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Magnetic perturbations of the Robin Laplacian in the strong
coupling limit

Rayan Fahs *

Abstract

This paper is devoted to the asymptotic analysis of the eigenvalues of the Laplace operator with a
strong magnetic field and Robin boundary condition on a smooth planar domain and with a negative
boundary parameter. We study the singular limit when the Robin parameter tends to infinity which
is equivalent to a semi-classical limit involving a small positive semi-classical parameter. The main
result is a comparison between the spectrum of the Robin Laplacian with an effective operator de-
fined on the boundary of the domain via the Born-Oppenheimer approximation. More precisely, the
low-lying eigenvalue of the Robin Laplacian is approximated by the those of the effective operator.
When the curvature has a unique non-degenerate maximum, we estimate the spectral gap and find
that the magnetic field does not contribute to the three-term expansion of the eigenvalues. In the
case of the disc domains, the eigenvalue asymptotics displays the contribution of the magnetic field
explicitly.

1 Introduction

1.1 Magnetic Robin Laplacian

Let Ω be a bounded open subset of R2. We assume that the boundary Γ = ∂Ω is C∞-smooth. In
this paper, we study the low-lying spectrum of the Laplacian in L2(Ω) with a strong mixed (Robin)
”attractive” boundary condition on Γ, together with the strong magnetic field. Our investigation is
partially motivated by recent works on the Robin Laplacian, in the context of superconductivity [6, 11]
and spectral geometry [14]. The operator is

Pb
γ = −(∇− ibA0)

2 ,

with domain
Dom(Pb

γ) = {u ∈ H2(Ω) : ν · (∇− ibA0)u+ γ u = 0 on Γ} ,

where

− A0 is the vector potential,

− ν is the unit outward normal vector of Γ,

− γ < 0 is the Robin parameter,

− b > 0 is the intensity of the applied magnetic field,

− ν · (∇− ibA0)u+ γ u = 0 on Γ is the Robin boundary condition.
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keywords: magnetic Robin Laplacian, homogeneous magnetic field, semi classical analysis, lowest eigenvalue, Born-
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The magnetic potential defined by

A0(x1, x2) = (A01 , A02) :=
1

2
(−x2, x1) ,

generates a constant magnetic field:

B := ∇×A0 = ∂x1A02 − ∂x2A01 = 1 .

To be more precise, the magnetic Robin Laplacian Pb
γ is defined via the Lax-Milgram theorem,

from the closed semi-bounded quadratic form (see for example [5, Ch. 4])

H1(Ω) ∋ u 7→ Qb
γ (u) :=

∫
Ω
|(∇− ibA0)u(x)|2 dx+ γ

∫
Γ
|u(x)|2 ds(x) ,

where ds is the standard surface measure on the boundary. Note that, by the inequality in [1, Lemma
2.6], the trace of u is well defined as an element of H

1
2 (Γ) , and combining with the diamagnetic in-

equality in [18, Theorem 7.21], we obtain that, the quadratic form Qb
γ is well defined and bounded from

below.

Since Ω is bounded and regular, then the embedding of H1(Ω) into L2(Ω) is compact, therefore the
operator Pb

γ has a compact resolvent. Its spectrum is purely discrete, and since Pb
γ is self-adjoint and

bounded from below, it consists of an increasing sequence of eigenvalues. Our aim is to examine the
magnetic effects on the low-lying eigenvalues

(
λn(b, γ)

)
n∈N∗ , when the Robin parameter γ tends to

−∞ and b tends to +∞ simultaneously.

If Ω is simply connected, the eigenvalue λn(b, γ) is independent of the choice of the vector potential
A0 of the magnetic field. This is a consequence of invariance under gauge transformations; if A ∈
H1(Ω;R2) and curl A = 1, then A = A0 +∇ϕ for a function ϕ ∈ H2(Ω) (cf. [3, Propositions D.1.1
and D.2.1]), and in turn

eibϕ(∇− ibA0)
2e−ibϕ = (∇− ibA0 − ib∇ϕ)2 = (∇− ibA)2.

Apart from its own interest, the study of the spectrum of the operator Pb
γ arises in several contexts,

where both situations subject to magnetic fields, b > 0, or without magnetic fields, b = 0, occur.
Estimating the ground state energy of Pb

γ , leads to information on the critical temperature/critical fields
of certain superconductors surrounded by other materials ( cf. [14, 10]) . On the other hand, eigenvalue
asymptotics in the singular limit γ → −∞, provide counterexamples in the context of spectral geometry,
see e.g. [4, 20], and has connections to the study of Steklov eigenvalues, see e.g. [7]. The case γ = 0
corresponds to the Neumann magnetic Laplacian, which has been studied in [21, 22].

1.2 Main results.

In the case without magnetic field, b = 0, the asymptotic expansion of the eigenvalues of the Robin
Laplacian has been the subject of recent studies, see e.g. [2, 6, 16, 20, 12, 11, 15]. In particular, the
derivation of an effective operator on the boundary, involving the Laplace-Beltrami operator as well
as the mean curvature of the boundary. In the same spirit, we will study the negative spectrum of
the Robin’s Laplacian on a bounded domain with the Robin condition at the boundary. Our aim is to
improve/complement earlier estimates and also clarify the magnetic field’s contribution in the spectral
asymptotic.

The main contribution of this article is Theorem 1.1 below, which involves an effective operator that
we introduce as follows. We denote by |Ω| the area of the domain Ω and by |∂Ω| the arc-length of its
boundary. Let us parameterize the boundary, ∂Ω, by the arc-length, which we denote by s. Let κ(s) be
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the curvature of ∂Ω at the point defined by the arc-length s, with the convention that κ(s) ≥ 0 when
∂Ω is convex in a neighborhood of s, and negative otherwise. The effective operators are self-adjoint
operators in the Hilbert space L2(∂Ω), acting on periodic functions, and defined as follows

Leff
γ,β0 = −γ−2(∂s − ibβ0)

2 − 1 + γ−1κ(s)

Dom
(
Leff
γ,β0

)
= H2(R/|∂Ω|Z )

(1.1)

with β0 being the circulation of the magnetic field,

β0 =
|Ω|
|∂Ω|

. (1.2)

By the min-max principle, and standard semi-classical approximation,

λn(Leff
γ,β0) = −1 + κmaxγ

−1 + o(γ−1) , (1.3)

where
κmax = max

∂Ω
κ(s) . (1.4)

We will describe the asymptotics of the negative eigenvalues of Pb
γ , via those of the effective operator

on the boundary. More precisely, the n-th eigenvalue for the Laplace operator Pb
γ , is approximated by

the n-th eigenvalue of the operators Leff
γ,β0

. We will use the following notation:

M = Õ(|γ|β) iff ∀ ϵ > 0, M = O(|γ|β−ϵ). (1.5)

Theorem 1.1. Let 0 ≤ η < 3
2 and 0 < c1 < c2 . Suppose that

c1|γ|η ≤ b ≤ c2|γ|η .

As γ tends to −∞ , for any n ∈ N∗ , we have

|λn(b, γ)− γ2λn(Leff
γ,β0)| = Õ(γ2(η−1)) ,

where λn(Leff
γ,β0

) is the n-th eigenvalue of the effective operator introduced in (1.1).

