The relation ν µ exactly means that there is an algorithm that, given a ν-description of a point in X, produces a µ-description of it, and thus can be interpreted as: a ν-description of a point x contains more information about it than a µ-description of this same point.

The following lemma is easy.

Lemma 2.5. The relation is transitive and reflexive. In particular, the relation ≡ is an equivalence relation.

Definition 2.6. The numbering types on X are the equivalence classes of ≡.

If (X, ν) and (Y, µ) are numbered spaces, and if f : X → Y is a (ν, µ)-computable function between X and Y , then f will be computable with respect to any pair of numberings of X and Y which are ≡-equivalent respectively to ν and µ.

Thus f can be considered computable with respect to the numbering types associated to ν and µ.

The relation defines an order on the set of numbering types, whose description is an important part of the study of the different numberings of a set.

The following definition is fundamental. 

L ⊆ N × N such that η ν = L ∩ dom(ν) × dom(ν).
It is called positive when L can only be supposed r.e., and negative when L can be supposed co-r.e..

Constructions and examples.

There are several useful constructions that allow one to build numberings of complicated sets using numberings of simpler sets.

Definition 2.8. Given a numbered set (X, ν) and a subset Y of X, define the restriction of ν to Y to be the numbering ν |Y defined by the following:

dom(ν |Y ) = dom(ν) ∩ ν -1 (Y ), ∀n ∈ dom(ν |Y ), ν |Y (n) = ν(n).
We define the product numbering:

Definition 2.9. If (X, ν) and (Y, ν) are numbered sets, the product of the numberings ν and µ is the numbering ν × µ of X × Y defined by the following:

dom(ν × µ) = {n = 2 a 3 b r, gcd(r, 6) = 1, a ∈ dom(ν), b ∈ dom(µ)} ∀n ∈ dom(ν × µ), (n = 2 a 3 b r& gcd(r, 6) = 1) =⇒ ν × µ(n) = (ν(a), µ(b))
The definition given above is somewhat arbitrary, we could have for instance used Cantor's Pairing Function to maps N into N 2 , but any reasonable choice will in fact give a numbering equivalent to the one defined above.

Finally, we give the definition of the numbering of a set of computable functions. Denote by φ 0 , φ 1 , φ 2 ... an effective enumeration of all recursive functions. Definition 2.10. If (X, ν) and (Y, ν) are numbered sets, define µ ν as follows:

dom(µ ν ) = {i ∈ N| dom(ν) ⊆ dom(φ i ), ∀n, m ∈ dom(ν), R ν (n, m) =⇒ R µ (φ i (n), φ i (m))}, ∀i ∈ dom(µ ν ), ∀x ∈ X ν , (x = ν(k)) =⇒ (µ ν (i))(x) = µ(φ i (k)).
The following commutative diagram renders this definition clearer:

X Y N N µ ν (i) ν ϕi µ
Several examples follow from those constructions:

• The Baire space N = N N is thus equipped with the numbering id id , which we usually denote ν N .

• The Cantor space C = {0, 1} N admits a numbering induced by its natural embedding into N , we denote it ν C .

Numberings of G induced by numberings of the Cantor space.

Recall that in Section 1 we defined an embedding Φ k of the space G k of k-marked groups into the Cantor space. The natural numbering ν C of the Cantor space is obtained by seeing it as the set of functions from N to {0, 1}. The ν C -computable elements are just called computable. We define two other numberings and numbering types on C by considering lower and upper semi-computable sequences: Definition 2.11. An element (u n ) n∈N of C is lower (resp. upper) semi-computable if there exists a (id, ν C )computable function g : N → C such that for each n, g(n) is an increasing (resp. decreasing) computable sequence that converges to u n .

This exactly means that the set {n ∈ N; u n = 0} is r.e. (resp. co-r.e.).

This definition allows one to define two new numberings of C, associated to upper and lower semi computable sequences, we leave out the details of the definitions of those numberings.

Note that the first definition above extends easily to real numbers and to functions whose image is N or R, this allows to define upper and lower semi-computable real numbers, or upper and lower semi-computable functions, and so on.

Definition 2.12. The Word Problem numbering ν W P is the numbering induced on G k by seeing it as a subset of the Cantor space equipped with the numbering ν C .

The recursive presentation numbering ν r.p. on G k is the numbering induced by the lower semi-computable numbering of elements of the Cantor space, and the co-recursive presentation numbering is the numbering induced by the upper semi-computable numbering in C.

2.3.

Recursively-enumerable and Semi-decidable sets. Let (X, ν) be a numbered set. Definition 2.13. A subset Y of X is called ν-recursively enumerable (ν-r.e.) if there is a recursively enumerable subset A of dom(ν) such that Y = ν(A). The subset Y is called ν-co-recursively enumerable (ν-co-r.e.) if X \ Y is recursively enumerable. Definition 2.14. A set Y is ν-decidable if there exists a procedure that given a ν-description of an element in X, decides whether or not it belongs to Y . It is ν-semi-decidable if there exists a procedure that stops exactly on the ν-descriptions of elements of Y , and ν-co-semi-decidable if there exists a procedure that stops exactly on the ν-descriptions of elements that do not belong to Y .

Note that these last definitions depend only on the set Y c of ν-computable points in Y , whereas saying that a set Y is ν-r.e. implies that all elements of Y can be listed, and thus that Y consists only of computable elements.

2.4. Vocabulary remarks. We include here a paragraph which aims at explaining some choices of nomenclature made in this paper. While none of our name choices are original, we sometimes follow authors whose vocabulary choices were not very influential.

Given a quantified statement ST that concerns the elements of a numbered set (X, ν), one can construct an effective statement that corresponds to ST by replacing all existential quantifiers by effective existential quantifiers, whose meaning is that the object whose existence is claimed can be constructed from the data that appears to the left of the effective existential quantifier in the quantified statement ST .

The obtained statement will usually be called "effective ST ", we thus say that (X, ν) satisfies ST effectively, or on the contrary that ST does not hold effectively in (X, ν). Now an interesting aspect of this procedure, that allows one to associate effective statements to classical statements, is that it can turn classically equivalent notions into non equivalent effective notions. While this fact is the source of many interesting research problems and of many interesting results, it leads to many an ambiguity when it comes to naming properties. Indeed, at times, the question of knowing which notion should be called "effectively P " is hard to decide, for instance when P is defined by a statement of the form: "x is said to have P if it satisfies one of the following equivalent conditions: ...", conditions which are not effectively equivalent.

Our definition of an effectively continuous function between metric spaces given in Section 3 corresponds to an effectivisation of the usual -δ definition (as in [START_REF] Ceitin | Algorithmic operators in constructive metric spaces[END_REF]), whereas in computable analysis, the more usual definition is an effectivisation of the characterization of continuous functions in terms of preimage of open sets. Those definitions are equivalent in effective Polish spaces, but it is unclear whether this remains true for functions defined on generic recursive metric spaces.

Note also that what we call an effective Polish space, or effectively Polish space, (which is an effectively complete and effectively separable recursive metric space, see Section 3 for a precise definition), is usually called a computable metric space, or an effective metric space, see for instance [START_REF] Brattka | Computability on subsets of metric spaces[END_REF][START_REF] Weihrauch | Computable Analysis[END_REF][START_REF] Spreen | Representations versus numberings: on the relationship of two computability notions[END_REF].

On the contrary, what we call a recursive metric space is not necessarily complete nor separable, this follows the definitions of Ceitin in [START_REF] Ceitin | Algorithmic operators in constructive metric spaces[END_REF], of Kushner in [START_REF] Ceitin | Algorithmic operators in constructive metric spaces[END_REF] and of Moschovakis in [START_REF] Moschovakis | Recursive metric spaces[END_REF].

Introduction on some results in Markovian computable analysis

3.1. Effective Polish spaces. This introduction follows mostly Kushner ([Kus84]), but it is hopefully more accessible, since the constructivist setting adds technical complications. Note that Subsection 3.2 follows closely Hertling ([Her01]), who studies Banach-Mazur computable functions.

The computable reals.

A precise definition of the set R c of computable reals first appeared in Turing's famous 1936 article ( [START_REF] Turing | On computable numbers, with an application to the Entscheidungsproblem[END_REF]), but the numbering type of computable real numbers which is best suited to developing computable analysis was introduced one year later in the corrigendum [START_REF] Turing | On computable numbers, with an application to the Entscheidungsproblem. A correction[END_REF].

We define the standard numbering ν Q of rationals. The numbering ν Q is defined on N. Given a natural number n, decompose it as a product n = 2 a 3 b 5 c n ′ , with gcd(n ′ , 30) = 1. Put ν Q (n) = (-1) a b c+1 . We now define the Cauchy numbering ν C of R. Fix an effective enumeration φ 0 , φ 1 , φ 2 ... of all partial recursive functions.

Definition 3.1. The Cauchy numbering of R is defined by the formulas:

dom(ν C ) = {i ∈ N, ∃x ∈ R, ∀n ∈ N, |ν Q (φ i (n)) -x| < 2 -n }; ∀i ∈ dom(ν C ), ν C (i) = lim n→∞ (ν Q (φ i (n))).
Thus the description of a real number x is a Turing machines that produces a sequence (u n ) n∈N of rationals with exponential convergence speed.

Definition 3.2. The set of ν C -computable real numbers is denoted R c , and simply called the set of computable real numbers.

Note that this definition of a computable real number corresponds to the effectivisation of the notion of a Cauchy sequence -it should be a computable sequence, and it should also be "effectively Cauchy", for convenience we impose an exponential rate of convergence. See Definition 3.8 for the general notion of an effectively Cauchy sequence.

Several other definitions of the real numbers (decimal expansions, Dedekind cuts), when rendered effective, yield numbering types that define the same set of computable real numbers, but that are not ≡-equivalent to the Cauchy numbering type -they are strictly stronger. See for instance [START_REF] Mostowski | On computable sequences[END_REF].

A function

f : R c → R c which is (ν c , ν c )-computable is simply called computable.
Proposition 3.3 (Rice, [START_REF] Henry | Recursive real numbers[END_REF]). Addition, multiplication and divisions are computable functions defined respec-

tively on R c × R c , R c × R c and R c × (R c \ {0}).
We include here a well known proposition of Turing which follows from Markov's Lemma, see Lemma 3.23.

Proposition 3.4 (Turing). Equality is undecidable for computable reals.

There is no algorithm that, given two computable reals x and y, chooses one of x ≤ y or y < x which is true.

Recursive metric spaces.

We can now define what is a recursive metric space.

Definition 3.5. A recursive metric space (RMS) is a metric space (X, d) equipped with a numbering ν :⊆ N → X, such that the distance function d : X × X → R is (ν × ν, ν C )-computable.
Note that for convenience we do not impose that the set of computable points be dense in X. Of course, if (X, d, ν) is a recursive metric space, then (X c , d, ν) is also a recursive metric space, and its computable points are dense in it.

Proposition 1.4 thus implied that the space of marked groups is a recursive metric space thanks to the word problem algorithm numbering.

Example 3.6. The following spaces, equipped with their usual distances and numberings, are recursive metric spaces: N, R c , the Cantor space {0, 1} N , the Baire Space N N . Definition 3.7. A sequence (u n ) n∈N of computable points in X is called effectively convergent if it converges to a point y ∈ X, and if there exists a recursive function f : N → N such that:

∀(n, m) ∈ N 2 ; n ≥ f (m) =⇒ d(u n , y) ≤ 1 m Definition 3.8. A sequence (u n ) n∈N of computable points in X is called effectively Cauchy if there exists a recursive function f : N → N such that: ∀(p, q, m) ∈ N 3 ; p, q ≥ f (m) =⇒ d(u p , u q ) ≤ 1 m In both cases the function f is called a regulator for the sequence (u n ) n∈N .
There are different notions of "effective continuity", as we have discussed in SubSection 2.4, we give here that of Kushner ([Kus84]). Definition 3.9. A function f between computable metric spaces (X, ν) and (Y, µ) is called effectively continuous if given a ν-name n of a point x in X and the ν C -name of a computable real number > 0, it is possible to compute the ν C -name of a number η > 0 such that

∀x, y ∈ X; d(x, y) < η =⇒ d(f (x), f (y)) < .
Note that a subtlety here is that the number η is allowed to depend not only on x and , but also on the given names for those points. An program that computes the ν C -name for η given x and is said to witness for the effective continuity of f . 3.1.3. Effective completeness and effective separability. Since the space of marked groups is a Polish space, it is natural to ask whether it is an effective Polish space, that is, whether it is effectively complete and effectively separable.

Here, we define those two notions, and give some properties that follow from them. The importance of these notions lies in the facts that Ceitin's Theorem is set on effectively Polish spaces. Definition 3.10. Let (X, d, ν) be a recursive metric space. An algorithm of passage to the limit (the name is from [START_REF] Kushner | Lectures on Constructive Mathematical Analysis[END_REF]) is an algorithm that takes as input a computable Cauchy sequence together with a regulator for it, and produces the ν-name of a point towards which this sequence converges.

A recursive metric space (X, d, ν) is effectively complete if it admits an algorithm of passage to the limit.

It is easy to see that any recursive metric space can be effectively completed into an effectively complete metric space.

Indeed, given a recursive metric space (X, d, ν), and denoting (X, d) the abstract completion of X, we naturally obtain a numbering ν of X, which makes of (X, d, ν) a recursive metric space, by choosing, as ν-description of a point x of X, the Gödel number of a Turing machine that produces a ν-computable Cauchy sequences of points of X, that admits n → 2 n as a regulator. This is just the construction of the completion of a metric space that uses Cauchy sequences, as rendered effective. See [START_REF] Hertling | Banach-Mazur computable functions on metric spaces[END_REF] or [START_REF] Kushner | Lectures on Constructive Mathematical Analysis[END_REF] for more details, where for example the following easy result is proved:

Proposition 3.11. (R c , d, ν C ) is the effective completion of (Q, d, ν Q ).
We have the following easy proposition: Proposition 3.12. Let (X, d, ν) be an effectively complete metric space. A closed subset Y of X, together with the numbering induced by ν, is also an effectively complete metric space.

Proof. It suffices to notice that algorithm of passage to the limit for X also works for Y . □

The following proposition can be found in [START_REF] Kushner | Lectures on Constructive Mathematical Analysis[END_REF]:

Proposition 3.13. The Cantor space is effectively complete.

Corollary 3.14. The space of marked groups equipped with the word problem numbering is effectively complete.

This last fact is straightforward and could have been proved directly. We now describe the effective notion associated to separability. Definition 3.15. A recursive metric space (X, d, ν) is called effectively separable if there exists a computable sequence (u n ) n∈N of points in X that is dense in X.

We can finally define effectively Polish spaces. Definition 3.16. A recursive metric space (X, d, ν) which is both effectively complete and effectively separable is an effective Polish space.

There is not a single accepted term for this notion, which is sometimes referred to as a "recursive metric space". We explained in SubSection 2.4 why we talk instead of effective Polish space.

Example 3.17. The following spaces, equipped with their usual distances and numberings, are effectively Polish spaces: N, R c , the Cantor space {0, 1} N , the Baire Space N N .