It results from Theorem 1.1 and (1.3),

λn(b, γ) = −γ2 + κmaxγ + Õ(γ2(η−1)) . (1.6)

When b is a fixed constant (i.e. η = 0), (1.6) is known in [13, Proposition 5.1] and in the absence of the
magnetic field (b = 0) [6, Theorem 1.1] and [19, Theorem 1]. Note that the remainder term is of lower
order as long as η < 3

2 . If η = 3
2 , by [11], we have

λn(b, γ) = −γ2 +
(
κmax +

b2γ−3

4

)
γ + o(γ) .

In a generic situation where the curvature has a unique non-degenerate maximum, Theorem 1.1
allows us to determine the leading order term of the spectral gap between the successive eigenvalues.
This is valid under the following assumption:

Assumption A
{

κ attains its maximum κmax at a unique point;
the maximum is non-degenerate, i.e. κ′′(0) < 0 ,

where κmax is introduced in (1.4), denotes the maximal curvature along the boundary ∂Ω and the arc-
length parametrization of the boundary is selected so that κ(0) = κmax .
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Under Assumption A , we study the three terms of the eigenvalue asymptotics of the effective oper-
ator and find that

λn(Leff
γ,β0) = −1 + κmaxγ

−1 + (2n− 1)

√
−κ′′(0)

2
|γ|−3/2 + o(|γ|−3/2) . (1.7)

This yields the following corollary of Theorem 1.1:

Corollary 1.1. Let 0 ≤ η < 5
4 and 0 < c1 < c2 . Suppose that

c1|γ|η ≤ b ≤ c2|γ|η .

Under the Assumption A, as γ tends to −∞ , for any n ∈ N∗ , we have

λn(b, γ) = −γ2 + κmaxγ + (2n− 1)

√
−κ′′(0)

2
|γ|1/2 + o(|γ|1/2) .

The technical condition on η appears as follows. After inserting (1.7) into the estimate of Theo-
rem 1.1, we get the error Õ(γ2(η−1)), which is of order o(|γ|1/2) if and only if η < 5

4 .
In the asymptotics of Corollary 1.1, the dependence with respect to the labeling of the eigenvalues, n,

appears in the third term of the expansion. However, in the generic situations described by Assumption
A , the contribution of the magnetic field is hidden in the remainder term, and is of lower order compared
to that of the curvature. Corollary 1.1 follows from the spectral asymptotics of the 1D effective oper-
ators, which is valid under a weaker assumption on the strength of the magnetic field (b = O(|γ|5/4))
when compared to the one in Theorem 1.1 (b = O(|γ|3/2)).

In the case of disc domains, Assumption A fails, but we can improve Theorem 1.1 and display the
influence of the magnetic field in the lowest eigenvalue asymptotics.

Theorem 1.2. Assume that Ω = D(0, 1) is the unit disc and that 0 ≤ η < 1. We have, as γ → −∞,

λ1(b, γ) = −γ2 + γ +

(
inf
m∈Z

(
m− b

2

)2

− 1

2

)
+ o(1) ,

uniformly with respect to b up to b = O(|γ|η).

Theorem 1.2 was known when b is fixed in [14, Theorem 1.1]. The proof of Theorem 1.2 relies on
the derivation of the following explicitly solvable effective operator, which is more accurate than the one
in (1.1) (note that in the unit disc, the curvature is constant and equal to 1),

Leff
γ,disc = −γ−2(∂s − ibβ0)

2 − 1 + γ−1 − 1

2
γ−2 . (1.8)

1.3 Organization of this paper.

This paper is organized as follows. In Section 3, we introduce an effective semiclassical parameter, we
discuss a semi-classical version of the operator, and we recall why the eigenfunctions are localized, via
Agmon estimates near the boundary. As a consequence, we replace the initial problem by a problem
on a thin tubular neighborhood of the boundary. In Section 4, by using the Born-Oppenheimer approx-
imation, we derive an effective operator whose eigenvalues simultaneously describe the eigenvalues of
the magnetic Robin Laplacian. In Section 5, we recall that the bound states for the effective operator
decay exponentially away from points of maximal curvature. Then, we reduce the study to a free-flux
operator, which is a perturbation of the harmonic oscillator. Moreover, we estimate the eigenvalues for
the effective operator with large magnetic field, thereby proving Corollary 1.1. Finally, in Section 6, in
the case of the disc domains, we describe the term that determines the influence of the magnetic field
on the spectrum of the Robin Laplacian, thereby proving Theorem 1.2. In Appendix A, we recall the
known results related to a family of one dimensional auxiliary differential operators.
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2 Boundary coordinates

The key to proving Theorem 1.1 is a reduction to the boundary. Indeed, the eigenfunctions associated
with low-lying eigenvalues concentrate exponentially near the boundary (cf. Proposition 3.1). To single
out the influence of the boundary curvature, we need a special coordinate system displaying the arc-
length along the boundary and the normal distance to the boundary. We will refer to such as boundary
coordinates. In this section, we introduce the necessary notation to use these coordinates (cf. [9, 3]). Let

R/(|∂Ω|Z) ∋ s 7−→M(s) ∈ ∂Ω

be the arc-length parametrization of ∂Ω. We will always work with |∂Ω|-periodic functions sometimes
restricted to the interval ]

−|∂Ω|
2
,
|∂Ω|
2

]
=]− L,L ] .

At the point M(s) ∈ ∂Ω, T (s) = M ′(s) is the unit tangent vector and ν(s) is the unit normal vector
such that

∀s ∈ R/(|∂Ω|Z), det(T (s), ν(s)) = 1 .

The curvature κ(s) at point M(s) is then defined as follows

T ′(s) = κ(s)ν(s) .

The smoothness of the boundary yields the existence of a constant t0 > 0 such that, upon defining

Vt0 = {x ∈ Ω : dist(x, ∂Ω) < t0}

the change of coordinates

Φ : R/(|∂Ω|Z)× (0, t0) ∋ (s, t) 7→ x =M(s)− tν(s) ∈ Vt0

becomes a diffeomorphism. Let us note that, for x ∈ Vt0 , one can write

Φ−1(x) := (s(x), t(x)) ∈ R/(|∂Ω|Z)× (0, t0)

where t(x) = dist(x, ∂Ω) and s(x) is the coordinate of the point M(s(x)) ∈ R/(|∂Ω|Z) satisfying the
relation dist(x, ∂Ω) = |x−M(s(x))| .
The inverse of Φ defines a coordinate system on a tubular neighborhood of ∂Ω in Ω that can be used
locally. Now we express various integrals in the new coordinates (s, t).

For all s, the determinant of the Jacobian matrix of the transformation Φ−1 is given by:

det JΦ(s, t) = 1− tκ(s).

In the new coordinates, the components of the vector field A0 are given as follows:

Ã1(s, t) = (1− tκ(s))A0(Φ(s, t)) ·M ′(s) ,

Ã2(s, t) = A0(Φ(s, t)) · ν(s) .

The new magnetic potential Ã0 = (Ã1, Ã2) satisfies[
∂Ã2

∂s
(s, t)− ∂Ã1

∂t
(s, t)

]
ds ∧ dt = curl A0(Φ

−1(s, t))dx ∧ dy = (1− tκ(s))ds ∧ dt .

For all u ∈ L2(Vt0), we assign the pull-back function ũ defined in the new coordinates as follows

ũ = u ◦ Φ .
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Consequently, for all u ∈ H1(Vt0) , we have∫
Vt0

|(∇− ibA0)u(x)|2 dx

=

∫ [
(1− tκ(s))−2|(∂s − ibÃ1)ũ|2 + |(∂t − ibÃ2)ũ|2

]
(1− tκ(s)) dtds,

∫
Vt0

|u(x)|2 dx =

∫
Φ−1(Vt0)

|ũ|2(1− tκ(s)) dtds ,

and ∫
Vt0∩ ∂Ω

|u(x)|2 dx =

∫
|ũ(s, t = 0)|2 ds .

Finally, we recall a useful gauge transformation that we borrow from [9, 3]. For t0 > 0 small enough,
there exists a gauge transformation φ(s, t) on R/(|∂Ω|Z)× (0, t0) such that Ā0 defined by

Ā0 = Ã0 −∇(s,t)φ =

(
Ā1(s, t)
Ā2(s, t)

)
=

β0 − t+
t2

2
κ(s)

0

 , (2.9)

with

β0 =
1

|∂Ω|

∫
Ω
curl A0 dx =

|Ω|
|∂Ω|

,

and for all u ∈ H1(Vt0), we have∫
Vt0

|(∇− ibA0)u(x)|2 dx =

∫
Φ−1(Vt0)

(
(1− tk(s))−2

∣∣(∂s − ibĀ1

)
w
∣∣2 + |∂tw|2

)
(1− tk(s)) dsdt,

where w = eiφũ and ũ = u ◦ Φ.

3 Preliminaries

3.1 Transformation into a semi-classical problem

We will prove the results of Section 1.2 in a semiclassical framework. Let us consider the semi-classical
parameter

h = γ−2 .

The limit γ → −∞ is now equivalent to the semi-classical limit h → 0+. The quadratic form can be
written as

Qb
γ(u) = h−2

(∫
Ω
|(h∇− ibhA0)u(x)|2 dx− h

3
2

∫
Γ
|u(x)|2 ds(x)

)
:= h−2qbh(u) .

Consequently, we obtain the self-adjoint operator depending on h

Lbh = −(h∇− ihbA0)
2 ,

with domain
Dom(Lbh) = {u ∈ H2(Ω) : ν · (∇− ibA0)u− h−

1
2u = 0 on Γ } .

Clearly,
Pb
γ = h−2Lbh ,

and thus the relation between the spectra of the operators Pb
γ and Lbh is displayed as follows :

σ(Pb
γ) = h−2 σ(Lbh) . (3.10)

Let (µn(h, b))n∈N∗ be the sequence of eigenvalues of the operator Lbh . Theorem 1.1 , Corollary 1.1 and
Theorem 1.2 can be reformulated in semi-classical form as follows.
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Theorem 3.1. Let n ∈ N∗ , 0 ≤ η < 3
2 and 0 < c1 < c2 . There exist h0 > 0, such that, if h ∈ (0, h0)

and b satisfies
c1h

−η
2 ≤ b ≤ c2h

−η
2 ,

then we have :
|µn(h, b)− hλn(Leff

h,β0)| = Õ(h3−η) ,

with
Leff
h,β0 = −h(∂s − ibβ0)

2 − 1− κ(s)h
1
2 .

Remark 3.1. We distinguish the following two important cases of η :

- If 0 ≤ η < 5
4 , then, Õ(h3−η) = o(h

7
4 ) .

- If 5
4 ≤ η < 3

2 , then, Õ(h3−η) = o(h
3
2 ) .

By the method of harmonic approximation, we deduce the following corollary:

Corollary 3.1. Let n ∈ N∗ , 0 ≤ η < 5
4 and 0 < c1 < c2 . Under Assumption A, there exist h0 > 0,

for all h ∈ (0, h0) and b satisfies
c1h

−η
2 ≤ b ≤ c2h

−η
2 ,

we have :

µn(h, b) = −h− κmaxh
3/2 + (2n− 1)

√
−κ′′(0)

2
h7/4 + o(h

7
4 ) .

In the case of the disc, we derive the following effective operator

Leff
h,disc = −h(∂s − ibβ0)

2 − 1− h
1
2 − h

2
. (3.11)

As a consequence, we get the following theorem.

Theorem 3.2. Assume that Ω = D(0, 1) is the unit disc, 0 ≤ η < 1 and that 0 < c1 < c2 . There exist
h0 > 0, and for all h ∈ (0, h0) and b satisfies

c1h
−η
2 ≤ b ≤ c2h

−η
2 ,

and we have

µ1(h, b) = −h− h
3
2 +

(
inf
m∈Z

(
m− b

2

)2

− 1

2

)
h2 + o(h2) .

3.2 Reduction near the boundary via Agmon estimates.

The goal of this section is to show that the eigenfunctions associated with eigenvalues less than −ϵ h,
with 0 < ϵ < 1 a fixed constant, are concentrated exponentially near the boundary at the scale h1/2 .

Proposition 3.1. Let M ∈ (−1, 0). For all α <
√
−M , there exist constants C > 0 and h0 ∈ (0, 1)

such that, for h ∈ (0, h0), if uh,b is a normalized ground state of Lbh with eigenvalue µ(h, b) such that
µ(h, b) < M h , then∫

Ω

(
|uh,b(x)|2 + h|(∇− ibA0)uh,b(x)|2

)
exp

(
2αdist(x,Γ)

h1/2

)
dx ≤ C. (3.12)

Proof. The proof is identical to the one of Refs. [6, Theorem 5.1]. We just mention the minor adjustment
due to the presence of the magnetic field term. As a consequence of introducing a partition of unity, we
are led to bound from below qbh(u) when u is supported in a ball of size Rh1/2, with R large enough.
If the support of u avoids the boundary, we use the trivial lower bound, qbh(u) ≥ 0, while if the support
of u intersects the boundary, we use the diamagnetic inequality and write the lower bound for the non-
magnetic Robin Laplacian, qbh(u) ≥ q0h(|u|) ≥

(
− h+ o(h)

)
∥u∥2.
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We record the following simple corollary of Proposition 3.1.

Corollary 3.2. Let M ∈ (−1, 0) , ρ ∈ (0, 12) and c > 0 . For all 0 < α <
√
−M , there exists C > 0

and h0 ∈ (0, 1) such that, if uh,b is a normalized ground state of Lbh with eigenvalue µ(h, b) such that
µ(h, b) < M h , then for all h ∈ (0, h0),∫

dist(x,Γ)≥c h
1
2−ρ

(
|uh,b(x)|2 + h|(∇− ibA0)uh,b(x)|2

)
dx ≤ C exp(−2α c h−ρ) . (3.13)

As a consequence, for small h, the ground states of the operator Lbh are concentrated near the
boundary of Ω (cf. Corollary 3.2). This will allow us to work in a tubular neighborhood of ∂Ω .

Let ρ ∈ (0, 1/2) , we introduce the δ-neighborhood of the boundary

Ωδ = {x ∈ Ω : dist(x,Γ) < δ } , δ = h
1
2
−ρ .

The quadratic form, defined on the variational space

Wδ = {u ∈ H1(Ωδ) : u(x) = 0 , ∀x ∈ Ω such that dist(x,Γ) = δ} ,

is given by the formula

qb,ρh (u) = h2
∫
Ωδ

|(∇− ibA0)u(x)|2 dx− h
3
2

∫
∂Ωδ

|u(x)|2 ds(x) . (3.14)

Note again that the trace on ∂Ωδ is well-defined by a classical trace theorem. The associated self-adjoint
operator is:

Lb,ρh = −(h∇− ihbA0)
2 ,

with domain

Dom(Lb,ρh ) = {u ∈ H2(Ωδ) : ν.(∇− ibA0)u− h−
1
2u = 0 on Γ and

u(x) = 0 , ∀x ∈ Ω such that dist(x,Γ) = δ} .