The following proposition, while obvious, shall be very useful in its group theoretic version. Proposition 3.18. Let (X, d, ν) be a recursive metric space, and Y be a ν-r.e. set in X. Then any computable point in the closure Y of Y is the effective limit of a computable sequence of points of Y . This proposition could have been phrased: any computable point in the closure of Y is automatically in its "effective closure".

Proof. This is straightforward: given a point x adherent to Y , we can define a computable sequence (v n ) n∈N by: v n is the first element, in a fixed enumeration of Y , which is proven to satisfy

d(x, v n ) < 2 -n . □
This proposition has the immediate corollary:

Corollary 3.19. In an effective Polish space with a dense and computable sequence (u n ) n∈N , the computable points are exactly the effective limits of effectively Cauchy sequences extracted from (u n ) n∈N .

The following result shows one of the appeals of effective Polish spaces: the computable structure on an effective Polish space is entirely defined by the distance function between elements of its dense sequence.

Theorem 3.20. An effective Polish space is computably isometric to the effective completion of any of its computable and dense sequence.

Proof. Let (X, d, ν) be an effective Polish space, and (u n ) n∈N any computable and dense sequence.

The effective completion of (u n ) n∈N defines another numbering of X, which we denote µ, and which is defined by the following: µ(p) = x if and only if p is the Gödel number of a Turing machine that computes a function φ such that (u ϕ(n) ) n∈N converges to x with exponential speed: d(u ϕ(n) , x) < 2 -n holds for all n.

Theorem 3.20 can then be formulated equivalently: the numberings ν and µ are equivalent, i.e. the identity on X is both (ν, µ)-computable and (µ, ν)-computable. This is what we show now.

By Corollary 3.19, the ν and µ computable points of X are identical, denote X c this set.

A µ-description of a point x in X c is the description of a computable Cauchy sequence that converges to x, with g : n → 2 -n being a regulator for this sequence. The algorithm of passage to the limit of (X, d, ν) can thus be applied to this description with g as regulator, and it yields precisely a ν-description of x. This shows that the identity on X is (µ, ν)-computable.

To show that it is also (ν, µ)-computable, one only has to notice that the procedure described in the proof of Proposition 3.18 is uniform, in that it allows, given a ν-description of a point x, to produce a computable sequence extracted from (u n ) n∈N which converges to x with the desired speed. This is precisely a µ-description for x. □

Note that the equivalence of the two numberings defined in this proposition is taken as the definition of a weakly complete metric space in [START_REF] Hertling | Banach-Mazur computable functions on metric spaces[END_REF].

This Theorem allows for a very simple definition of what is an effectively Polish space, that relies only on the distance between the elements of a dense sequence. Weihrauch and Moschovakis both used such definitions. We give here a definition that mimics that of Moschovakis, see [START_REF] Gregoriades | A comparison of concepts from computable analysis and effective descriptive set theory[END_REF] for the complete definitions of Weihrauch and Moschovakis, and their differences. Note however that the definition that we give is weaker than the ones given by Weihrauch and Moschovakis -a space that admits a recursive presentation in this sense also admits one following the definitions of Weihrauch and Moschovakis. Definition 3.21. A recursive presentation of a Polish space (X, d) is a dense sequence (u n ) n∈N of points of X such that the function

φ : N × N → R c (n, m) → d(u n , u m ) is (id × id, ν C )-computable.
The term presentation is from [START_REF] Moschovakis | Descriptive set theory[END_REF], and has no relation the notion of a presentation for a group. This definition will allow us to prove the following result: Theorem 3.22. The space of marked group, associated to the distance d, does not have a recursive presentation. This theorem appears in Section 4. We will also prove that the space of marked groups does not contain any dense and computable sequences of groups described by word problem algorithms, but Theorem 3.22 is more general because we do not suppose a priori that a dense sequence should consist in groups described by word problem algorithms -or even, that it should be composed only of groups with solvable word problem.

3.2. Markov's Lemma and abstract continuity. We will give here a proof of the fact that computable functions on an effective Polish space are continuous, starting with Markov's Lemma, which is both very useful and very simple to use, and which will remain our main tool in the space of marked groups, since the stronger theorems are not applicable there.

We fix a recursive metric space (X, d, ν) which we suppose effectively complete. Denote by A lim an algorithm of passage to the limit for it. Lemma 3.23 (Markov, [START_REF] Andreevich | On the continuity of constructive functions[END_REF][START_REF] Andreevich | On constructive functions, chapter in Twelve papers on logic and differential equations[END_REF]). Suppose that a computable sequence (u n ) n∈N effectively converges in X to a computable point x. Suppose additionally that for any n, u n = x. Then there is a computable sequence (w p ) p∈N of X N such that: for each p, w p ∈ {u n , n ∈ N} ∪ {x}, and the set {p, w p = x} ⊆ N is co-r.e. but not r.e.. Proof. Consider an enumeration of all Turing machines M 0 , M 1 , ... To the machine M p , we associate an effective sequence (x p n ) n∈N of points in X. To define (x p n ) n∈N , start a run of the machine M p with no input. While it lasts, the sequence (x p n ) n∈N should be identical to the sequence (u n ) n∈N . If at some point, the machine M p stops, the sequence (x p n ) n∈N should become constant. To sum this definition up, (x p n ) n∈N is defined as follows:

While (M p does not stop) enumerate (u n ) n∈N . If (M p stops in k computation steps), set x p n = u k for n ≥ k. Each sequence (x p n ) n∈N
is Cauchy, and in fact it converges at least as fast as the original sequence (u n ) n∈N . Thus the algorithm of passage to the limit A lim can be applied to any sequence (x p n ) n∈N , using the regulator of convergence of (u n ) n∈N .

The sequence (w p ) p∈N is the sequence obtained by using the algorithm of passage to the limit on each sequence

(x p n ) n∈N , for p ∈ N.
If follows directly from our definitions that if the machine M p is non-halting, the sequence (x p n ) n∈N is identical to (u n ) n∈N , and thus w p , which is its limit, is equal to x. On the other hand, if M p halts in k computation steps, we have w p = u k and thus w p is different from x. □

We leave it to the reader to establish Proposition 3.4 thanks to Markov's Lemma.

Corollary 3.24. Let f be a computable function between recursive metric spaces X and Y , suppose that X is effectively complete, and let (x n ) n∈N be an effective sequence that effectively converges to a point x in X. Then the sequence

(f (x n )) n∈N converges to f (x).
Proof. This proof is not effective, as we proceed by contradiction. Suppose that the sequence (f (x n )) n∈N does not converge to f (x). Then there must exist a subsequence (x ϕ(n) ) n∈N of (x n ) n∈N and a rational r > 0 such that

∀n ∈ N, d(f (x ϕ(n) ), f (x)) > r.
The existence of such a sequence, which need not a priori be computable, implies that there must also exist such a sequence where, additionally, the function φ : N → N is computable. This follows from the fact that enumerating the sequence (f (x n )) n∈N , one can blindly search for terms of this sequence which are at least r-apart from f (x).

But then, the function f can be used to distinguish between the elements of the sequence (x ϕ(n) ) n∈N and its limit x, as, given a computable point u in X, it is possible to chose one which is true between d(f (u), f (x)) > r and d(f (u), f (x)) < r, if we know a priori that d(f (u), f (x)) is not equal to r. This contradicts Markov's Lemma, and thus (f (x n )) n∈N must converge to f (x). □ Say that a function f is effectively discontinuous if there exists an effective sequence (u n ) n∈N of points of X that effectively converges to a point y of X, while the sequence (f (u n )) n∈N stays away from f (y), i.e. while there is r > 0 such that for all n, d(f

(x n ), f (y)) > r.
The previous corollary thus directly implies what is also often referred to as Markov's Lemma:

Corollary 3.25. A computable function f : X → Y between an effectively complete recursive metric space X and a recursive metric space Y cannot have an effective discontinuity.

We can use the previous corollary to prove that, under the additional assumption that the space X be an effective Polish space, any computable function f : X → Y is continuous -not necessarily effectively so. This corollary of Markov's Lemma was first proven by Mazur for functions defined on intervals of R c (see [START_REF] Mazur | Computable analysis[END_REF]). Note that Mazur uses a notion of computability for functions defined on metric spaces that differs for the one we use throughout, and which is known as Banach-Mazur computability. However, the proof of his theorem is identical, when applied either to Markov computable functions, or to Banach-Mazur computable functions.

Corollary 3.26 (Mazur's Continuity Theorem). Consider a computable function f : X → Y between an effective

Polish space X and a recursive metric space Y . Then f is continuous.

Proof. Denote (u n ) n∈N an effective and dense sequence of X.

Suppose that f is not continuous at a point x of X. This means that there exists a sequence (x n ) n∈N and a real number r > 0 such that (x n ) n∈N converges to x, but for any n ∈ N, d(f (x n ), f (x)) > r. Any point of (x n ) n∈N is the limit of an effective subsequence of (u n ) n∈N , by Proposition 3.18. And thus, by Corollary 3.24, for each point

x k of the sequence (x n ) n∈N , there must exist a point u ϕ(k) in the sequence (u n ) n∈N , such that both inequalities d(u ϕ(k) , x k ) < 2 -k and d(f (u ϕ(k) ), f (x)) > r hold.
Thus there exists a subsequence (u ϕ(n) ) n∈N of (u n ) n∈N , which converges to x and such that for any n ∈ N,

d(f (u ϕ(n) ), f (x)) > r.
This subsequence is a priori not computable, but the abstract fact that such a sequence exists automatically implies that there must also exist such a subsequence that is, in addition, both computable and effectively converging to x. This follows from the fact that given a point y in X, both conditions d(y, x) < 2 -n and d(f (y), f (x)) > r define semi-decidable properties in X, and thus a computable sequence (u ϕ(n) ) n∈N can be obtained from (u n ) n∈N by simply extracting an element φ(n) if one was able to prove that the conditions

d(u ϕ(n) , x) < 2 -n and d(f (u ϕ(n) ), f (x)) > r both hold.
Finally, the existence of such a computable sequence is an obvious contradiction to Markov's Lemma, and thus f must be continuous. □ Note finally that Corollary 3.24 can be strengthened as follows:

Lemma 3.27 (Hertling,[START_REF] Hertling | Banach-Mazur computable functions on metric spaces[END_REF], Theorem 17). Let f be a computable function f : X → Y between recursive metric spaces, suppose that X is effectively complete, and let (x n ) n∈N be an effective sequence that effectively converges to a point x in X. Then the sequence (f (x n )) n∈N effectively converges to f (x).

3.3. Differences with the Borel hierarchy.

3.3.1.

Computable but discontinuous function. We give here an example of a Markov computable function that is not continuous. This is done by considering a function defined on a peculiar domain. The fact that those exist is well known, we explain it here in terms of Kolmogorov complexity, following [START_REF] Hoyrup | On the information carried by programs about the objects they compute[END_REF]. See Chapter 1 of [START_REF] Shen | Kolmogorov Complexity and Algorithmic Randomness[END_REF] for an introduction to Kolmogorov complexity. We set ourselves in the Cantor space {0; 1} N , but this could be done in R c as well. Consider a sequence (u n ) n∈N of finite strings of zeroes and ones, such that the length of u n is n, and which has linear asymptotic Kolmogorov complexity:

K(u n ) ∼ n→∞ n.
It is well known that such a sequence exists, but cannot be effectively enumerated. Consider now the sequence v n = 0 n 1u n 00000..... of elements of {0; 1}

N . This sequence also has linear asymptotic Kolmogorov complexity: a single Turing Machine can transform any element v n into the corresponding u n , this implies that asymptotically K(u n ) K(v n ). The other inequality is obvious as well.

We call A the subset of {0; 1} N consisting of the null sequence and of the set {v n , n ∈ N}.

Proposition 3.28. The function δ 0 : A → {0; 1} which sends the null sequence to 1 and all other sequences to 0 is computable on A. However, it is discontinuous.

Proof. Because K(v n ) ∼ n→∞ n, there must exist an integer b ∈ Z such that for all n, K(v n ) > n 2 + b.
We now show how to compute δ 0 . Let M x be a Turing Machine that codes for an element x in A. Denote by k the number of states of this machine. The element x has Kolmogorov complexity at most k, and thus either it is the null sequence, or, if it can be written v n for some n, we have k > n 2 + b, and thus n < 2(k -b). But since the element v n agrees with the null sequence only on its first n terms, this means that if x is not the null sequence, one of its first 2(k -b) digits must be a one. This can be easily checked, using the Turing Machine M x until it has written the first 2(k -b) digits of x. □

The following question however remains open:

Problem 3.29. Characterize those sequences (u n ) n∈N converging to the null sequence in the Cantor space for which any Markov computable function defined on {u n , n ∈ N} ∪ {0 ω } has to be continuous.

Note that peculiar instances of this problem naturally arise in our study: in [START_REF] Rauzy | Obstruction to a Higman embedding theorem for residually finite groups with solvable word problem[END_REF], the author has constructed a residually finite group G with solvable word problem with the property that any sequence of its finite quotients that converges to it must be non computable. Thus one cannot apply Markov's Lemma to prove that G cannot be distinguished from its finite quotients. On the other hand, the finite quotients of this group can easily be described, and there is no reason to think that their asymptotic Kolmogorov complexity is maximal. Thus the problem "can G be distinguished from its finite quotients?" probably falls in between the cases which we are able to deal with.

We talk again about this group in Example 5.7.

3.3.2.

A semi-decidable set that is not Open. The previous example was obtained by considering a function defined on a set with bad properties. On an effective Polish space, the decidable sets must be clopen, since their characteristic function must be continuous. By Markov's Lemma, the Markov semi-decidable sets cannot be "effectively not-open": if x is a point of a semi-decidable set X, and if (u n ) n∈N is an effective sequence that effectively converges to x, then infinitely many elements of this sequence must belong to X. One might wonder whether this result can be strengthened to: "the ν-semi-decidable sets on an effective Polish space (X, d, ν) are open". An example of Friedberg [START_REF] Friedberg | Un contre-exemple relatif aux fonctionnelles récursives[END_REF]) shows that this is not the case, we reproduce here the account of this result from [START_REF] Hoyrup | On the information carried by programs about the objects they compute[END_REF], which renders explicit the role of Kolmogorov complexity in the construction of this example. This example is set in the Cantor space {0, 1} N . For w an element of {0, 1} * , denote by [w] the clopen set of all sequences that start by w.

Theorem 3.30 (Friedberg, see [START_REF] Hoyrup | On the information carried by programs about the objects they compute[END_REF], Theorem 4.1). On the Cantor space, the set

A = {0 ω } ∪ ∪ n:K(n)< log(n) 2 [0 n 1] is semi-decidable but not open. Proof.
A is not open, as it does not contain a neighborhood of 0 ω , because infinitely often in n one has K(n) ≥ log(n) 2 . We now show that A is semi-decidable. There exists a program T that maps any element x of the Cantor space that is different from 0 ω to the number of zeroes that appear at the beginning of x.

We are now given a computable point x of {0, 1} N . The description of x, as a Turing machine that produces it, gives an upper bound K 0 on the Kolmogorov complexity of x. Noting l the length of the program T defined above, one has that either x is 0 ω , or, if x can be decomposed as x = 0 n 1x ′ , it must be that

K(n) ≤ K(x) + l ≤ K 0 + l.
Start enumerating x. If x starts with more than 2 2(K0+l) zeros, than either it is the sequence 0 ω , or it can be written as x = 0 n 1x ′ , with log(n) 2 > K 0 + l, and thus with log(n) 2 > K(n). In any case, we know that x belongs to A, without having to compute n.