That is, we consider the realization with mixed boundary conditions (Robin and Dirichlet conditions).
Let (µn(h, b, ρ))n∈N∗ be the sequence of eigenvalues of the operator Lb,ρh . It is then standard to deduce
from the min-max principle and the Agmon estimates of Corollary 3.2 the following proposition.

Proposition 3.2. Let ϵ > 0 and α ∈ (0,
√
ϵ) , there exist constants C > 0 , h0 ∈ (0, 1) such that, for

all h ∈ (0, h0) , n ≥ 1 and µn(h, b) < −ϵh,

µn(h, b, ρ) ≤ µn(h, b) + C exp(−αh−ρ ) .

Moreover, for all n ≥ 1 and h > 0, we have

µn(h, b) ≤ µn(h, b, ρ) .

Proof. The inequality µn(h, b) ≤ µn(h, b, ρ) is not asymptotic. Let (vk,h)1≤k≤n be a family of eigen-
function of Lb,ρh associated with the eigenvalues (µk(h, b, ρ))1≤k≤n. We define the function

un,h =

{
vn,h if x ∈ Ωδ

0 if x ∈ Ω \ Ωδ.

Let E be the vector subspace generated by the family (uk,h)1≤k≤n. We will find an upper bound of the
quadratic form qbh(u) for all u ∈ E. By inserting u in the quadratic form qbh(u), we get

qbh(u) = qb,ρh (v) =
〈
Lb,ρh v, v

〉
≤ µn(h, b, ρ)∥v∥2 = µn(h, b, ρ)∥u∥2.
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By the min-max theorem, we get the non-asymptotic inequality

µn(h, b) ≤ µn(h, b, ρ).

Now we determine an upper bound of µn(h, b, ρ) in terms of µn(h, b). Let (uk,h)1≤k≤n an orthonormal
family of eigenfunctions associated with the eigenvalues (µk(h, b))1≤k≤n . Let the truncation function
define on R as follows:

0 ≤ χ ≤ 1, χ = 1 on ]−∞, 1/2 ] and χ = 0 on [1,+∞[ .

We define the function

χ1(x) = χ

(
t(x)

δ

)
,

with δ = h
1
2
−ρ. For k = 1, ..., n , we let

vk,h = χ1uk,h.

Let Fh be the sub-vector space of Dom(Lb,ρh ) generated by the family (vk,h)1≤k≤n and wh ∈ Fh which
is written as follows:

wh =

n∑
k=1

βkvk,h .

The functions (vk,h) are quasi-orthonormal (using Proposition 3.1). We notice that dimFh = n, and

∥wh∥2 =
n∑
k=1

|βk|2 +O(exp(−αh−ρ)) .

Now we have to find an upper bound of qb,ρh (wh) by making µn(h, b) appear. We have the following
decomposition:

qb,ρh (wh) =
〈
Lb,ρh wh, wh

〉
=

n∑
j,k=1

βjβk

〈
Lb,ρh vj,h, vk,h

〉
.

For j, k fixed and for h small enough, we have〈
Lb,ρh vj,h, vk,h

〉
=
〈
χ1 Lbh uj,h, χ1 uk,h

〉
− h2 ⟨uj,h∆χ1, χ1uk,h⟩ − 2h2 ⟨∇χ1 · (∇− ibA0)uj,h, χ1uk,h⟩

= µj(h, b) ⟨χ1uj,h, χ1uk,h⟩ − h2 ⟨uj,h∆χ1, χ1uk,h⟩ − 2h2 ⟨∇χ1 · (∇− ibA0)uj,h, χ1uk,h⟩
= δj,k µj(h, b)− h2 ⟨uj,h∆χ1, χ1uk,h⟩ − 2h2 ⟨∇χ1 · (∇− ibA0)uj,h, χ1uk,h⟩
+O(exp(−αh−ρ)) .

We have
∇χ1(x) = hρ−1/2∇t(x)χ′(hρ−1/2 t(x)),

and

∆χ1(x) = h2ρ−1 |∇t(x)|2 χ′′(hρ−1/2 t(x)) + hρ−1/2∆t(x)χ′(hρ−1/2 t(x)) .
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According to the Hölder inequality, we have

h2|⟨uj,h∆χ1, χ1uk,h⟩| = h2

∣∣∣∣∣
∫
{t(x)≥δ/2}

uj,h∆χ1 χ1 uk,h dx

∣∣∣∣∣
≤ h2

(∫
{t(x)≥δ/2}

|uj,h∆χ1|2 dx

)1/2(∫
{t(x)≥δ/2}

|uk,h χ1|2 dx

)1/2

,

and

h2|⟨∇χ1 · (∇− ibA0)uj,h, χ1uk,h⟩|

= h2

∣∣∣∣∣
∫
{t(x)≥δ/2}

∇χ1.(∇− ibA0)uj,h χ1 uk,h dx

∣∣∣∣∣
≤ h2

(∫
{t(x)≥δ/2}

|∇χ1.(∇− ibA0)uj,h|2 dx

)1/2(∫
{t(x)≥δ/2}

|uk,h χ1|2 dx

)1/2

.

Since h.hρ−1/2 < 1 and h.h2ρ−1 < 1 and by Corollary 3.2, there exist constants c > 0 such that :

h2|⟨uj,h∆χ1, χ1uk,h⟩| ≤ c

(∫
{t(x)≥δ/2}

|uj,h |2 dx

)1/2(∫
{t(x)≥δ/2}

|uk,h|2 dx

)1/2

≤ c exp(−αh−ρ),

and

h2|⟨∇χ1 · (∇− ibA0)uj,h, χ1uk,h⟩|

≤ c

(∫
{t(x)≥δ/2}

h|(∇− ibA0)uj,h|2 dx

)1/2(∫
{t(x)≥δ/2}

|uk,h|2 dx

)1/2

≤ c exp(−αh−ρ ) .

hence

h2⟨uj,h∆χ1, χ1uk,h⟩+ 2h2⟨∇χ1 · (∇− ibA0)uj,h, χ1uk,h⟩ = O(exp(−αh−ρ)).

Consequently,

qb,ρh (wh) =
n∑

j,k=1

βjβk

〈
Lb,ρh vj,h, vk,h

〉
=

n∑
j=1

µj(h, b)|βj |2 +O(exp(−αh−ρ))
n∑

j,k=1

βjβk

≤
(
µn(h, b) + C exp(−αh−ρ)

)
∥wh∥2 .

By the min-max theorem, we have

µn(h, b, ρ) = inf
E⊂Wδ
dimE=n

sup
u∈E
u̸=0

qb,ρh (u)∫
Ωh

|u|2 dx
,

therefore,
µn(h, b, ρ) ≤ µn(h, b) + C exp(−αh−ρ).

Proposition 3.2 leads us to replace the initial problem by a new Robin-Dirichlet in a δ-neighborhood
of the boundary Γ , and then reduces the analysis to the operator Lb,ρh .
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3.3 The Robin Laplacian in boundary coordinates.

By (2.9), the new quadratic form is expressed in tubular coordinates and is written as follows:

q̃ b,ρh (u) = h2
∫ L

−L

∫ δ

0

∣∣∣∣ (∂s − ibβ0 − ib
(
− t+

t2

2
κ(s)

))
ũ

∣∣∣∣2 (1− tκ(s))−1 dtds

+ h2
∫ L

−L

∫ δ

0
|∂tũ|2 (1− tκ(s)) dt ds− h3/2

∫ L

−L
|ũ(s, t = 0)|2 ds ,

with ũ = eiφu ◦ Φ and L =
|∂Ω|
2

. The operator Lb,ρh is unitarily equivalent to L̃b,ρh the self-adjoint

realization on L2((−L,L]× (0, δ), a dtds), of the differential operator, with the 2L-periodic boundary
condition with respect to s,

L̃b,ρh = −h2a−1

(
∂s − ibβ0 − ib

(
− t+

t2

2
κ(s)

))
a−1

(
∂s − ibβ0 − ib

(
− t+

t2

2
κ(s)

))
− h2a−1∂ta∂t (in (L2(a dtds)) ,

with a = 1− tκ(s) . In boundary coordinates, the Robin condition becomes

∂tu(s, t = 0) = −h−1/2u(s, t = 0) .

We introduce,

Ω̃δ = {(s, t) : s ∈ [−L,L[ and 0 < t < δ } ,

Dom(q̃ b,ρh ) = {u ∈ H1(Ω̃δ) : u(s, δ) = 0} ,

Dom(L̃b,ρh ) = {u ∈ H2(Ω̃δ) : u(s, δ) = 0 and ∂tu(s, t = 0) = −h−1/2u(s, t = 0)} .

We know that the eigenfunctions are localized near the boundary, at the scale h
1
2 (cf. Proposition 3.1)

and in order to obtain a Robin condition independent of h, we get a partially semiclassical problem by
changing the variable

(s, t) = (s, h
1
2 τ).

This change of variable transforms the above expression of L̃b,ρh into an operator as follows

h

[
− hâ−1

(
∂s − ibβ0 − ib

(
− h

1
2 τ + h

τ2

2
κ(s)

))
â−1

(
∂s − ibβ0 − ib

(
− h

1
2 τ + h

τ2

2
κ(s)

))
− â−1∂τ â∂τ

]
,

where the new weight is
â(s, τ) = 1− h

1
2 τκ(s) .

The boundary condition becomes

∂τu(s, τ = 0) = −u(s, τ = 0) .

We consider rather the operator
L̂ b,ρ
h = h−1L̃ b,ρ

h ,

and the domain of integration becomes

[−L,L[×(0, δ/h1/2) = [−L,L[×(0, h−ρ) .
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The associated quadratic form is

q̂ b,ρh (ψ) =

∫ L

−L

∫ h−ρ

0

∣∣∣∣ (h1/2∂s − ibh1/2β0 − ibh
(
− τ + h1/2

τ2

2
κ(s)

))
ψ

∣∣∣∣2 â−1 dτ ds

+

∫ L

−L

∫ h−ρ

0
|∂τψ|2 â dτ ds−

∫ L

−L
|ψ(s, τ = 0)|2 ds .

(3.15)

We let

Ω̂δ = {(s, τ) : s ∈ [−L,L[ and 0 < τ < h−ρ } ,

Dom(q̂ b,ρh ) = {u ∈ H1(Ω̂δ) : u(s, h−ρ) = 0} ,

Dom(L̂b,ρh ) = {u ∈ H2(Ω̂δ) : u(s, h−ρ) = 0 and ∂τu(s, τ = 0) = −u(s, τ = 0)} .

(3.16)

Let µ̂n(h, b, ρ) be the n-th eigenvalue of the self-adjoint operator L̂b,ρh . We have

µ̂n(h, b, ρ) = h−1µn(h, b, ρ) . (3.17)

4 Asymptotics of the eigenvalues of Robin’s Laplacian

The aim of this section is to prove the following result, which implies Theorem 1.1.

Theorem 4.1. Let n ∈ N∗, 0 ≤ η < 3
2 , α > 0 and 0 < c1 < c2 . There exist c± > 0 and h0 > 0,

such that, if h ∈ (0, h0) and b satisfies

c1h
−η
2 ≤ b ≤ c2h

−η
2 ,

then we have :

λn(Leff,−
h,β0

) +O(h2−α−η) ≤ µ̂n(h, b, ρ) ≤ λn(Leff,+
h,β0

) +O(h2−α−η) ,

where λn(Leff,±
h,β0

) is the n-th eigenvalue of Leff,±
h,β0

defined by

Leff,±
h,β0

= −h(1± c± h
r)(∂s − ibβ0)

2 − 1− κ(s)h
1
2 − κ(s)2

2
h± c± h

3
2 ,

and

r = min

(
α,

1

2

)
.

4.1 The Feshbach projection

Following the writing of the magnetic Robin Laplacian in tubular coordinates in Section 3.3, there
appears a one-dimensional operator defined, for s fixed, by{

− â−1∂τ â∂τ = −∂2τ + h1/2κ(s)â−1∂τ

∂τu(s, τ = 0) = −u(s, τ = 0) in L2((0, h−ρ), (1− τh1/2κ(s)) dτ) ,

where â(s, τ) = 1− h
1
2 τκ(s) . This operator is denoted by

Hκ(s),h = H{T}
B ,

with
T = h−ρ and B = h1/2κ(s) ,
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where H{T}
B is defined in (A.1). The associated quadratic form is:

qκ(s),h(u) =

∫ h−ρ

0
|∂τu(τ)|2â dτ − |u(0)|2 . (4.18)

Let vκ(s),h be a normalized groundstate of Hκ(s),h associated with λ1(Hκ(s),h) . By [14, Lemma 2.5],
we have

λ1(Hκ(s),h) = −1− κ(s)h
1
2 − κ(s)2

2
h+O(h

3
2 ) , (4.19)

and for C > 0
λ2(Hκ(s),h) ≥ −Ch1/2−ρ . (4.20)

According to Lemma A.1 and Proposition A.1, there exist constants C and Ck , such that

∥∂svκ(s),h∥L2((0, h−ρ),(1−h1/2κ(s)τ) dτ) ≤ Ch1/2 , (4.21)

and, the Agmon estimates ∫ h−ρ

0
τk|vκ(s),h|2(1− h1/2κ(s)τ) dτ ≤ Ck . (4.22)

For s ∈ [−L,L], we introduce the Feshbach projection Πs on the normalized ground state vκ(s),h of
Hκ(s),h,

Πsψ = ⟨ψ, vκ(s),h⟩L2((0, h−ρ), â dτ)vκ(s),h , ∀ψ ∈ L2([−L,L[×(0, h−ρ), â ds dτ). (4.23)

We also let
Π⊥
s = Id −Πs ,

and
Rh(s) = ∥∂svκ(s),h∥2L2((0, h−ρ), â dτ) .

The quantity Rh is sometimes called the “Born-Oppenheimer correction”. It measures the commutation
defect between ∂s and Πs.

Lemma 4.1. There exist constants C > 0 and h0 > 0 such that, for all ψ ∈ Dom(q̂ b,ρh ) and
h ∈ (0, h0) , we have:

∥[Πs, ∂s]ψ∥L2(â dτ) = ∥[Π⊥
s , ∂s]ψ∥L2(â dτ) ≤

[
2Rh(s)

1
2 + ch1/2

]
∥ψ∥L2(â dτ) .