If x starts with less than 2 2(K0+l) zeroes, a number n such that x can be rewritten as x = 0 n 1x ′ can be effectively found. From this, to determine whether x belongs to A, one only needs to check whether K(n) < log(n) 2 holds, which can be proven whenever it holds, as the Kolmogorov complexity is upper-semi-computable.

□

Other examples of non-open but semi-decidable sets can be found in [START_REF] Hoyrup | On the information carried by programs about the objects they compute[END_REF]. It is however clear that those examples are artificially built, and this justifies the heuristic which says that a natural semi-decidable property can be expected to be open.

Note finally that although we have just seen that a semi-decidable subset of an effectively Polish space does not have to be open, it must share the following property of open sets: it meets any computable and dense sequence. Proposition 3.31 (Moschovakis,[START_REF] Moschovakis | Recursive metric spaces[END_REF], Theorem 4). Let (X, d, ν, (u n ) n∈N ) be an effectively Polish space. A non-empty ν-semi-decidable subset of X must intersect the dense sequence (u n ) n∈N .

The proof of this result is very close to that of Mazur's Continuity Theorem, Corollary 3.26, we thus leave it to the reader to adapt it. A consequence of this fact, pointed out in [START_REF] Hoyrup | On the information carried by programs about the objects they compute[END_REF], is the following: Corollary 3.32 (Hoyrup, Rojas, [START_REF] Hoyrup | On the information carried by programs about the objects they compute[END_REF], Section 4, Proposition 3). In an effective Polish space (X, d, ν, (u n ) n∈N ), there is an algorithm that takes as input the code for a ν-semi- [START_REF] Kreisel | Partial recursive functionals and effective operations. Constructivity in mathematics[END_REF] in the case of functions defined on the Baire space N N , and obtained independently by Ceitin in 1962 in [START_REF] Ceitin | Algorithmic operators in constructive metric spaces[END_REF], in the more general setting of effective Polish spaces.

Theorem 3.33 (Kreisel-Lacombe-Schoenfield, Ceitin). A computable function defined on an effective Polish space (with images in any RMS) is effectively continuous. Moreover, for each pair constituted of an effective Polish space and any RMS, there is an algorithm that takes as input the description of a computable function defined between those spaces, and produces a program that will attest for the effective continuity of this function.

The original motivation of Kreisel, Lacombe and Schoenfield to prove this theorem was to prove that two notions of computability coincided: Markov computability, which is the one we have been working with up to now, and what is now called Borel computability (the term comes from [START_REF] Avigad | Computability and analysis: the legacy of Alan Turing[END_REF]).

We will not define Borel computability in metric spaces in its most generic setting, which is that of represented spaces, a notion similar to that of a numbered space, except that the indexing of elements is done by elements of the Baire space N N . (See for instance Weihrauch's book [START_REF] Weihrauch | Computable Analysis[END_REF].)

It is however easy to define it on explicit spaces using oracle Turing machines. On the Cantor space, for instance, a function f : {0, 1} ω c → {0, 1} ω c is called Borel computable if there exists a Turing machine which, given an oracle Φ x that produces a computable sequence x (Φ x (n) is the n-th term of x), is able to compute the digits of the image of x by the function f . A Borel computable function is automatically Markov computable, because a Turing machine that describes a sequence can be used to simulate an oracle, running the Turing machine produces the same answers as an oracle would. On the other hand, the description of a computable sequence by a machine could provide additional information on a sequence, information that would be read off of this machine.

The notion of Borel computability renders precise the idea that no "meta" information should be gleaned from the description of a sequence by a Turing machine. In [START_REF] Hoyrup | On the information carried by programs about the objects they compute[END_REF], it was shown that the additional information about a sequence that is contained in the description of program that computes it, but not in an oracle, is precisely an upper bound on the Kolmogorov complexity of this sequence (this statement is made precise in [START_REF] Hoyrup | On the information carried by programs about the objects they compute[END_REF]). This idea was already used in Section 3.3.

The following result is a consequence of the Effective Continuity Theorem. In order to state it, we must first introduce some notions.

In what follows, (X, d, ν) denotes a recursive metric space.

Definition 3.36. We say that (X, d, ν) satisfies Moschovakis' condition (B) if there is an algorithm that, given the code of a ν-semi-decidable set A ⊆ X, and an open ball B(x, r), described by a ν-name for x and a ν C -name for r ∈ R c , such that A ∩ B(x, r) = ∅, will produce the ν-name of a point y in the intersection A ∩ B(x, r).

Note that in this definition, the algorithm is always given as input a pair of intersecting sets, it then produces a point in the intersection. This algorithm is not supposed to be able to determine whether or not two given sets intersect.

Note that an easy consequence of Proposition 3.31 is the following:

Proposition 3.37. An effectively Polish space satisfies Moschovakis' condition (B).

We can now state Moschovakis' Theorem on the effective continuity of computable functions.

Theorem 3.38 (Moschovakis,[START_REF] Moschovakis | Recursive metric spaces[END_REF], Theorem 3). A computable function defined on an effectively complete RMS that satisfies Moschovakis' condition (B) is effectively continuous. Moreover, for each pair constituted of such a space and of any RMS, there is an algorithm that takes as input the description of a computable function defined between those spaces, and produces a program that will attest for the effective continuity of this function.

We will prove in Corollary 4.14 that the hypotheses of this theorem fail for the space of marked groups, leaving open the conjecture which says that computable functions on G should be effectively continuous.

Another important theorem obtained by Moschovakis in [START_REF] Moschovakis | Recursive metric spaces[END_REF], in the setting of effective Polish spaces, gives rise in G to a conjecture about semi-decidable open sets. Two more definitions are required to state this theorem. Definition 3.39. In a RMS (X, d, ν), a Lacombe set is a set of the form

∪ n∈N B(x n , r n ),
where the sequence (x n ) n∈N is a ν-computable sequence of points of X, and the sequence (r n ) n∈N is a ν C -computable sequence of computable reals.

There We omit the proofs of the results quoted in this section, an account of those proofs can be found for instance in Chapter 9 of [START_REF] Kushner | Lectures on Constructive Mathematical Analysis[END_REF].

The fact that the proofs of the results that appear in this section need to be fundamentally different from the ones that appeared in Subsection 3.2 (Markov's Lemma and the non-effective continuity theorem) can be seen as a consequence of a theorem, due to Friedberg on N N , and to Hertling for functions defined on R c , about Banach-Mazur computable functions.

We define Banach-Mazur computability now. All the results that we proved in Subsection 3.2 in fact only relied on Banach-Mazur computability: each proof concluded by exhibiting a single computable sequence whose image would not be a computable sequence. See for instance [START_REF] Hertling | Banach-Mazur computable functions on metric spaces[END_REF]. Hertling's result shows that the proof of the effective continuity theorem cannot rely on the same methods.

While the results of Hertling and Friedberg show that the notion of Banach-Mazur computability does not coincide with the intuitive notion of "computability" for functions of a real variable, they show that the notion of Banach-Mazur computability has an important theoretical role in the study of Markov computable functions, allowing one to determine what hypotheses are needed to prove different theorems.

4. The space of Marked Groups as a recursive metric space 4.1. Effective separability of G and recursive presentations. The following fact was remarked in [START_REF] De Cornulier | On the isolated points in the space of groups[END_REF].

Proposition 4.1. The computable points of (G, d, ν W P ) are not dense in it.

Proof. This follows directly from Theorem 4.11, which is due to Miller, and which we have already quoted in a previous section: there exists a coherent set of relations and irrelations that is not wp-coherent.

□

This shows that the study of computability on the space of marked groups could be more precisely set in the closure of the set of groups with solvable word problem, the structure of an open set in G which contains no group with solvable word problem has no bearing on the present study.

Denote G W P the closure of the set of (markings of) groups with solvable word problem in G. By definition, the computable points of G are dense in G W P . However, we have the following theorem: Theorem 4.2. No sequence of marked groups can be both computable and dense in G W P .

Proof. This is a simple application of Theorem 1.2, together with Corollary 3.32. Corollary 3.32 states that in an effectively Polish space, there is an algorithm that stops exactly on semi-decidable sets that are non-empty.

The basic clopen sets Ω ri;sj are obviously semi-decidable in G W P , but a program that recognizes those basic clopen sets that are non-empty would allow one to recognize wp-coherent sets of relations and irrelations, contradicting Theorem 1.2. □

It is interesting to interpret this proof as a variation on McKinsey's algorithm for finitely presented residually finite groups. Notice that if X is a set of marked groups which is dense in G W P , then every finitely presented group with solvable word problem is "residually-X", and a proof similar to McKinsey's would then contradict the Boone and Rogers Theorem ( [START_REF] Boone | On a problem of J.H.C. Whitehead and a problem of Alonzo Church[END_REF]).

This proposition directly implies the following:

Corollary 4.3. The recursive metric space (G W P , d, ν W P ) is a Polish space that is effectively complete but not effectively separable, and thus it is not an effective Polish space.

As we have already seen in the previous section, Mazur's Continuity Theorem and Ceitin's Effective Continuity Theorem both apply to effective Polish spaces. This corollary thus shows that those theorems cannot be directly applied to the space of marked groups.

We now prove a slightly more general result.

Theorem 4.4. The recursive metric space (G, d) does not have a recursive presentation in the sense of Definition 3.21.

Proof. Recall that a recursive presentation of (G, d) would consist in a sequence (u n ) n∈N , dense in G, and for which the distance between the n-th and m-th terms is computable.

If G admitted a recursive presentation, then so would G k for any k ≥ 1. Thus we only have to show that G 2 does not have a recursive presentation as a Polish space.

Recall that we have defined an embedding Φ 2 : G 2 → {0, 1} ω by fixing a computable order on the rank two free group. Call a set r 1 , ..., r m ; s 1 , ..., s m ′ of relations and irrelations initial if the m + m ′ elements of the free group it contains are exactly the first m + m ′ elements of this order.

We will prove that a recursive presentation of G 2 would allow one to compute, given an integer n, the number of initial coherent sets of relations and irrelations that contain n relations.

We first show that this is sufficient to obtain a contradiction. There are exactly 2 n possible initial sets of relations and irrelations that contain n relations. Since the incoherent sets of relations and irrelations form a r.e. set, if we had access to the number of initial coherent sets of relations and irrelations that contain n relations, we would be able to compute exactly those sets, by starting with the 2 n possible initial sets, and deleting incoherent ones until the number of coherent sets is attained.

But being able to compute the initial coherent sets of relations and irrelations in fact also allows one to compute all coherent sets of relations and irrelations, because a set r 1 , ..., r m ; s 1 , ..., s m ′ , which is not initial, is coherent if and only if there is an initial and coherent set which contains the elements r 1 , ..., r m as relations, and the elements s 1 , ..., s m ′ as irrelations. Choosing n big enough, it would then suffice to construct all initial sets of relations and irrelations of length n to determine whether r 1 , ..., r m ; s 1 , ..., s m ′ is coherent. And we have seen that this is impossible by the Boone-Novikov theorem.

Suppose that (u n ) n∈N defines a recursive presentation of G 2 , we show how to compute the number of initial coherent sets of relations and irrelations that contain n relations. Denote by λ(n) this number. Again, because the incoherent sets of relations and irrelations form a r.e. set, λ is an upper semi-computable function: there exists a computable function λ > that, given n, produces a computable and decreasing sequence of integers that converges to λ(n). What we show is that the existence of a recursive presentation of G 2 implies that λ is also lower semi-computable, meaning that there exists a computable function λ < that, on input n, produces an increasing sequence of integers which converges to λ(n).

Given i and n natural numbers, define x n i to be the maximal size of a subset of {u 0 , u 1 , ..., u i } of which any two elements are at least 2 -n apart.

We claim that (i, n) → x n i is a computable function, and that, for any n, i → x n i is an increasing function that converges to λ(n).

Setting λ < (n) = (x n i ) i∈N then concludes the proof. As the distance function d takes values only in {0} ∪ {2 -n , n ∈ N}, given the description of the distance d(u i , u j ) as a computable real, one can always effectively choose one of d(u i , u j ) < 3 × 2 -n-2 and d(u i , u j ) > 3 × 2 -n-2 which holds, and thus decide whether or not u i and u j are 2 -n apart. One can thus check every subset of {u 0 , u 1 , ..., u i } to find one of maximal size, all the elements of which are 2 -n apart. Thus (i, n) → x n i is computable. The function (i, n) → x n i is increasing in i by definition. Finally, we show that x n i goes to λ(n) as i goes to infinity. Two points of G 2 are at least 2 -n apart if and only if their binary expansion differ on one of their first n digits: those groups must be associated to different initial sets of relations and irrelations of length n. Because the sequence (u n ) n∈N is supposed to be dense in G 2 , for any coherent initial set of relations and irrelations of length n, there should be a point of this sequence which satisfies those relations and irrelations.

And thus there must indeed exist a set of λ(n) points in the dense sequence which are pairwise 2 -n apart, and this number is clearly maximal. □ 4.2. Optimality of the numbering ν W P . We will now include some results that are not aimed at studying G with the numbering ν W P , but that, on the contrary, ask which numberings of G can make of it a recursive metric space.

The precise question we want to ask is: what are the numberings that contain the least possible amount of information, while still making of G a RMS? And in particular, is ν W P optimal in this sense?

A formal statement that would express the optimality of ν W P could be: "any numbering ν that makes of (G, d, ν) a recursive metric space satisfies ν ν W P ". And one could even ask for such a result, replacing the distance d by any distance that generates the topology of G.

Mind however that this statement is false. Indeed, given a marked group G with unsolvable word problem and isolated from groups with solvable word problem, as provided by Proposition 4.1, we can define a new numbering ν G of G, defined by ν G (0) = G and, for n > 0, ν G (n) = ν W P (n -1). Because G is isolated from groups with solvable word problem, there is a natural number n G such that any group H that satisfies d(G, H) < 2 -n G also has unsolvable word problem. Thus it suffices to know the first n G terms in the binary expansion of n G to be able to compute the distance d(G, H) from G to any marked group H with solvable word problem.

And thus the new numbering ν G also makes of (G, d, ν G ) a recursive metric space, in which G is a computable point, and one has ν W P ν G and ν G ⪰̸ ν W P .

Notice however that the numbering ν G described above is not saturated, in the sense that the marked group G is ν G -computable, but it is the only ν G -computable point in the set [G]. We thus ask: Problem 4.5. Suppose that ν is a saturated numbering of G, and that (G, d, ν) is a RMS. Must one have ν ν W P ?

We however have a theorem that is close enough to the false statement given above.

Theorem 4.6. Suppose that d is any distance on G that generates the same topology as d, and that µ is a numbering of G such that (G, d, µ) is a RMS.

Suppose furthermore that there is an algorithm that takes as input a µ-name for a group G and a ν C -name for a radius r > 0, and produces a ν C -name for a radius r 1 such that B d (G, r 1 ) ⊆ B d(G, r).

Then one has µ ν W P .

Before proving this theorem, let us explain its hypotheses. Recall that an effectively open set (Definition 3.40) in a RMS (X, d, ν) is a semi-decidable set O for which there exists an algorithm that, given a ν-name for a point x in O, produces a ν C -name for a radius r such that the open ball B(x, r) of center x and of radius r is contained in O.