Proof. We estimate the commutator:

[Πs, ∂s]ψ

= −[Π⊥
s , ∂s]ψ

= −⟨ψ, ∂svκ(s),h⟩L2(â dτ)vκ(s),h − ⟨ψ, vκ(s),h⟩L2(â dτ)∂svκ(s),h

+ h1/2κ
′
(s)

(∫ h−ρ

0
ψvκ(s),hτ dτ

)
vκ(s),h .

We get, thanks to the Cauchy-Schwarz inequality and the Agmon estimates [see inequality (4.22)]

∥[Πs, ∂s]ψ∥L2(â dτ) ≤
[
2Rh(s)

1
2 + ch1/2

]
∥ψ∥L2(â dτ) .
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4.2 Approximation of the norm on the weighted space

In this section, we introduce an approximation of the weight.

Lemma 4.2. There exist constants c > 0 and h0 > 0 such that, for all ψ ∈ L2(â dτds) and h ∈ (0, h0) ,
we have:

∥ψ∥2L2(â−1 dτds) ≤ (1 + ch1/2 ) ∥Πsψ∥2L2(â dτds) + (1 + ch1/4 ) ∥Π⊥
s ψ∥2L2(â dτds) , (4.24)

and

∥ψ∥2L2(â−1 dτds) ≥ (1− ch1/2 ) ∥Πsψ∥2L2(â dτds) + (1− ch1/4 ) ∥Π⊥
s ψ∥2L2(â dτds) . (4.25)

Proof. We have

A :=

∣∣∣∣∫ L

−L

∫ h−ρ

0
|ψ|2â dτds−

∫ L

−L

∫ h−ρ

0
|ψ|2â−1 dτds

∣∣∣∣ ≤ C

∫ L

−L

∫ h−ρ

0
h1/2τ |ψ|2â dτds .

Then, we use an orthogonal decomposition to get

A ≤ C

[∫ L

−L

∫ h−ρ

0
h1/2τ |Πsψ|2â dτds+

∫ L

−L

∫ h−ρ

0
h1/2τ |Π⊥

s ψ|2â dτds
]
.

Thanks to (4.22), we get∫ L

−L

∫ h−ρ

0
τ |Πsψ|2â dτds =

∫ L

−L
|⟨ψ, vκ(s),h⟩L2(â dτ)|2

[∫ h−ρ

0
τ |vκ(s),h|2â dτ

]
ds ≤ c∥Πsψ∥2L2(â dτds) .

We use that h1/2−ρ ≤ h1/4, and we obtain∫ L

−L

∫ h−ρ

0
h1/2τ |Π⊥

s ψ|2â dτds ≤ h1/2−ρ
∫ L

−L

∫ h−ρ

0
|Π⊥

s ψ|2â dτds ≤ h1/4 ∥Π⊥
s ψ∥2L2(â dτds) .

The following corollary is a direct consequence of (4.24).

Corollary 4.1. There exist constants c > 0 and h0 > 0 such that, for all ψ ∈ L2(â dτds) and h ∈
(0, h0) , we have:

∥Πsψ∥2L2(â−1 dτds) ≤ (1 + ch1/2 )

∫ L

−L
|φ(s)|2 ds ,

with φ = ⟨ψ, vκ(s),h⟩L2((0, h−ρ), â dτ) .

4.3 Upper bound.

To separate the variables, we consider the function of the form :

ψ(s, τ) = φ(s) · vκ(s),h(τ) , (4.26)

with φ ∈ H1(R/2LZ) .

The following proposition provides an upper bound of the quadratic form on a subspace.
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Proposition 4.1. Let ρ ∈ (0, 1/4) , 0 ≤ η < 3
2 , α > 0 , and 0 < c1 < c2 . There exist constants c > 0

and, h0 > 0 such that, for all h ∈ (0, h0) and b satisfying

c1h
−η
2 ≤ b ≤ c2h

−η
2 ,

we have for all ψ defined in (4.26)

q̂ b,ρh (ψ) ≤ qeff,+h,β0
(φ) +O(h2−α−η)∥φ∥2L2(R/2LZ) ,

where, for all φ ∈ H1(R/2LZ)

qeff,+h,β0
(φ) =

∫ L

−L

(
−1−κ(s)h

1
2−κ(s)

2

2
h+c h

3
2

)
|φ(s)|2 ds+h

[
1+c hmin(α, 1

2
)
]∫ L

−L
| (∂s−ibβ0)φ|2 ds .

Proof. The proof will be done in a five steps.
i. We recall the definition of q̂ b,ρh in (3.15). We write

q̂ b,ρh (ψ) = q tang(ψ) + q trans(ψ) ,

where

q trans(ψ) =

∫ L

−L

∫ h−ρ

0

∣∣∣∣ (h 1
2∂s − ibh

1
2β0 − ibh

(
− τ + h

1
2
τ2

2
κ(s)

))
ψ

∣∣∣∣2 â−1 dτds ,

and

q tang(ψ) =

∫ L

−L

∫ h−ρ

0
|∂τψ|2 â dτds−

∫ L

−L
|ψ(s, τ = 0)|2 ds .

ii. We recall the definition of qκ(s),h in (4.18). By using the min-max principle and (4.19), we get an
upper bound of q tang(ψ)

q tang(ψ) =

∫ L

−L
|φ(s)|2

[ ∫ h−ρ

0
|∂τvκ(s),h(τ)|2 â dτ − |vκ(s),h(0)|2

]
ds

=

∫ L

−L
qκ(s),h(vκ(s),h) |φ(s)|2 ds

=

∫ L

−L
λ1(Hκ(s),h) |φ(s)|2 ds

≤
∫ L

−L

(
− 1− κ(s)h

1
2 − κ(s)2

2
h
)
|φ(s)|2 ds+ ch3/2∥φ∥2 .

iii. Use the following classical inequality, for any a, b ∈ R , h > 0 and α > 0, we have

|a+ b|2 ≤ (1 + hα ) |a|2 + (1 + h−α ) |b|2 ,

and we obtain an upper bound of q trans(ψ)

q trans(ψ) ≤ (1 + hα ) q trans1 (ψ) + (1 + h−α)q trans2 (ψ) ,

where

q trans1 (ψ) =

∫ L

−L

∫ h−ρ

0

∣∣∣∣ (h 1
2∂s − ibh

1
2β0

)
ψ

∣∣∣∣2â−1 dτds ,

and

q trans2 (ψ) = b2h2
∫ L

−L

∫ h−ρ

0

∣∣∣∣ (− τ + h
1
2
τ2

2
κ(s)

)
ψ

∣∣∣∣2â−1 dτds .
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iv. By use Lemma 4.2, there exists c > 0 such that

q trans2 (ψ) ≤ b2h2(1 + c h1/4)

∫ L

−L
|φ(s)|2

[ ∫ h−ρ

0

∣∣∣∣ (− τ + h
1
2
τ2

2
κ(s)

)
vκ,h

∣∣∣∣2â dτ] ds .
Using inequality (4.22), and since the curvature is bounded, we get with a possible new constant c,

(1 + h−α ) q trans2 (ψ) ≤ c b2h2−α∥φ∥2 ≤ ch2−α−η∥φ∥2 .

v. We have

q trans1 (ψ) ≤ h (1 + hα )

∫ L

−L

∫ h−ρ

0
| vκ(s),h (∂s − ibβ0)φ|2 â−1 dτds

+ h( 1 + h−α )

∫ L

−L

∫ h−ρ

0
|∂svκ(s),h|2|φ(s)|2 â−1 dτds .