The hypotheses of this theorem are thus not only that the distance d should generate the same topology as d, but that the distance d together with the numbering µ should generate the same effective topology as the distance d together with the numbering ν W P . I.e. there should be an algorithm that, given an effectively open set in (G, d, µ), produces a description of this set as an effectively open set in (G, d, ν W P ).

A discriminating family of a group G is a subset of G which does not contain the identity element of G, and which intersects any non-trivial normal subgroup of G. We will use Theorem 3.4 from [START_REF] De Cornulier | On the isolated points in the space of groups[END_REF], which is an analysis of Kuznetsov's method for solving the word problem in simple groups ( [START_REF] Kuznetsov | Algorithms as operations in algebraic systems[END_REF]):

Theorem 4.7 (Cornulier, Guyot, Pitsch, [dCGP07]). A group has solvable word problem if and only if it is both recursively presentable and recursively discriminable.

And this statement is uniform: there is an effective method that allows, given a recursive presentation and an algorithm that enumerates a discriminating family in a group G, to find a word problem algorithm for G.

We add the statement about the uniformity of this theorem, but it is easy to see that the proof given in [START_REF] De Cornulier | On the isolated points in the space of groups[END_REF] is uniform.

Proof of Theorem 4.6. Consider a µ-computable marked group G. We show, given µ-name for G, how to obtain a word problem algorithm for it.

Using the algorithm given by the hypotheses of the theorem, consecutively on each ball B d(G, 1 n ), we obtain a computable sequence r n of radiuses such that for each n,

B d (G, r n ) ⊆ B d(G, 1 n ).
Each open ball B d (G, r n ) can be written as a basic clopen subset of the form Ω Rn;Sn . The union ∪ n∈N R n then defines a recursively enumerable set of relations that define G, and the set ∪ n∈N S n defines a recursively enumerable discriminating family of G.

We can thus apply Theorem 4.7, which indicates that a word problem algorithm for G can be obtained from this data. □

Two applications of a construction of Miller, failure of Moschovakis' (B) condition for the space of marked groups.

In this section, we prove two important theorems that use variations on Miller's example of a finitely presented group that is isolated from groups with solvable word problem.

The following theorem was already stated, it is Theorem 1.3.

Theorem 4.8. No algorithm can stop exactly on those sets of relations and irrelations which are not wp-coherent.

The following theorem is one of our most important results.

Theorem 4.9 (No Completion Theorem).

There is no algorithm that, given a wp-coherent set of relations and irrelations, produces a word problem algorithm for a marked group that satisfies those relations and irrelations.

The proofs for those results will be similar: they rely on Miller's constructions of a family of groups L P,Q indexed by two subsets P and Q of N. For each of those theorems, we will find some conditions the sets P and Q must satisfy for the groups L P,Q to provide a proof of the Theorems 4.8 and 4.9, and then include a lemma to prove that such sets do exist.

We start by detailing Miller's construction.

Miller's construction.

We detail the construction of Miller as it was exposed in [START_REF] Charles | Decision problems for groups -survey and reflections[END_REF]. This construction was first introduced in [START_REF] Charles | The word problem in quotients of a group[END_REF].

Step 1. Given two subsets P and Q of N, we consider the group L 1 P,Q given by the following presentation: e 0 , e 1 , e 2 , ...|e 0 = e i , i ∈ P, e 1 = e j , j ∈ Q For simplicity, we shall always assume that P contains 0 and Q contains 1.

Notice In what follows, the sets P and Q will always be recursively enumerable, and thus L 1 P,Q is recursively presented.

Step 2. Embed the recursively presented group L 1 P,Q in a finitely presented group L 2 P,Q using some strengthening of Higman's Embedding Theorem. For our purpose, we need to know that:

• A finite presentation of L 2 P,Q can be obtained from the recursive presentation of L 1 P,Q ; • If the group L 1 P,Q has solvable word problem with respect to the family (e i ) i∈N , then the group L 2 P,Q also has solvable word problem; • The embedding of L 1 P,Q into L 2 P,Q is effective, i.e. there exists a recursive function that maps a natural number n to a way of expressing the element e n as a product of the generators of L 2 P,Q . Clapham's version of Higman's Embedding Theorem ( [START_REF] Christopher | An embedding theorem for finitely generated groups[END_REF]) satisfies the required conditions for this step of the construction. Clapham's Theorem is quoted precisely in Subsection 8.1.

Step 3. Embed the group L 2 P,Q into a finitely presented group L 3 P,Q with the following property: in any non-trivial quotient of L 3 P,Q , the image of the element e 0 e -1 1 is a non-identity element. This is done as follows. Consider a presentation x 1 , ..., x k |r 1 , ...r t for L 2 P,Q , denote w a word on {x 1 , ..., x k , x -1 1 , ..., x -1 k } that defines the element e 0 e -1 1 in L 2 P,Q . The group L 3 P,Q is defined by adding to L 2 P,Q , in addition to the generators x 1 , ..., x k that are still subject to the relations r 1 , ...r t , three new generators a, b and c, subject to the following relations:

(1)

a -1 ba = c -1 b -1 cbc (2) a -2 b -1 aba 2 = c -2 b -1 cbc 2 (3) a -3 [w, b] a 3 = c -3 bc 3 (4) a -(3+i) x i ba (3+i) = c -(3+i) bc (3+i) , i = 1..k
To use Miller's construction, we need to check the following points:

• If w = 1 in L 2 P,Q , then L 2 P,Q is embedded in L 3 P,Q via the natural map x i → x i .
• The presentation of L 3 P,Q can be computed from the presentation of L 2 P,Q together with the word w. • If L 2 P,Q has solvable word problem, then so does the group

L 3 P,Q . • The element e 0 e -1
1 has a non-trivial image in any non-trivial quotient of L 3 P,Q .

The second point is obvious. The last point is easily proven: remark that the third written relation, together with w = 1, implies the relation b = 1. This in turn implies that c = 1 thanks to the first relation, that a = 1 thanks to the second relation, and then that all x i also define the identity element because of the relations of (4). The first and third points are proven using the fact that the group L 3 P,Q can be expressed as an amalgamated product.

Consider the free product L 2 P,Q * F a,b of L 2 P,Q with a free group generated by a and b, and the free group F b,c generated by b and c. Then, provided that w = 1 in L 2 P,Q , the subgroup of L 2 P,Q * F a,b generated by b and the elements that appear to the left hand side in the equations (1) -( 4) is a free group on 4 + k generators, which we denote A, and so is the subgroup B of F b,c generated by b and the elements that appear to the right hand side in the equations (1) -(4).

Thus the given presentation of L 3 P,Q shows that it is defined as an amalgamated product of the form:

(L 2 P,Q * F a,b ) * F b,c A = B
This proves both the fact that L 2 P,Q embeds in L 3 P,Q , and that the word problem is solvable in L 3 P,Q as soon as it is in L 2 P,Q , since to solve the word problem in an amalgamated product such as L 3 P,Q , it suffices to be able to solve the membership problem for A in L 2 P,Q * F a,b and for B in F b,c , we leave it to the reader to see that this can be done as soon as the word problem is solvable in L 2 P,Q . Finally, we designate by Π P,Q the finite set of relations and irrelations that is composed of the relations of L 3 P,Q , and of a unique irrelation w = 1, where w is the word that defines the element e 0 e -1 1 in L 3 P,Q . Note that the set Π P,Q can be effectively produced from the codes for the r.e. sets P and Q. This ends Miller's construction.

First application: Miller's Theorem.

We include here a proof of Miller's Theorem.

A pair of disjoint subsets P and Q of N are said to be recursively inseparable if there cannot exist a recursive set H such that P ⊆ H and Q ⊆ H c , where H c denotes the complement of H in N.

We will need the following well known result:

Lemma 4.10. There exists a pair (P, Q) of disjoints subsets of N that are recursively enumerable and recursively inseparable.

Proof. Consider an effective enumeration φ 0 , φ 1 , φ 2 ,... of all recursive functions. Consider the set P = {n ∈ N, φ n (n) = 0} and the set Q = {n ∈ N, φ n (n) = 1}. Those sets are obviously recursively enumerable. Suppose now that some recursive set H contains P but does not intersect H. Consider an index n 0 such that φ n0 is a total function that computes the characteristic function of H. If φ n0 (n 0 ) = 0, n 0 does not belong to H, but it belongs to P , this is not possible. But if φ n0 (n 0 ) = 1, then n 0 belongs to Q and to H, which is also impossible because H should not meet Q. This is a contradiction, and thus the sets P and Q are indeed recursively inseparable. □ Theorem 4.11 (Miller,[START_REF] Charles | Decision problems for groups -survey and reflections[END_REF]). Suppose that P and Q are disjoints subsets of N that are recursively enumerable and recursively inseparable. Then the set Π P,Q is coherent, but not wp-coherent.

Proof. Suppose that a group K satisfies the relations and irrelations of Π P,Q , and that is has solvable word problem.

Using the word problem algorithm for K, given an integer i in N, we can solve the questions "is e 0 = e i in K", since, by the properties of Miller's construction, an expression of the element e i in terms of the generators of L 3 P,Q , and thus of K, can be effectively found from i.

The set {i ∈ N, e i = e 0 } is thus a recursive set that contains P . And it is disjoint from Q, because we have assumed that e 0 = e 1 in K.

This contradicts the fact that P and Q are recursively inseparable. □ 4.3.3. Proof of Theorem 4.8. We first prove Theorem 4.8:

Theorem. No algorithm can stop exactly on those sets of relations and irrelations which are not wp-coherent.

Proof. Given r.e. disjoint sets, we apply Miller's construction to obtain the set Π P,Q of relations and irrelations. By Theorem 4.11, if the sets P and Q are recursively enumerable, recursively inseparable sets, then Π P,Q is not wp-coherent.

On the contrary, if P and Q are both recursive sets, we have noted that L 3 P,Q itself has solvable word problem, and thus Π P,Q is wp-coherent.

Because the set Π P,Q can be constructed from the codes for P and Q, an algorithm that stops exactly on those sets of relations and irrelations which are not wp-coherent would produce, through Miller's construction, an algorithm that, given a pair of r.e. sets P and Q that are either recursively inseparable or recursive, would stop if and only if those sets are recursively inseparable. We prove in the next lemma, Lemma 4.12, that such an algorithm cannot exit, this ends the proof of our theorem. □ Lemma 4.12. There is no algorithm that, given the code for two recursively enumerable and disjoint subsets of N, that are either recursive or recursively inseparable, stops only if they are recursively inseparable.

Proof. Fix two recursively enumerable and recursively inseparable subsets P and Q of N, that exist by Lemma 4.10. Consider an effective enumeration M 0 , M 1 , M 2 ... of all Turing machines. For each natural number n, define a pair of recursively enumerable sets P n and Q n defined as follows:

To enumerate P n , start a run of M n . While this run lasts, an enumeration of P gives the first elements of P n . If M n halts after k computation steps, stop the enumeration of P .

Thus if M n halts, the set P n is a finite set. On the contrary, if M n does not stop, P n is identical to P . The set Q n is defined similarly, replacing P by Q in its definition.

One then easily sees that the sets P n and Q n are uniformly recursively enumerable, and that P n and Q n are recursively inseparable if and only if M n does not halt.

Since no algorithm can stop exactly on the indices of non-halting Turing machines, the lemma is proved. □ 4.3.4. Proof of Theorem 4.9. We now prove Theorem 4.9:

Theorem (No Completion Theorem).

There is no algorithm that, given a wp-coherent set of relations and irrelations, produces a word problem algorithm for a marked group that satisfies those relations and irrelations.

Note that, just as Miller's Theorem (Theorem 4.11) was a strengthening of the Boone-Novikov Theorem on the existence of a finitely presented group with unsolvable word problem, this theorem strengthens the Boone-Rogers Theorem which states that the word problem does not have a uniform solution amongst finitely presented groups with solvable word problem.

Proof. We will build in Lemma 4.13 a pair of sequences (P n ) n∈N and (Q n ) n∈N such that:

• The sequences (P n ) n∈N and (Q n ) n∈N consist only of disjoint recursive sets;

• The sequences (P n ) n∈N and (Q n ) n∈N are uniformly r.e., but not uniformly recursive; • For any sequence (H n ) n∈N of uniformly recursive sets, there must be some index n 0 such that either H n0 does not contain P n0 , or H c n0 does not contain Q n0 . We apply Miller's construction to this sequence to obtain a computable sequence (Π Pn,Qn ) n∈N of finite sets of relations and irrelations.

Suppose by contradiction that there is an algorithm A as in the theorem. For each natural number n, the set Π Pn,Qn is wp-coherent, because P n and Q n are recursive. Thus the algorithm A can be applied to Π Pn,Qn , to produce the word problem algorithm for a group that satisfies the relations and irrelations of Π Pn,Qn . Denote G n the group defined by this algorithm.

For each n, the set Denote by f a recursive function that enumerates P . Denote by f an increasing function extracted from f , defined as follows:

H n = {i ∈ N, e i = e 0 in G n }
f (0) = f (0), f (1) = f (min{k ∈ N, f (k) > f (0)}), f (2) = f (min{k ∈ N, f (k) > f (1)}), etc. It is clear that f thus defined is recursive. It is well defined because P is necessarily infinite.
Consider an effective enumeration M 0 , M 1 , M 2 , M 3 ... of all Turing machines.

We define the set P n thanks to a run of the machine M n . While this run lasts, use the function f to enumerate elements of P in increasing order. If the machine M n halts in k steps, the last element of P that was added to P n is f (k -1). In this case, we chose that the set P n should be the set

P n = P ∩ {0, 1, ..., f (k -1)}.
This set can be enumerated using the function f , by keeping only the elements it produces that are below f (k -1).

Because the process described above is effective, it is clear that given an integer n, one can build a recursive enumeration of P n , and thus the sequence (P n ) n∈N is uniformly r.e..

If the machine M n never stops, the set P n is exactly the image of the increasing and recursive function f , it is thus recursive. If the machine M n stops, the set P n is finite, it is then also recursive.

The sequence (Q n ) n∈N is defined exactly as (P n ) n∈N , replacing the function f that enumerates P by a function g that enumerates Q. Thus the sequence (Q n ) n∈N is also a sequence of recursive sets, that are uniformly recursively enumerable.

For each n, one has P n ⊆ P and Q n ⊆ Q, and thus the sets P n and Q n are indeed disjoints. All that is left to show is that the sequences (P n ) n∈N and (Q n ) n∈N satisfy the last condition of the lemma: there cannot exist a sequence (H n ) n∈N of uniformly recursive sets for which the following inclusions hold:

∀n ∈ N, P n ⊆ H n & Q n ⊆ H c n
We proceed by contradiction, and suppose such a sequence exists.

Consider the set U of indices n for which P ⊈ H n .

Claim:

The halting problem is solvable on the set of Turing machines whose index is in U . Given a point n in U , we can find an integer y such that y ∈ P but y / ∈ H n . Denote by k an integer for which f (k) = y, this exists and can be computed, since f enumerates P .

By construction of H n , the fact that y / ∈ H n indicates either that the Turing machine M n does not halt, or that, if it does stop, it must be in strictly less than k steps. This information is sufficient to solve the halting problem in U . This proves the claim.

Denote by V the set of indices n for which Q ⊈ H c n . The definitions of the sets P n and Q n being symmetric, the halting problem is solvable on the set of Turing machines whose index is in V .

Because the sets U and V are easily seen to be recursively enumerable, the previous results imply that the halting problem is solvable on U ∪ V . Indeed, given a point n of U ∪ V , one can find at least one of U and V to which n belongs, and apply the method of resolution of the halting problem there.

Because the halting problem is solvable on U ∪ V , its complement must be non-empty. But for any n in (U ∪ V ) c , one has

P ⊆ H n Q ⊆ H c n
Since the set H n is recursive, this contradicts the fact that P and Q are recursively inseparable. □ An important consequence of Theorem 4.9 is that it allows us to prove that the space of marked groups does not satisfy Moschovakis' condition (B), and thus that Theorem 3.38 cannot be applied to the space of marked groups.

Corollary 4.14. The space of marked group equipped with the numbering ν W P does not satisfy Moschovakis' condition (B).

Proof. A RMS (X, d, ν) satisfies Moschovakis' condition (B) if there exists an algorithm A that takes as input the description of a ν-semi-decidable set Y and the description of an open ball B(x, r) in X, such that those set intersect, and produces a point that belongs to their intersection.

In G k , apply such an algorithm to a basic clopen subset Ω ri;sj and to an open ball that contains all of G k -any open ball of radius r ≥ 1. This yields a program that takes as input a set of relations and irrelations that is wp-coherent, and produces the ν W P -name of a point that belongs to it. The existence of such an algorithm was proven impossible in Theorem 4.9. □

First results for groups

We now apply the results of the previous sections to decision problems for groups described by word problem algorithms. The numbering ν W P of G is most often used implicitly, a r.e. set of marked groups is thus a ν W P -r.e. set of marked groups, and so on.

Positive results.

In what follows, rather than studying the decidability of a single property of marked groups, we consider two disjoint properties P and Q and are interested in the following decision problem: given a word problem algorithm for a group that satisfies P or Q, can we decide which one of P and of Q it does satisfy? We will simply say "deciding between P and Q" in what follows. By setting P = ¬Q, we can go back to studying the decidability of a single property.

The first easy result concerns properties of marked groups that are far apart. Call two properties of marked groups P and

Q ε-apart if inf(d(G, H), G ∈ P, H ∈ Q) > ε
for some strictly positive number ε.

Proposition 5.1. If P and Q are properties of marked groups which are ε-apart in G k , then it is possible to decide between P and Q.

Proof. The fact that P and Q are ε-apart means exactly that if the binary expansions of a group agrees on its first r = -log 2 (ε) terms with that of a group in P , it cannot be in Q. There are at most 2 r possible prefixes of length r to the binary expansion of a group, we can label each of those by P or Q, depending on whether there exists a group in P or Q which starts precisely by this prefix. (This is not the description of an effective process: there exists such a labelling. If no group in P or in Q starts with a given sequence, its label does not matter). Then the algorithm that recognizes P from Q, on input a marked group G, outputs the label of the sequence formed by the first r terms of the binary expansion of G. □

Of course, such an algorithm is "trivial", in the sense that it checks a number of relations that is independent from its input. Such algorithms are the least interesting ones, Conjecture 0.8 precisely asks whether any always halting algorithm defined on the set of marked groups should be trivial in this sense.

Corollary 5.2. Any clopen property in

G k is decidable.
Proof. This follows from compactness of G k , as a subset X of G k is clopen if and only if its distance to its complement is strictly positive. □

Note that those results are set in G k , and not in G. To extend Proposition 5.1 to G, one has to be careful that the described labelling can be done in a manner that depends recursively of the number of generators.

Markov's Lemma for groups.

In this subsection, we rephrase some results that are true of effectively complete recursive metric spaces to the special case of the space of marked groups.

Proposition 5.3. If a computable sequence (G n ) n∈N of marked groups effectively converge in G k , its limit has solvable word problem.

Proof. This follows directly from the fact that (G W P , d, ν) is effectively complete (Corollary 3.14). □

This proposition admits a converse.

Proposition 5.4. Suppose an effective sequence (G n ) n∈N converges to a marked group H which has solvable word problem. Then a sequence (G ψ(n) ) n∈N can be extracted from (G n ) n∈N , such that: the extraction function ψ is recursive, and for all n, d(G

ψ(n) , H) ≤ 2 -n .
Proof. Define ψ(n) to be the least integer p such that G p and H agree on the first k terms of their binary expansions. The hypotheses of the proposition ensure this defines a recursive function. □

We can now state Markov's Lemma applied to the space of marked groups.

Lemma 5.5 (Markov's Lemma for groups). If (G n ) n∈N is an effective sequence of marked groups that effectively converges to a marked group H, with G n = H for each n, then there is an effective sequence of word problem algorithms (A p W P ) p∈N , which define marked groups that belong to the set {G n ; n ∈ N} ∪ {H}, such that A p W P defines H on a non-recursively enumerable set of indices. This result is a direct consequence of Markov's Lemma (Lemma 3.23), since the space of marked groups is an effectively complete recursive metric space. We add here a direct proof of it, because it is very simple and does not require the notion of an "algorithm of passage to the limit".

Proof. Let f be a recursive modulus of convergence for (G n ) n∈N . Consider an effective enumeration M 0 , M 1 , M 2 ... of all Turing Machines. Fix some natural number l, we define a word problem algorithm A l W P as follows. To decide whether a word w defines the identity, start a run of M l . If, after |w| steps, it still has not stoped, answer A H W P (w) (by Proposition 5.3, H has solvable word problem). If M l stops in p steps, with p < |w|, find the first integer n such that f (n) < 2 -p . In this case, we choose A l W P to define the n-th group of the converging sequence, G n , thus it should answer A Gn W P (w). It is easy to see that this definitions is indeed effective and that A l W P defines the group H if and only if the l-th Turing Machine does not halt.

□

In what follows, we will often use Markov's Lemma for groups together with the following obvious proposition, which is a reformulation of Proposition 3.18.

Proposition 5.6. If a marked group G with solvable word problem is adherent to a r.e. set C of marked groups, then there is an effective sequence of marked groups in C that effectively converges to G. This proposition, while very easy, is often useful, it will be used with C being: the class of finite groups, of hyperbolic groups, all the markings of a given abstract group G, etc. We now give an example which shows that this proposition can yield some non trivial results.

Example 5.7. A group G marked by a generating family S is called effectively residually finite if there is an algorithm that, given a word w over S ∪ S -1 that defines a non-identity element g of G, produces a finite group H together with a morphism ϕ from G onto H, morphism which satisfies that ϕ(g) = 1. This finite group can be described by a finite presentation, or by its word problem algorithm, and the morphism is described by the list of images of the generators of G in H.

The following proposition gives an equivalent of this definition in terms of the topology of the space of marked groups.

Proposition 5.8. A marked group G is co-r.p. and effectively residually finite if and only if there exists a computable sequence of marked finite quotients of G that converges (not necessarily effectively) towards it.

Proof. Suppose first that (F n ) n∈N is a computable sequence of marked finite quotients of G which converges to it.

G is co-r.p.: an enumeration of all words that define non-identity elements in some F n gives an enumeration of the non-identity elements of G.

And given a word w that defines a non-identity element in G, a blind search for a group F n in which w is non-trivial will always terminate, since such a group exists by assumption. Thus G is effectively residually finite.

Suppose now that G is co-r.p. and effectively residually finite. We build a computable sequence of quotients of G that converge towards it as follows. Enumerate words for all non-identity elements of G: w 1 , w 2 , w 3 ... For each word w i , we can build a marked finite quotient F wi of G, in which the word w i defines a non-trivial element. Now we define a sequence ( Fn ) n∈N by taking for Fn the product, in the category of marked groups, of the marked groups F w1 , ..., F wn . That is to say that, if we denote by S i = (s i 1 , s i 2 , ..., s i k ) a generating set for F wi , the sequence ( Fn ) n∈N is defined by Fn ≤ F w1 × ... × F wn Fk = (s 1 1 , s 2 1 , ..., s n 1 ), ..., (s 1 k , s 2 k , ..., s n k ) It is easy to see that the sequence ( Fn ) n∈N is also computable, and converges to G. □

In [START_REF] Rauzy | Obstruction to a Higman embedding theorem for residually finite groups with solvable word problem[END_REF] the author constructed a residually finite group with solvable word problem, that is not effectively residually finite. It is then interesting to note that, applied to this group, Proposition 5.6 produces a non-trivial result: the group G is proven to be adherent to the set of finite groups thanks to a sequence of its quotients, which is necessarily not computable, however the proposition then shows that G must also be the limit of an effectively converging sequence of finite groups. Furthermore, because it is always possible to detect when a finite group is not a quotient of a recursively presented group, there must even exist a sequence that effectively converges to G, which consists only of groups which are not quotients of G.

5.3.

Cases that escape a topological characterization. Notice that our positive results about decidable properties, and our negative results, are not mutually exclusive. For P and Q properties of k-marked groups with no intersection, we have already seen that, in G k :

• If P and Q are ε-apart, there exists an algorithm that discriminates between them (Proposition 5.1); • If there exists a sequence of groups in P that effectively converges to a group in Q, then no algorithm can distinguish groups in P from groups in Q (Markov's Lemma).

Now the negation of the first point says that there are two sequences of marked groups, (G n ) n∈N and (H n ) n∈N , the first consisting of P groups, and second one of Q groups, such that d(G n , H n ) goes to 0, and is obviously much weaker than the second point.

If no such sequences exist, that are made only of groups with solvable word problems, then the properties P and Q must be ε-apart for groups with solvable word problem, (which is the same as saying that "P and having solvable word problem" is ε-apart from "Q and having solvable word problem"), and thus there exists an algorithm that tells P from Q. (Note that Conjecture 6.3 gives an instance of a property P for which we know that inf {d(G, H); G ∈ P, H ∈ ¬P } = 0, but we do not know whether or not this is also true amongst groups with solvable word problem.)

We now suppose that P and Q are not ε-apart, even amongst groups with solvable word problem. Thus there exist sequences (G n ) n∈N and (H n ) n∈N as above, consisting only of groups with solvable word problem. By compactness, up to extracting subsequences, we can suppose that both sequences converge towards a group G. We then distinguish several cases, depending on:

• whether the sequences (G n ) n∈N and (H n ) n∈N are effective;

• whether the convergence of these sequences is effective;

• whether the limit group G has solvable word problem;

• whether the limit group G satisfies one of P or Q.

The case when all four hypotheses are satisfied is precisely the one where Markov's Lemma applies (Lemma 5.5). When the first three hypotheses hold, while the last one does not, we cannot conclude anything. This we prove now.

Example 5.9. We set ourselves in the space G 1 of cyclic groups, but this could be done in any other space, replacing Z by any group which is the effective limit of an effective sequence. For each subset X of Q, consider the property P X defined by P X (G) ⇐⇒ d(G, Z) ∈ X. Consider a subset X of Q, which does not contain 0, and call Y = Q \ (X ∪ {0}). We are interested in finding out whether we can decide between P X and P Y . None of X or Y contain 0, this guarantees that Z satisfies none of P X or P Y . This implies that given a group G in P X ∪ P Y , the distance d(G, Z) can be computed not only as a computable real, but as a rational, as we excluded the only problematic case G = Z. From the computation of l = d(G, Z), to tell whether P X (G) or P Y (G), it suffices to decide whether or not l belongs to X.

If X is a recursive set of rationals, this is possible, and thus one can effectively discriminate between P X and P Y . If X is not recursive, and if we also suppose that X is a subset of {d(G, Z), G ∈ G 1 } (which is a recursive set), an algorithm that tells between P X and P Y would provide an algorithm for membership in X, which is impossible.

In either case, for effective sequences (G n ) n∈N and (H n ) n∈N to exist, that converge to Z and belong respectively to P X and P Y , one can for instance suppose that X contains the set {d(Z, Z/2 n Z), n > 1} and that Y contains {d(Z, Z/3 n Z), n > 1}.

Overall, varying the set X, one obtains different situations where the first three hypotheses highlighted above are satisfied, but for which either P X and P Y can be effectively recognized one from the other, or not. This situation is interesting, but in many cases it cannot arise: inquiring about the decidability of a single property, one will use the previously described setting with P = ¬Q, in which case the situation of Example 5.9 cannot arise.

The situation where only the last two of our highlighted hypotheses hold is the one for which the example of a discontinuous but Markov computable function given in Subsection 3.3.1 becomes relevant. The example given there shows that it is still possible in this case for P and Q to be distinguishable. However, the example given in Subsection 3.3.1 is defined on a sequence whose elements have a maximal Kolmogorov complexity, this is a very strong negation of being computable, and we conjecture that in most cases, even when the sequences (G n ) n∈N and (H n ) n∈N are not computable, P and Q will not be distinguishable. But proving so would rely on obtaining a better understanding of the structure of the sets on which a discontinuous Markov computable function can exist. A starting point in the study of this problem is, again, the article of Hoyrup and Rojas, [START_REF] Hoyrup | On the information carried by programs about the objects they compute[END_REF].

A Specker sequence of groups.

A Specker sequence of computable reals is a computable and increasing sequence of computable reals which converges to a non-computable real. Specker was the first to exhibit such a sequence in 1949 in [START_REF] Specker | Nicht konstruktiv beweisbare sätze der analysis[END_REF]. We more generally call Specker sequence a computable sequence in an effectively complete recursive metric space that converges to a non-computable point. The convergence speed of such a sequence is slower than any recursive function, it must be a Cauchy sequence that is not effectively Cauchy.

We could try and build a Specker sequence of groups by using any known construction of a Specker sequence in the Cantor space and translating it to the space of marked groups (for example using one of the Cantor spaces that are effectively embedded in G k , as are described in SubSection 5.5.3).

We however give here an example of a Specker sequence of marked finite groups which appeared naturally in [START_REF] Rauzy | Remarks and problems about algorithmic descriptions of groups[END_REF] as a solution of a group theoretic problem.

Proposition 5.10. There exists a residually finite group G which has unsolvable word problem, for which there exists a computable sequence (F n ) n∈N of marked finite quotients of G which converges to it.

Proof. We use the example gave in [START_REF] Rauzy | Remarks and problems about algorithmic descriptions of groups[END_REF] of a residually finite group which has computable finite quotients but which has unsolvable word problem. A marked group G is said to have computable finite quotients if there is an algorithm that, given a marked finite group (described by a word problem algorithm or by a finite presentation) decides whether or not this group is a finite quotient of G. Since, for a residually finite group, having computable finite quotients is stronger than being co-r.p. and effectively residually finite (by a well known result of McKinsey, see [START_REF] Rauzy | Remarks and problems about algorithmic descriptions of groups[END_REF]), Proposition 5.8 implies that a residually finite group with computable finite quotients is the limit of a computable sequence of its finite quotients. □ 5.5. Some effective Polish spaces inside of G. We give here some examples of effective Polish spaces inside of G. Since any closed subset of G stays effectively complete, an effective Polish space that lives inside of G is just the closure of any computable sequence of marked groups.