Using Lemma 4.2 and Corollary 4.1, we write

q trans1 (ψ) ≤ h (1 + hα )(1 + c h1/2)

∫ L

−L
| (∂s − ibβ0)φ|2 ds

+ h (1 + h−α )(1 + c h1/4)

∫ L

−L
|φ(s)|2

[ ∫ h−ρ

0
|∂svκ(s),h|2â dτ

]
ds .

From (4.21), we deduce that

(1 + hα)q trans1 (ψ) ≤ h [1 + c hmin(α, 1
2
) ]

∫ L

−L
| (∂s − ibβ0)φ|2 ds+O(h2−α)∥φ∥2

≤ h [1 + c hmin(α, 1
2
) ]

∫ L

−L
| (∂s − ibβ0)φ|2 ds+O(h2−α−η)∥φ∥2 .

Then the conclusion follows.

4.4 Lower bound.

The following proposition provides a lower bound of the quadratic form.

Proposition 4.2. Let ρ ∈ (0, 1/4) , 0 ≤ η < 3
2 , 0 < α < 2− η and 0 < c1 < c2 . There exist constants

c > 0 and h0 > 0 such that, for all h ∈ (0, h0) and b satisfying

c1h
−η
2 ≤ b ≤ c2h

−η
2 ,

we have

q̂ b,ρh (ψ) ≥ qeff,−h,β0
(φ) +O(h2−α−η)∥φ∥2L2(R/2LZ) − o(1)∥Π⊥

s ψ∥2L2(â dτds) ,

where

• q̂ b,ρh define on Dom(q̂ b,ρh ) in (3.16).

• ψ ∈ Dom(q̂ b,ρh ).

• φ ∈ H1(R/2LZ) defined by

φ(s) := ⟨ψ(s, ·), vκ(s),h⟩L2((0, h−ρ), â dτ) ,

and

qeff,−h,β0
(φ) =

∫ L

−L

(
− 1− κ(s)h

1
2 − κ(s)2

2
h− ch

3
2

)
|φ(s)|2 ds

+ h[1− c hmin(α, 1
2
))]

∫ L

−L
| (∂s − ibβ0)φ|2 ds .
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Proof. We recall the definition of q̂ b,ρh in (3.15). We write

q̂ b,ρh (ψ) = q trans(ψ) + q tang(ψ) ,

with

q trans(ψ) =

∫ L

−L

∫ h−ρ

0

∣∣∣∣ (h 1
2∂s − ibh

1
2β0 − ibh

(
− τ + h

1
2
τ2

2
κ(s)

))
ψ

∣∣∣∣2 â−1 dτds ,

and

q tang(ψ) =

∫ L

−L

∫ h−ρ

0
|∂τψ|2â dτds−

∫ L

−L
|ψ(s, τ = 0)|2 ds .

i. We recall the definition of qκ(s),h in (4.18). By using the orthogonal decomposition ψ = Πsψ+Π⊥
s ψ,

qκ(s),h(ψ) = qκ(s),h(Πsψ) + qκ(s),h(Π
⊥
s ψ) ,

Then, by using the min-max principle,we get

q tang(ψ) =

∫ L

−L
qκ(s),h(ψ) ds

=

∫ L

−L
qκ(s),h(φvκ(s),h) ds+

∫ L

−L
qκ(s),h(Π

⊥
s ψ) ds

≥
∫ L

−L
λ1(Hκ(s),h)∥φvκ(s),h∥2L2(â dτ) ds+

∫ L

−L
λ2(Hκ(s),h)∥Π⊥

s ψ∥2L2(â dτ) ds .

From (4.19) and (4.20), we have

q tang(ψ) ≥
∫ L

−L

(
− 1− κ(s)h

1
2 − κ(s)2

2
h
)
|φ(s)|2 ds− ch3/2∥φ∥2 − Ch1/2−ρ∥Π⊥

s ψ∥2L2(â dτds) .

For ρ ∈ (0, 1/4), we have h1/2−ρ = o(1) .
ii. By Lemma 4.2, we have

q trans(ψ) ≥ (1− ch1/2 )

∫ L

−L

∫ h−ρ

0

∣∣∣∣h 1
2 Πs∂sψ − ibh

1
2β0Πsψ − ibhΠs(αsψ)

∣∣∣∣2 â dτds
+ (1− ch1/4 )

∫ L

−L

∫ h−ρ

0

∣∣∣∣h 1
2 Π⊥

s ∂sψ − ibh
1
2β0Π

⊥
s ψ − ibhΠ⊥

s (αsψ)

∣∣∣∣2 â dτds .
with

αs(τ) = −τ + h1/2
τ2

2
κ(s) .

We write
Πs∂sψ = ∂sΠsψ + [Πs, ∂s]ψ ,

and using the following classical inequality, for any a, b ∈ R , h > 0 , and α > 0, we have

|a+ b|2 ≥ (1− hα)|a|2 − h−α|b|2 .

We obtain

q trans(ψ) ≥ (1− ch1/2)(1− hα)q trans1 (ψ)− (1− ch1/2)h−αq trans2 (ψ)

+ (1− ch1/4)(1− hα)q trans3 (ψ)− (1− ch1/4)h−αq trans2 (ψ) ,
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with

• q trans1 (ψ) =

∫ L

−L

∫ h−ρ

0

∣∣∣h 1
2 ∂sΠsψ − ibh

1
2β0Πsψ − ibhΠs(αsψ)

∣∣∣2 â dτds ,
• q trans2 (ψ) = h

∫ L

−L

∫ h−ρ

0

∣∣∣[Πs, ∂s]ψ∣∣∣2 â dτds = h

∫ L

−L

∫ h−ρ

0

∣∣∣[Π⊥
s , ∂s]ψ

∣∣∣2â dτds ,
• q trans3 (ψ) =

∫ L

−L

∫ h−ρ

0

∣∣∣h 1
2 ∂sΠ

⊥
s ψ − ibh

1
2β0Π

⊥
s ψ − ibhΠ⊥

s (αsψ)
∣∣∣2 â dτds .

iii. We have

q trans1 (ψ) ≥ (1− hα)

∫ L

−L

∫ h−ρ

0

∣∣∣h 1
2 ∂sΠsψ − ibh

1
2β0Πsψ

∣∣∣2 â dτds
− h−α

∫ L

−L

∫ h−ρ

0

∣∣∣bhΠs(αsψ)∣∣∣2â dτds .
With the same type of reasoning as for the upper bound, there exists a constant c > 0 such that

q trans1 (ψ) ≥ h(1− c hα)

∫ L

−L
| (∂s − ibβ0)φ|2 ds+O(h2−α−η)∥φ∥2L2(R/2LZ)

−O(b2h2−α)∥ψ∥2L2(â dτds) .

vi. We use Lemma 4.1 and inequality (4.21), to obtain

q trans2 (ψ) ≤ ch2∥ψ∥L2(â dτds) ≤ ch2∥φ∥2 + ch2∥Π⊥
s ψ∥2L2(â dτds) .

v. Since q trans3 (ψ) ≥ 0 , we obtain:

q trans(ψ) ≥ h(1− c hmin(α, 1
2
))

∫ L

−L
| (∂s − ibγ0)φ|2 ds+O(h2−α−η) ∥φ∥2

− ch−η+2−α ∥Π⊥
s ψ∥2L2(â dτ ds) .