5.5.1. LEF groups. LEF groups were first defined in [START_REF] Anatolii | Groups that are locally embeddable in the class of finite groups[END_REF], in terms of partial homomorphisms onto finite group. An equivalent definition appropriate to our setting is the following:

Definition 5.11. A group is called Locally Embeddable into Finite groups (LEF) if one (or, equivalently, any) of its marking is adherent in G to the set F of finite marked groups.

The set F of (markings of) LEF groups is closed in G, by definition, and, since F is ν W P -r.e., it is also effectively separable. Thus (F, d, ν W P ) is an effective Polish space. 5.5.2. The closure of the set of Hyperbolic groups. Let H denote the set of markings of word hyperbolic groups. We have:

Proposition 5.12. The closure H of H in G is an effective Polish space with respect to the numbering ν W P .

Proof. H is closed by definition. Word problem algorithms for hyperbolic groups can be enumerated thanks to an enumeration of finite presentations for hyperbolic groups, the fact that hyperbolic groups have uniformly solvable word problem is due to Gromov, and the fact that the set of hyperbolic groups can be enumerated by finite presentations was shown by Papasoglu in [START_REF] Papasoglu | An algorithm detecting hyperbolicity[END_REF]. □ H was studied by Champetier in [START_REF] Champetier | L'espace des groupes de type fini[END_REF], where he showed for instance the following:

Proposition 5.13 (Champetier,[START_REF] Champetier | L'espace des groupes de type fini[END_REF], Corollary 5.10). The closure of the set of non-elementary hyperbolic groups in G k is a Cantor space.

Note that some results of [START_REF] Champetier | L'espace des groupes de type fini[END_REF] were revisited and improved on in [START_REF] Minasyan | Quasi-isometric diversity of marked groups[END_REF].

Since finite groups are hyperbolic, we have the inclusion F ⊆ H. Note that it is still an open question to prove that this inclusion is strict, equivalent to the problem of finding a non residually finite hyperbolic group. It is generally believed that the inclusion is indeed strict.

The continuity theorem (Corollary 3.26) can be applied on the effective Polish spaces (F, d, ν W P ) and (H, d, ν wp ), this yields the following proposition: Proposition 5.14. A property which is not clopen in F or in H cannot be decidable there. A well known characterization of orderable groups is the following: Proposition 5.17 ([Enc]). A group G is orderable if and only if for any finite set {a 1 , a 2 , ..., a n } of non-identity elements of G, there are signs 1 , ..., n ∈ {-1, 1}, such that the sub-semi-group generated by {a ϵ1 1 , a ϵ2 2 , ..., a ϵn n } does not contain the identity of G.

It is straightforward to notice that this characterization provides a way of recognizing word problem algorithms for non orderable groups, and that it shows that the set of orderable groups is closed.

Proposition 5.18. The set of orderable groups is ν W P -co-semi-decidable and closed in G. 5.6.3. Virtually cyclic groups; Virtually Nilpotent groups; Polycyclic groups. For the three properties of being virtually cyclic, virtually nilpotent or polycyclic, we use the following lemma. Recall that ν r.p. is the numbering of G associated to recursive presentations.

Lemma 5.19. Suppose that P is a ν W P -semi-decidable subset of G, and that Q is a ν r.p. -semi-decidable subset of G.

Then the set of groups that have a finitely generated normal subgroup in P , and such that the quotient by this normal subgroup is in Q, is ν W P -semi-decidable.

Note that in this statement, the normal subgroup should be finitely generated as a group, and not only finitely generated as a normal subgroup.

Proof. Given a word problem algorithm for a group G generated by a family S, we proceed as follows.

Enumerate all finite subsets of G.

There is an effective procedure that recognizes those finite subsets of G that generate a normal subgroup. Indeed, consider a finite set A in G, and the subgroup H it generates. The subgroup H is normal in G if and only if for each a in A and each s in S, the generating family of G, the elements s -1 as and sas -1 both belong to H. An exhaustive search for ways of expressing s -1 as and sas -1 as products of elements of A will terminate if indeed those elements belong to H.

For each finite subset A which generates a normal subgroup H of G, we can obtain a word problem algorithm for H thanks to the word problem algorithm for G, and a recursive presentation for the quotient G/H, since an enumeration of the relations of G together with an enumeration of the elements of H yields a recursive presentation of G/H.

The hypotheses of the lemma then allow us to recognize when the group H is in P and the quotient G/H is in Q. □

This lemma can be used directly to show that the properties of being virtually nilpotent or virtually cyclic are ν W P -semi-decidable.

Corollary 5.20. The set of virtually cyclic groups is open in G and ν W P -semi-decidable.

Proof. Apply Lemma 5.19 with P being the set of cyclic groups and Q the set of finite groups, to prove that the set of virtually cyclic groups ν W P -semi-decidable.

Analyzing the way the algorithm that stops on word-problem algorithms for virtually cyclic groups thus obtained works, one sees that the proof it produces of the fact that a group is virtually cyclic consists in finitely many relations. It is thus remarkable that both of these properties can be recognized thanks to only finitely many relations.

Corollary 5.22. The set of polycyclic groups is open in G and ν W P -semi-decidable.

For any k, finite groups have finitely many markings in G k . On the other hand, for G a group of rank k, generated by a family (g 1 , ..., g k ), setting ourselves in G k+1 , the set of generating families (g 1 , ..., g k , w), where w ranges over all elements of G, defines infinitely many markings of G, as soon as G is infinite. This yields:

Corollary 6.5. [G] k is clopen for any k if and only if G is finite. And any finite group is abstractly recognizable.

Finitely generated free groups of Hopfian varieties provide examples of groups with finitely many markings in some G k , indeed, a free group of rank k in a Hopfian variety has a single k-marking. Those include the free groups of varieties of nilpotent groups, or of the variety of metabelian groups. However, we do not know whether an isolated group can have finitely many markings in G k , such a group would be abstractly recognizable amongst k-marked groups.

Example 6.6. Limits in G 3 of markings of the rank two free group F 2 consist in all HNN extensions of the form a, b, t|t -1 wt = w where w is any element of the free group on a and b that is not a proper power (w can be trivial, in which case the defined group is free of rank three). This follows from the results of [FGM + 98].

We finally introduce the "preform" relation. By Proposition 1.5, if a marking of a group H is adherent to [G], then all markings of H will be adherent to [START_REF] Bartholdi | Ordering the space of finitely generated groups[END_REF], some of their results will be useful here. In particular, they show that the relation < ⇝ is a pre-order on the set of finitely generated groups, i.e. it is transitive and reflexive, but it is not an order, because non-isomorphic groups G and H can satisfy both G < ⇝ H and H < ⇝ G. We now investigate decidability issues, using the previous topological results. All possible generating families of an isolated group can be effectively listed, and this can be done while keeping track of a finite discriminating family (expressing its elements in terms of products of elements of each generating family). And more generally, if some marking of a group G is isolated inside a class C of abstract groups, then one can define the concept of a "discriminating family with respect to C", and such discriminating families can be transposed from a generating set to another.

The following proposition directly follows from these considerations: Proof. This follows from Proposition 6.7 and Proposition 6.8. □

In an infinite family of groups, to solve the isomorphism problem, once each group was proven abstractly recognizable, it is still left to show that this recognition can be made uniformly on all groups of the family.

In most families of groups which have solvable isomorphism problem when described by finite presentations, not only is the isomorphism problem unsolvable for the word problem algorithm description, but not all groups are recognizable. This is witnessed, for instance, by the pair { Z; Z 2 } of abelian groups, and by the pair {F 2 ; F 3 } of hyperbolic groups.

Examples of infinite families of infinite groups with solvable isomorphism problem for ν W P can be constructed using examples of isolated groups from [START_REF] De Cornulier | On the isolated points in the space of groups[END_REF], taking for instance a sequence (G n ) n∈N of pairwise non-isomorphic isolated groups, for which absolute presentations, i.e. triples (generating set-defining relations-discriminating family) can be enumerated, since the algorithm for semi-recognition of an isolated group can be obtained from an absolute presentation.

Note that all examples that arise this way define families for which the isomorphism problem is solvable from finite presentations as well. This is unfortunate, but it should be clear by now that finite presentations are in general more powerful descriptions than word problem algorithms, when it comes to solving the isomorphism problem in different classes of groups. 7. Two candidates for failure of the correspondence 7.1. Isolated Groups. It does not seem possible to prove that a word problem algorithm belongs to an isolated group (even with a partial algorithm). From this, we conjecture that the set of isolated groups defines an open set which is not ν W P -semi-decidable. However, we are unable to prove this undecidability result, which would require some techniques entirely independent of Markov's Lemma.

Conjecture 7.1. The set of isolated group is open in G but not semi-decidable.

Remark that the impossibility of partially recognizing isolated groups is also an open problem, for groups described by finite presentations. While the Adian-Rabin theorem implies that no algorithm stops exactly on finite presentations of non-isolated groups, it fails to prove that no algorithm stops exactly on finite presentations of isolated groups. The problem of proving that the set of finite presentations of simple groups is not r.e. seems also to still be open. (The question appears for instance in [START_REF] Mostowski | Uniform algorithms for deciding group-theoretic problems[END_REF].)

It is also unknown (the question appears in [START_REF] De Cornulier | On the isolated points in the space of groups[END_REF]) whether isolated points are dense in the set of groups with solvable word problem of G. If they were, we would be able to tell that no sequence of word problem algorithms which contains each isolated group can be enumerated, by Proposition 4.2. We could still arrive to that conclusion if we knew that the word problem is not uniform on isolated groups, that is to say, since all isolated groups are finitely presented, if we knew that a solution to the word problem of an isolated group cannot be retrieved from a finite presentation for this group. For instance, it is well known that the word problem is uniform on the set of simple groups ([Kuz58]), however, Kuznetsov's argument fails if we add the trivial group to the set of simple groups. It would be very interesting to prove that the trivial group is unrecognizable from simple groups, from the finite presentation description, and this would prove both that the word problem is not uniform on all isolated groups, and that the set of finite presentations of simple groups is not r.e.. However, too few finitely presented infinite simple groups are known as of now to obtain such results. 7.2. LEF groups and the elementary theory of groups.

Introduction on universal and existential theories of groups.

The space of marked groups was used by Champetier and Guirardel (in [START_REF] Champetier | Limit groups as limits of free groups[END_REF]) in order to study limit groups, which play an important role in the solution to Tarski's problem on the elementary theory of free groups. We include here a paragraph to emphasize the links with our present study, and we point out some differences. This will be the occasion to propose the set of LEF groups as another candidate for the failure of the correspondence between the Borel and arithmetical hierarchies.

We do not want to include many definitions, and refer [START_REF] Champetier | Limit groups as limits of free groups[END_REF] for precise definitions, and references. A formula is obtained with variables, logical connectors (∧ is "and", ∨ is "or", and ¬ is "not"), the equality symbol =, the group law •, the identity element 1, and the group inverse -1 , and the two quantifiers ∀ and ∃. We use shortcuts where it is convenient (as the symbols = or =⇒ ), and always use implicitly all group axioms. A sentence is a formula with no free variables. A universal sentence is a sentence that uses only the universal quantifier, and an existential sentence uses only the existential quantifier.

For instance:

∀x∀y, x = y ∀x∀y∀z, xy = yx ∧ yz = zy ∧ y = 1 =⇒ xz = zx ∃x, x = 1 ∧ x 2 = 1 For a group G, let T ∀ (G) denote the set of universal sentences that are true in G, and T ∃ (G) the set of existential sentences that are true in G. For a class C of group we also write T ∀ (C) and T ∃ (C), meaning the set of universal (resp. existential) sentences that hold in all groups of C.

In the space of marked groups, a universal sentence defines a closed set, and the correspondence with the arithmetical hierarchy holds, i.e., from a word problem algorithm, it is possible to prove that a group does not satisfy a given universal sentence. Similarly, an existential sentence defines an open set and the correspondence holds for such sets. We will not be interested here in formulas with alternating quantifiers.

The following proposition of [START_REF] Champetier | Limit groups as limits of free groups[END_REF] is thus straightforward: This proposition admits a converse, also due to Champetier and Guirardel, which strengthens the relation between the space of marked groups and the study of the elementary theory of groups. We reproduce its proof, because it is important in understanding the link between elementary theories of groups and the topology of G. Proposition 7.3 ([CG05]; Proposition 5.3). Suppose that two groups G and H satisfy T ∀ (H) ⊆ T ∀ (G). Then any marking of G is a limit of markings of subgroups of H.

Proof. The proof in fact relies on the existential theories of the groups G and H, which satisfy the reverse inclusion T ∃ (G) ⊆ T ∃ (H). Fix a generating family S of G, and a radius r. Consider the set {w 1 , ..., w k } of reduced word of length at most r on the letters S ∪ S -1 . Consider the sets J 1 = {(i, j); w i = G w j } (where = G means that those words define identical elements of G) and J 2 = {(i, j); w i = G w j }. Then G satisfies the existential formula: We end this paragraph by using Markov's Lemma together with the results of Champetier and Guirardel.

Lemma 7.5 (Markov's Lemma for Elementary Theories). Suppose that two groups G and H, with solvable word problem, satisfy T ∀ (H) ⊆ T ∀ (G).

Then [G] is not ν W P -semi-decidable inside the set

[G] ∪ ∪ [K] K∈S(H)
.

Proof. This follows from Corollary 7.4, Proposition 5.6 (if H has solvable word problem, word problems for elements in S(H) can be enumerated), and Markov's Lemma for groups (Lemma 5.5). □ 7.2.2. Limit groups and LEF Groups. We will use the following definition for limit groups (introduced in [START_REF] Sela | Diophantine geometry over groups I: Makanin-Razborov diagrams[END_REF], see [START_REF] Champetier | Limit groups as limits of free groups[END_REF] for the equivalence): a group G is a limit group if some (or all) of its markings are adherent to the set of marked free groups. Note that if G is a subgroup of a group H, every universal sentence in G holds in H. This implies that all non-abelian free groups have the same universal theory, since each non-abelian free group is a subgroup of each other non-abelian free group. Thus by the Corollary 7.4, a group G is a limit group if and only if it satisfies T ∀ (F 2 ) ⊆ T ∀ (G), where F 2 is the rank two free group. In fact, it is known that if a group G satisfies T ∀ (F 2 ) ⊆ T ∀ (G), then either it is abelian, and then it is free abelian, and T ∀ (Z) = T ∀ (G), or it has a free subgroup, which implies that T ∀ (F 2 ) = T ∀ (G).

The following proposition solves a decision problem for groups given by word problem algorithms, while relying heavily on the study of the elementary theory of groups.

8. Subgroups of finitely presented groups with solvable word problem 8.1. Higman-Clapham-Valiev Theorem for groups with solvable word problem. We now remark how Higman's embedding theorem gives further incentive for the study of algorithmic problems solved for groups described by their word problem algorithm. After Higman's proof of his famous Embedding Theorem ([Hig61]), several papers proposed different improvements.

We note that it was remarked that the theorem is effective, meaning that it provides an algorithm that takes as input a recursively presented group, and outputs a finitely presented group, together with a finite family of elements of that group, that generate a group isomorphic to the first group.

We will be interested here in the version of Higman's Theorem that preserves solvability of the word problem (see [START_REF] Mars | On polynomial reducibility of word problem under embedding of recursively presented groups in finitely presented groups[END_REF][START_REF] Christopher | An embedding theorem for finitely generated groups[END_REF]). This theorem is known as the Higman-Clapham-Valiev Theorem.

Historical remarks about these results can be found in [START_REF] Yu | The conjugacy problem and Higman embeddings[END_REF]. The following formulation of the Higman-Clapham-Valiev Theorem can also be found in [START_REF] Boone | On a problem of J.H.C. Whitehead and a problem of Alonzo Church[END_REF].

Theorem 8.1 (Higman-Clapham-Valiev, I). There exists a procedure that, given a recursive presentation for a group G, produces a finite presentation for a group H, together with an embedding G → H described by the images of the generators of H, and such that if the word problem is solvable in G, then it is also solvable in H.

One can also check that if one has access to a word problem algorithm for the group given as input to this procedure, one can obtain a word problem algorithm for the constructed finitely presented group. This yields: Theorem 8.2 (Higman-Clapham-Valiev, II). There exists a procedure that, given a word problem algorithm for a finitely generated group, produces a finite presentation of a group in which it embeds, together with a word problem algorithm for this new group, and a set of elements that generate the first group. This proves that, in general, the description of a group by its word problem algorithm, or by a finite generating family inside a finitely presented group with solvable word problem, are equivalent (we leave it to the reader to render this statement precise: define a numbering of G associated to the idea "a group is described as a subgroup of a finitely presented group with solvable word problem", the Higman-Clapham-Valiev Theorem shows that this numbering is equivalent to ν W P ).

Thus the study of algorithmic problems that can be solved from the word problem description is identical to the study of decisions problems about subgroups of finitely presented groups with solvable word problem.

The following theorem is a joint application of the Higman-Clapham-Valiev Theorem and of Markov's Lemma:

Theorem 8.3. Suppose that a computable sequence (G n ) n∈N of k-marked groups effectively converges to a k-marked group H, and suppose that H / ∈ {G n , n ∈ N}. Then there exists a finitely presented group Γ, with solvable word problem, in which no algorithm can stop exactly on k-tuple of elements of Γ that define H. Proof. By Markov's Lemma applied to groups, there exists a computable sequence (L n ) n∈N of marked groups, such that for each p, L p ∈ {G n , n ∈ N} ∪ {H}, and the set {n ∈ N|L n = H} is co-r.e. but not r.e.. The direct sum of those groups can be embedded in a finitely generated group which has solvable word problem (using the well known construction of Higman, Neumann and Neumann [START_REF] Higman | Embedding theorems for groups[END_REF]), and in turn the Higman-Clapham-Valiev theorem can be applied to obtain a finitely presented group Γ which contains the sequence (L n ) n∈N . Moreover, it is easy to see that there exists an algorithm that, given a natural number n, produces a k-tuple of elements of Γ that generate L n . (This comes from the fact that each of the described embeddings is effective.) This directly implies the claimed result. □ Note that when the conjugacy problem is uniformly solvable for the groups in (G k ) k∈N , we may want to apply the version of Higman's theorem due to Alexander Olshanskii and Mark Sapir ([OS04], and [START_REF] Yu | Subgroups of finitely presented groups with solvable conjugacy problem[END_REF] for non-finitely generated groups) that preserves its solvability. 8.2. Some examples. We now give some examples of possible applications of Theorem 8.3. Proposition 8.4. There exists a finitely presented group with solvable word problem, but unsolvable order problem.

Proof. Apply Theorem 8.3 to a sequence of finite cyclic groups that converge to Z. This yields a finitely presented group with solvable word problem in which one cannot decide whether a given element generates a subgroup isomorphic to Z or to a finite cyclic group. This is precisely a finitely presented group with solvable word problem, but unsolvable order problem. □ Proposition 8.5. There exists a finitely presented group with solvable word problem, but unsolvable power problem.

Proof. Apply Theorem 8.3 to the sequence of 2-markings of Z defined by the generating families (1, k), k ∈ N * . This is well known to converge to (the only 2-marking of) Z 2 when k goes to infinity (see [START_REF] Champetier | Limit groups as limits of free groups[END_REF]). It allows us to build a finitely presented group with solvable word problem where, given a pair of commuting elements, one cannot decide whether they generate Z 2 , or if one of these elements is a power of the other: this is a group with unsolvable power problem. □

We can also use this theorem to strengthen a result that was previously obtained in [START_REF] Duda | Amenability and computability[END_REF].

Theorem 8.6. There is a finitely presented group in which the problem of deciding whether a given subgroup is amenable is neither semi-decidable nor co-semi-decidable.

Proof. This is proven by using both a sequence of marked amenable groups which converges to a non-amenable groups and a sequence of non-amenable marked groups that converge to an amenable marked group. A sequence of the first kind is easy to find, using the fact that free groups are residually finite and non-amenable, while finite groups are amenable. A sequence of non-amenable groups that converge to a Z Z is constructed in [START_REF] Mustafa Gökhan Benli | Amenable groups without finitely presented amenable covers[END_REF], see Proposition 3.2 and Proposition B.2. of [START_REF] Mustafa Gökhan Benli | Amenable groups without finitely presented amenable covers[END_REF], one easily checks that Proposition B.2. can be used to produce a computable and effectively converging sequence. □

The "not semi-decidable" half of this result is Theorem 9.1 in [START_REF] Duda | Amenability and computability[END_REF]. Theorem 8.3 can more generally be applied to all the properties that appeared in Subsection 5.6 to produce results similar to this one.

We will stop multiplying examples, as all those results are well known, but it seems that explaining them in terms of convergence in the space of marked groups unifies several existing constructions.

  is no unanimously accepted definition for what should be an "effectively open set", we give here Moschovakis' definition. Definition 3.40. In a RMS (X, d, ν), an effectively open set is a semi-decidable set O such that there is an algorithm that, given the ν-name of a point x in O, produces the ν C -name of a computable real r such that B(x, r) ⊆ O.The following result of Moschovakis answered a question of Ceitin.Theorem 3.41 (Moschovakis, [Mos64], Theorem 11). In an effective Polish space, every effectively open set is a Lacombe set.What's more, there exists a primitive recursive function that transforms a description of a set as an effectively open set into a description for it as a Lacombe set.We ask: Problem 3.42. Must every every effectively open set in G be a Lacombe set?

Proposition 7. 2

 2 [START_REF] Champetier | Limit groups as limits of free groups[END_REF]; Proposition 5.2). If a sequence of marked groups (G n ) n∈N converge to a marked group G, then lim sup(T ∀ (G n )) ⊆ T ∀ (G).

  w i = w j ∧ ∧ (i,j)∈J2 w i = w jBy hypothesis, H must satisfy it as well, which means precisely that a subgroup of H must have the same ball of radius r as G. □For a group H, write S(H) the set of its subgroups.Corollary 7.4. Let G and H be groups. The following are equivalent:• A marking of G is adherent to the set S(H);• All markings of G are adherent to the set S(H); • T ∀ (H) ⊆ T ∀ (G).

Definition 2.7. Let

  (X, ν) be a numbered set. Then the equivalence relation defined on N by n ∼ m ⇐⇒ ν(n) = ν(m) is called the numbering equivalence induced by ν ([Ers99]), and denoted η ν .A numbering is called decidable when there is a recursive set

Kreisel, Lacombe and Schoenfield and Ceitin Theorems, Moschovakis' addendum.

  decidable set D and stops if and only if this set is non-empty. Proof. Just enumerate the sequence (u n ) n∈N in search of a point in D, by Proposition 3.31, D is non-empty if and only if it contains a point from (u n ) n∈N . Kreisel, Lacombe, Schoenfield, Ceitin. The following theorem is probably the most important theorem in computable analysis. It was first proved by Kreisel, Lacombe and Schoenfield in 1957 in

	□
	3.4. 3.4.1.

  Theorem 3.34. A function defined on an effective Polish space is Markov computable if and only if it is Borel computable.Borel computability on the space of marked groups can similarly be defined in terms of oracle Turing machines: a function is Borel computable if it is computable given access to an oracle Turing Machine that solves the word problem in the input group. The previous result leads us to asking: Must a Markov computable function defined on G be Borel computable? 3.4.2. Moschovakis. In 1964, Moschovakis gave a new proof of Ceitin's Theorem, at the same time providing the only known effective continuity result set in a more general context than that of effective Polish spaces.

	Problem 3.35.

  is then a recursive set, and this in fact holds uniformly in n. But of course, one has the inclusions P n ⊆ H n and Q n ⊆ H c n . This contradicts the properties of the sequences(P n ) n∈N and (Q n ) n∈N .□ There exists a pair of sequences (P n ) n∈N and (Q n ) n∈N such that:• The sequences (P n ) n∈N and (Q n ) n∈N consist only of disjoint recursive sets;• The sequences (P n ) n∈N and (Q n ) n∈N are uniformly r.e., but not uniformly recursive;• For any sequence (H n ) n∈N of uniformly recursive sets, there must be a some index n 0 such that either H n0 does not contain P n0 , or H c n0 does not contain Q n0 . Proof. Fix a pair (P, Q) of recursively enumerable but recursively inseparable sets.

	Lemma 4.13.

  Moschovakis' Theorem on effectively open sets in effective Polish spaces can also be applied in F and H, this yields: If O is an effectively open subset of G, then O ∩ F and O ∩ H are Lacombe sets. 5.6.2. Orderable groups. A finitely generated group G is orderable if there exists a total order ≤ on G which is compatible with the group operation: ∀x, y, a, b ∈ G, a ≤ b =⇒ xay ≤ xby.

	Proposition 5.15.

  Those relations define an open set that contain only virtually cyclic groups. □ The set of virtually nilpotent groups is open in G and ν W P -semi-decidable.Proof. Apply Lemma 5.19 with P being the set of nilpotent groups and Q the set of finite groups.Again, this shows that the set of virtually nilpotent groups is ν W P -semi-decidable, and analyzing the algorithm given by Lemma 5.19, we see that the set of virtually nilpotent groups is open in G. □ Note that we have chosen those two properties because they both admit equivalent definitions in terms of asymptotic geometry: by a well-known theorem of Gromov, a group is virtually nilpotent if and only if it has polynomial growth, and a group is virtually cyclic if and only if it has zero or two ends, in the sense of Stallings.

	Corollary 5.21.

  if and only if some marking of H is adherent to [G] in G. In this case, we say that G preforms H. This relation was introduced, named and studied by Laurent Bartholdi and Anna Erschler in

	[G]. Define a binary relation

<

⇝ on the set of finitely generated (abstract) groups by setting G < ⇝ H

  By the description of open classes of isomorphism in G k , whether isolated groups are the only abstract groups semi-recognizable from word problem algorithms depends on a conjecture that we already proposed when talking about marked recognizability, Conjecture 6.3.To make use of the statement about the closeness of isomorphism classes in G k , we must first obtain an effective version of this statement. Now, in G k , if G is a group with solvable word problem, all markings of G can be enumerated, and thus the class [G] k satisfies the hypothesis of Proposition 5.6: a group which is adherent to [G] k is the effective limit of a sequence of groups in [G] k if and only if it has solvable word problem. Thus all we have to do is to prove that some point adherent to [G] k has solvable word problem to conclude that G is not recognizable from the word problem algorithm. Proposition 6.13. A finite family D of groups with solvable word problem has solvable isomorphism problem exactly when no group in D preforms another group in D.

	Proposition 6.8. Let G and H be groups with solvable word problem. If G	< ⇝ H, then no algorithm can tell H
	from G, in particular "being equal to H" cannot be semi-decidable.	
	Proof. This is a direct application of Markov's Lemma, as we have stated that [G] is a r.e. set, and thus Proposition
	5.6 applies.	

Proposition 6.7. Isolated groups are semi-recognizable as abstract groups, and more generally, if a marking of a group G is open in C, for some class C of abstract groups, then [G] is open in C, and G is semi-recognizable as an abstract group in C. □ This proposition can be used with any of the many examples of groups G and H that satisfy G <

⇝ H that can be found in

[START_REF] Bartholdi | Ordering the space of finitely generated groups[END_REF]

, for instance it is showed there that the Grigorchuk-Aleshin group preforms a free group.

We believe that the following statement holds in general, but are not able to prove it: Conjecture 6.9. If G is an infinite group with solvable word problem of rank k, then G preforms a group H, non-isomorphic to G, with solvable word problem and of rank at most k + 1.

Effective embeddings of Cantor sets in G k .

Let G A , A ⊆ N, be a family of groups indexed by subsets of N.

Suppose that the function Θ :

{ P(N) → G

A ⊆ N → G A is injective and continuous. Suppose furthermore that Θ maps recursive subsets of N to groups with solvable word problem, and that there is a procedure that allows, given an algorithm for the membership problem in a recursive set A, to obtain a word problem algorithm for the group G A .

In this case, the function Θ defines an effective embedding of the Cantor set inside G. Each such function is attached to a subset of G which is effectively Polish.

Effective embeddings of the Cantor set into G abound in the literature. We quote here a few examples.

• P. Hall's family of 3 soluble groups from [START_REF] Hall | Finiteness conditions for soluble groups[END_REF];

• Bartholdi and Erschler's generalization of Hall's construction from [START_REF] Bartholdi | Ordering the space of finitely generated groups[END_REF], which we use to prove Theorem 6.12; • Dyson's doubles of the lamplighter group from [START_REF] Huber | A family of groups with nice word problems[END_REF], which we use in Proposition 5.16; • Amalgamated products of free groups that appear in [START_REF] Hip | An uncountable family of finitely generated residually finite groups[END_REF]; • Miller's construction detailed in SubSection 4.3; • Etc. 5.6. List of properties for which the Correspondence holds. We will now proceed to list a series of group properties for which the correspondence between the first level of the Kleene-Mostowski hierarchy and that of the Borel hierarchy holds perfectly: each quoted clopen property is ν W P -decidable, (and, while any clopen set is decidable in G k , we do not need here to fix the number of generators, we are thus set in G), each quoted open property is ν W P -semi-decidable but not ν W P -decidable, each closed property is ν W P -co-semi-decidable and not ν W P -decidable, and for properties that are neither closed not open, no partial algorithm exist.

This list is presented as a table which appears in SubSection 5.6.6. Note that most affirmations which appear in this table are obvious, easy applications of Markov's Lemma in each case provide the desired results. Those affirmations which are not accompanied by either a reference, or for which a proof does not appear in the following paragraphs, are left to the reader. 5.6.1. Residually finite groups. It is known that the set of residually finite groups is not closed, see for instance [START_REF] Gökhan | Descriptive complexity of subsets of the space of finitely generated groups[END_REF], because the adherence of the set of finite groups, which is the set LEF groups, strictly contains the set of residually finite groups. The semi-direct product Z ⋉ S ∞ is the limit of the sequence of finite groups Z/nZ ⋉ S n , as n goes to infinity; it is not residually finite since it contains an infinite simple group. Note that the described sequence effectively converges. (This example comes from [START_REF] Anatolii | Groups that are locally embeddable in the class of finite groups[END_REF]). However, it is left open in [START_REF] Gökhan | Descriptive complexity of subsets of the space of finitely generated groups[END_REF] whether or not residually finite groups form an open set. We answer this in the following.

Proposition 5.16. The set of residually finite groups is not open, and an effectively converging sequence witnesses this fact.

Proof. We use amalgamated products of lamplighter groups, as were introduced by Dyson in [START_REF] Huber | A family of groups with nice word problems[END_REF] For n > 0, denote by

n∈N is constituted of non-residually finite groups, but it converges to a free product of two lamplighter groups, which is residually finite. This is an effectively converging sequence, because by [START_REF] Huber | A family of groups with nice word problems[END_REF], an algorithm for membership in A n can be transformed in a solution to the word problem in L(A n ). □

Remark that it follows from the arguments that appear in this proof that all groups L(A), for A ⊆ Z, are LEF. Note that there are other known constructions that could have been used for this proof, those are effective embeddings of the Cantor space in G, for which we are able to give conditions on an element of the Cantor space for it to define a residually finite group. See for instance [START_REF] Nikolov | Constructing uncountably many groups with the same profinite completion[END_REF] and [START_REF] Hip | An uncountable family of finitely generated residually finite groups[END_REF].

Proof. (Sketch) Iterate Lemma 5.19 with Q being the set of cyclic groups, and P being the set polycyclic groups with a subnormal series of length n, to obtain the result.

We leave it to the reader to prove that this proof also gives the fact that the set of polycyclic groups is open in G. □ 5.6.4. Groups with infinite conjugacy classes. A group G has infinite conjugacy classes (ICC) if for each non identity element g of G the conjugacy class {xgx -1 , x ∈ G} of g is infinite.

Proposition 5.23. The set of ICC groups is ν W P -co-semi-decidable, and it is closed in G.

Proof. Given a word problem algorithm for a group G over a generating family S and an element g of G, it is possible to prove that the conjugacy class of g is finite: define a sequence of sets (A n ) n∈N by

The conjugacy class of g is finite if and only if there exists an integer n such that A n = A n+1 . A blind search for such an integer will terminate if it exists. This shows that the set of non-ICC groups is ν W P -semi-decidable, one easily checks that this also shows that this set is open. □ 5.6.5. Sofic groups. The set of sofic groups is known to be closed in G. However, whether it is all of G or a strict subset of G is still an open problem. We ask:

Problem 5.24. Is there an algorithm that recognizes word problem algorithms for non-sofic groups? 5.6.6. 

Recognizing groups from word problem algorithms

We will now include some results that concern the study of the isomorphism problem for groups described by word problem algorithms. We proceed step by step, studying first which marked groups are recognizable when described by word problem algorithms, then proceeding to ask which abstract groups are recognizable when described by word problem algorithms, and ending with the study of the isomorphism problem. As we will see, the finite sets of groups which have solvable isomorphism problem are characterized by the topology of G.

6.1. Marked Recognizability. The study of marked recognizability corresponds to the study of properties which are singletons in the space G k . A singleton is closed in G k , and, given two marked groups G and H, it is always possible to prove that they are different. This implies in particular that the isomorphism problem is always solvable for finite sets of marked groups, contrary to what happens for groups described by recursive presentations (see [START_REF] Rauzy | Remarks and problems about algorithmic descriptions of groups[END_REF]).

This also prevents one from using the constructions used in the proof of the Adian-Rabin Theorem (see [START_REF] Michael | Computable algebra, general theory and theory of computable fields[END_REF] or [START_REF] Charles | Decision problems for groups -survey and reflections[END_REF]) to sets of groups with uniformly solvable word problem, because those constructions usually hinge on a single marked group G for which the singleton {G} is ν F P -semi-decidable but not ν F P -co-semi-decidable (ν F P designates the numbering of G associated to finite presentations).

The singletons which are open in G k , which are its isolated points, were studied by Cornulier, Guyot and Pitsch in [START_REF] De Cornulier | On the isolated points in the space of groups[END_REF]. Recall that the already mentioned Lemma 1.5 from [START_REF] De Cornulier | On the isolated points in the space of groups[END_REF] implies that if a group admits an isolated marking, all its markings are isolated, and thus that we can talk about an isolated group. Say that a group G admits a finite discriminating family if there is a finite set X of non-identity elements such that any non-trivial normal subgroup of G contains an element of X. A group which admits a finite discriminating family is called finitely discriminable.

Proposition 6.1. ([dCGP07], Proposition 2) A group is isolated if and only if it is finitely presented and finitely discriminable.

If a basic clopen neighborhood Ω r1,...,rn;s1,...,s n ′ of G k is a singleton {G}, a presentation of G is given by S|r 1 , ..., r n , and {s 1 , ..., s n ′ } then define a finite discriminating family for G. Note that in the vocabulary of B. H. Neumann in [START_REF] Neumann | The isomorphism problem for algebraically closed groups[END_REF], the triple (S; r 1 , ..., r n ; s 1 , ..., s n ′ ) is an absolute presentation for G. Isolated groups have solvable word problem, by Theorem 4.7.

We have already remarked that the basic clopen sets Ω r1,...,rn;s1,...,s n ′ define decidable properties, we thus have: Proposition 6.2. Isolated groups are recognizable as marked groups.

Obvious examples of isolated groups are the finite groups (for which the whole group forms a finite discriminating family), and the finitely presented simple groups (for which any non-trivial element is a discriminating family). More examples can be found in [START_REF] De Cornulier | On the isolated points in the space of groups[END_REF]. A nice example which is not finite and not simple is Thompson's group F : it is not abelian, but all its proper quotients are, thus any non-identity element of its derived subgroup forms a finite discriminating family. Now we conjecture:

Conjecture 6.3. The isolated groups are the only groups that are recognizable, as marked groups, from the word problem algorithm.

This is an interesting conjecture because it raises problems of two different kinds. First of all, asking whether or not a decidable singleton must be clopen in G W P is a peculiar instance of our Main Conjecture (Conjecture 0.8). On the other hand, it remains an open problem to know whether it is possible that a group with solvable word problem that is not isolated in G be isolated in G W P : this is an example of an instance where it is unclear how the topology of G changes when looking only at groups with solvable word problem. 6.2. Abstract Recognizability.

First results. For an abstract group G, recall that [G] k designates the set of all its markings in G k , and [G]

the set of all its markings in G. The study of abstract recognizability in G k is the study of the decidability of the properties that can be written [G] k for some group G. As before, we will first discuss where these properties lie in the Borel hierarchy, before trying to obtain decidability results.

The open and closed isomorphism classes of groups are completely described by the following: □ Some special instances of this question were studied in conjunction to the study of the elementary theory of free and hyperbolic groups. In [START_REF] Sela | Diophantine geometry over groups VII: The elementary theory of a hyperbolic group[END_REF], Sela proved, using a variation of McKinsey's result about finitely presented residually finite groups, the following (the slight difference with our statement is that in [START_REF] Sela | Diophantine geometry over groups VII: The elementary theory of a hyperbolic group[END_REF] is used, instead of [G], the set of all markings of G and of its subgroups): Proposition 6.10. If G has solvable word problem, a finitely presented group, which is adherent to [G], also has solvable word problem.

Proof. A finitely presented group H, adherent to [G], must be residually-G, have computable quotients in [G] and a set of word problem algorithms for elements of [G] can be enumerated, thus McKinsey's algorithm applies (see [START_REF] Rauzy | Remarks and problems about algorithmic descriptions of groups[END_REF]). □

Note that this result can be used in conjunction with another result of Sela ([Sel01]), which states that all limit groups are finitely presented, to prove Conjecture 6.9 for limit groups: a limit group must always preform another group that has solvable word problem. The same techniques provide results for limits of hyperbolic groups ( [START_REF] Sela | Diophantine geometry over groups VII: The elementary theory of a hyperbolic group[END_REF]), but this stays far from the degree of generality of Conjecture 6.9.

All this leaves the following unanswered:

Conjecture 6.11. Finite groups are the only abstractly recognizable groups in (G, d, ν W P ).

A family of completely undistinguishable groups.

We will now use one of the main results of [START_REF] Bartholdi | Ordering the space of finitely generated groups[END_REF] to prove the following theorem, which shows how poorly suited the word problem numbering type is to solve the isomorphism problem for finitely generated groups.

Theorem 6.12. There exists an infinite set U = {G n , n ∈ N} of finitely generated groups with solvable word problem, such that for any pair

The set U of groups contains infinitely many non-isomorphic groups, but any ball in a labeled Cayley graph of a group in U could in fact belong to any of the groups in U . This is a situation drastically opposed to what happens for isolated groups, for which a ball of large enough radius defines the group uniquely.

Proof. We use the proof of Proposition 5.1. of [START_REF] Bartholdi | Ordering the space of finitely generated groups[END_REF], which is an elaborate variation of a well known construction of Hall. This propositions concerns the relation < ⇝ as defined on the set of marked groups: say that a marked group G preforms a marked group H if the abstract groups defined by G preforms the abstract group defined by H.

We use the fact that is given a construction that associates to a pair of subsets C and X of N a marked group H X,C , and that this construction satisfies the following: H X,C preforms H Y,C ′ if and only if Y ⊆ X, and the marked groups H X,C and H Y,C ′ are isomorphic as marked group if and only if Y = X and C = C ′ .

To apply this construction in our setting, one can check that it additionally satisfies the two following features (this is straightforward):

(1) If X and C are recursive sets, H X,C has solvable word problem;

(2) The word problem in H X,C is at least as hard, in terms of time complexity, as the membership problem in C, modulo an additive term which corresponds to a reduction from one problem to the other. Using those properties, fixing X and having C vary while being recursive, one obtains infinitely many marked groups which are all < ⇝-equivalent to each other. To justify that those marked groups actually correspond to infinitely many different abstract groups, we cannot directly use the argument used in [START_REF] Bartholdi | Ordering the space of finitely generated groups[END_REF], which goes back to Hall, and which says: as C varies in P(N), one obtains uncountably many marked groups H X,C , and since an abstract group only has countably many markings, those marked groups must in fact define uncountably many abstract groups. However, we can use the following argument, which can be seen as an effectivisation of Hall's argument: replacing the set C by recursive sets for which the membership problem has an arbitrary high time complexity, using property (2) given above, and the fact that the time complexity of the word problem in a group is an isomorphism invariant (up to a coarse equivalence relation, see for instance [START_REF] Sapir | Asymptotic invariants, complexity of groups and related problems[END_REF]), one must obtain infinitely many non isomorphic abstract groups. □ 6.3. Isomorphism Problem. Of course, the isomorphism problem is solvable for finite groups described by word problem algorithms, this can easily be seen, for finite groups the word problem and finite presentation numberings are equivalent.

Our previous results about abstract recognizability translate directly into a characterization of which finite families of groups can have solvable isomorphism problem from the word problem description, since for a finite family of groups to have solvable isomorphism problem it is necessary and sufficient that each of its groups be abstractly recognizable.

Proposition 7.6. Being a limit group is ν W P -co-semi-decidable.

Proof. A group G is a limit group if and only if it satisfies T ∀ (F 2 ) ⊆ T ∀ (G). A theorem of Makanin ( [START_REF] Gennadii | Decidability of the universal and positive theories of a free group[END_REF]) states that the universal theory of free groups is decidable, and thus that it is possible to enumerate all universal sentences that hold in free groups.

Since, given a word problem algorithm, it is always possible to prove that a universal sentence is not satisfied in the group it defines, it is possible to detect groups that are not limit groups by testing in parallel all sentences of the universal theory of free groups. □

This result is a slight improvement of a result in [START_REF] Groves | Enumerating limit groups. Groups, Geometry, and Dynamics[END_REF], where the same is obtained, but making use of both a finite presentation and a word problem algorithm.

This result calls to our attention a second example of a natural property for which the correspondence between the arithmetical hierarchy and the Borel hierarchy might fail. Indeed, this last proof relies heavily on Manakin's theorem. While the universal theory of free groups is decidable, Slobodskoi proved in [START_REF] Aleksndr | Unsolvability of the universal theory of finite groups[END_REF] that the universal theory of finite groups is unsolvable. From this we conjecture:

Conjecture 7.7. The set of LEF groups is not ν W P -co-semi-decidable.

Denote by F the set of finite groups, recall that its adherence F is the set of LEF groups. Note that, at first glance, Slobodskoi's Theorem does not seem to be the sole thing preventing us from applying the proof of Proposition 7.6 to LEF groups. Indeed, it relied on the fact that a group G is a limit group if and only if it satisfies T ∀ (F 2 ) ⊆ T ∀ (G), which in turn used the fact that the inclusion T ∀ (F 2 ) ⊆ T ∀ (G) is equivalent to the reverse inclusion T ∃ (G) ⊆ T ∃ (F 2 ) (see Proposition 7.3). This follows from the fact that the elementary theory of a single group is complete, i.e. every sentence or its negation is in it. But the theory of finite groups is of course not complete, as the existential theory T ∃ (F) is empty, since the trivial group does not satisfy any existential sentence. However, the corresponding equivalence still holds.

Proposition 7.8. A group G belongs to F if and only if it satisfies T ∀ (F) ⊆ T ∀ (G).

Proof. We use the fact that there exists a group K in F, that satisfies

, and by Corollary 7.4, G is a limit of subgroups of K. But K and all its finitely generated subgroups are in F, thus G must also be a limit of markings of finite groups.

The group K can be taken as the semi-direct product Z⋉S ∞ of the group S ∞ of finitely supported permutations of Z, on which Z acts by translation. This group is the limit of the finite groups Z/nZ ⋉ S n , as n goes to infinity (S n is the group of permutation over {1, ..., n}). Since K is in F, T ∀ (F) ⊆ T ∀ (K). However, because it contains a copy of every finite group, one also has the reversed inclusion. □

Thanks to this proposition, we have: Proposition 7.9. Conjecture 7.7 implies Slobodskoi's Theorem.

Proof. Supposing that Slobodskoi's Theorem fails, one can reproduce the proof of Proposition 7.6, and prove that Conjecture 7.7 fails. □

Other conjectures can be obtained, that are similar to Conjecture 7.7: by a theorem of Kharlampovich ([Kha83]), the universal theory of finite nilpotent groups is also undecidable, and it is also known that the universal theory of hyperbolic groups is undecidable (as proven by Osin in [START_REF] Osin | On the universal theory of torsion and lacunary hyperbolic groups[END_REF]).

Problem 7.10. Is the adherence H of the set of hyperbolic groups ν W P -co-semi-decidable? What of the adherence of the set of finite nilpotent groups? 7.2.3. Properties not characterized by universal theories. Note that not every decidable property for groups given by word problem algorithms can be solved by expressing the question that is to be solved as a problem about universal or existential theories, and applying techniques similar to the proof of Proposition 7.6.

We give here a simple example. Let H be the group Z * Z 3 . It is a non-abelian limit group, thus H and the rank three free group F 3 have the same universal theory. However, the property "being isomorphic to H" can be discerned from the property "being isomorphic to F 3 ". Indeed, no sequence of markings of H can converge to a marking of F 3 , because "having rank at most three" is an open property in G. On the other hand, suppose that a sequence of markings of F 3 converges to a marking of H. By Lemma 1.5, this implies that the canonical marking of Z * Z 3 is a limit of 4-markings of F 3 . But this would imply that one can find a generating family (a, b, c, d) of F 3 , such that b, c and d commute. This is impossible, because abelian subgroups of free groups are cyclic, and thus this would imply that F 3 is of rank two. By Proposition 6.13, the isomorphism problem is solvable for the pair {F 3 , H}, while those two groups have identical existential and universal theories.