We have 0 < α < 2− η. Therefore, −η + 2− α > 0 and h−η+2−α = o(1). Then the conclusion of the
proposition follows.

4.5 Derivation of the effective operator

We now have everything to finish the proof of Theorem 4.1. The self-adjoint operator associated with
the quadratic form qeff,±h,β0

is :

Leff,±
h,β0

= −h(1± c± h
min(α, 1

2
))(∂s − ibβ0)

2 − 1− κ(s)h
1
2 − κ(s)2

2
h± c±h

3
2

in L2(R/2LZ) , where c± is a constant independent of h. The operator Leff,±
h,β0

is with compact resolvent
and it is bounded from below. Its spectrum is purely discrete and it is consists of by an increasing
sequence of eigenvalues λn(Leff,±

h,β0
) .

Corollary 4.2. Let n ∈ N∗, ρ ∈ (0, 1/4) , 0 ≤ η < 3
2 , α > 0 and 0 < c1 < c2 . There exist h0 > 0,

such that, if h ∈ (0, h0) and b satisfies

c1h
−η
2 ≤ b ≤ c2h

−η
2 ,

we have :
µ̂n(h, b, ρ) ≤ λn(Leff,+

h,β0
) +O(h2−α−η) .
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Proof. Let (φj)1≤j≤n an orthonormal family of eigenvectors associated with eigenvalues (λj(Leff,+
h,β0

))1≤j≤n .

LetE be the subspace of Dom(qeff,+h,β0
) generated by the family (φj)1≤j≤n . By Proposition 4.1, we have:

q̂ b,ρh (vk(s),h φ) ≤ qeff,+h,β0
(φ) +O(h2−α−η)∥φ∥2 , ∀φ ∈ E .

By application of the min-max principle, we deduce

qeff,+h,β0
(φ) ≤ λn(Leff,+

h,β0
)∥φ∥2 .

Consequently,

q̂ b,ρh (vk(s),h φ) ≤ λn(Leff,+
h,β0

)∥φ∥2 +O(h2−α−η)∥φ∥2

≤
(
λn(Leff,+

h,β0
) +O(h2−α−η)

)
∥vk(s),hφ∥2 .

For all g ∈ vk(s),hE , we have:

q̂ b,ρh (g) ≤
(
λn(Leff,+

h,β0
) +O(h2−α−η)

)
∥g∥2 .

We note from the normalization of vk(s),h that dim(vk(s),hE) = n . Hence, by application of the min-
max principle, we obtain

µ̂n(h, b, ρ) ≤ λn(Leff,+
h,β0

) +O(h2−α−η).

Corollary 4.3. Let n ∈ N∗, ρ ∈ (0, 1/4) , 0 ≤ η < 3
2 , α > 0 and 0 < c1 < c2 . There exist h0 > 0,

such that, if h ∈ (0, h0) and b satisfies

c1h
−η
2 ≤ b ≤ c2h

−η
2 ,

then we have :
µ̂n(h, b, ρ) ≥ λn(Leff,−

h,β0
) +O(h2−α−η) .

Proof. According to Proposition 4.2, there exist ϵ0 ∈ (0, 1) such that, for all ψ ∈ Dom(q̂ b,ρh ) and h
small enough,

q̂ b,ρh (ψ) ≥ Qtensh (⟨ψ, vκ(s),h⟩,Π⊥ψ) , (4.27)

where, ∀(φ, f) ∈ Dom(qeff,−h,β0
)×Dom(q̂b,ρh ), the quadratic form defined by

Qtensh (φ, f) = Qeff
h (φ)− ϵ0

2
∥f∥2L2(â dτds) ,

with
Qeff
h (φ) = qeff,−h,β0

(φ) +O(h2−α−η))∥φ∥2L2(R/2LZ) .

By application of the min-max principle (see also [22, Chapter 13]), we have the comparison of the
Rayleigh quotients:

µ̂n(h, b, ρ) ≥ µ̂tensn (h) . (4.28)

Note that the self-adjoint operators associated with the quadratic forms Qeff
h and Qtensh are respec-

tively Leff
h and Ltensh . It is easy to see that the spectrum of Ltensh lying below −ϵ0 coincides with the

spectrum of Leff
h . Then, for all n ∈ N∗ , µ̂tensn (h) and µ̂eff

n (h) are respectively the n-th eigenvalue of
Ltensh and Leff

h and satisfy

µ̂tensn (h) = µ̂eff
n (h) = λn(Leff,−

h,β0
) +O(h2−α−η) . (4.29)
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5 Spectrum of the effective operator

Let λn(L) be the n-th eigenvalue of an operator L . Fix a constant c ∈ R . The effective operators Leff,±
h,β0

are special cases of the following operator:

Leff,b
h,α,0 = −h(1− c hmin(α, 1

2
))(∂s − ibβ0)

2 − 1− κ(s)h
1
2 − κ(s)2

2
h− ch

3
2 ,

with b > 0 and α > 0 . The associate quadratic form on L2(R/2LZ) is

qeff,bh,α,0(φ) =

∫ L

−L

(
−1−κ(s)h

1
2 −κ(s)

2

2
h−ch

3
2

)
|φ(s)|2 ds+h(1−c hmin(α, 1

2
))

∫ L

−L
| (∂s−ibβ0)φ|2 ds .

In the following, we will explain how the spectrum of the operator Leff,b
h,α,0 reduces to the study of that

stated in Theorem 3.1. The operator that we are going to study its spectrum is a perturbation of the
harmonic oscillator. Then, the calculations are based on the context of the harmonic approximation (cf.
[22, Sections 3.2 and 4.1.2] and [3, Section 7.1]) , with a small adjustment, since the operator is defined
on a periodic space and with a phase term ibβ0.
Let

Leff,b
h,α,1 = Leff,b

h,α,0 + 1.

By definition of the spectrum, we have

λn(Leff,b
h,α,0) = −1 + λn(Leff,b

h,α,1) . (5.30)

Factoring the term h−1/2, we get the new operator

Leff,b
h,α,2 = h−1/2Leff,b

h,α,1 .

Clearly,
λn(Leff,b

h,α,1) = h1/2λn(Leff,b
h,α,2) . (5.31)

We introduce the semi-classical parameter

ℏ = h1/4 .

Let κmax be the maximum curvature along the boundary Γ introduced in (1.4).

Lemma 5.1. Let us consider:

Leff,b
ℏ,α,3 = −ℏ2(1− c ℏmin(4α,2))(∂s − ibβ0)

2 + κmax − κ(s) ,

with the associated quadratic form on L2(R/2LZ),

qeff,bℏ,α,3(φ) =

∫ L

−L
(κmax − κ(s)) |φ(s)|2 ds+ ℏ2(1− c ℏmin(4α,2))

∫ L

−L
| (∂s − ibβ0)φ|2 ds .

Then, we have
λn(Leff,b

h,α,2) = λn(Leff,b
ℏ,α,3)− κmax +O(ℏ2) . (5.32)

Proof. Let φ ∈ H1(R/2LZ). We have∣∣∣∣qeff,bh,α,2(φ)− qeff,bℏ,α,3(φ) + κmax∥φ∥2
∣∣∣∣ = ℏ2

∣∣∣∣∫ L

−L

[
κ(s)2

2
− cℏ2

]
|φ(s)|2 ds

∣∣∣∣ .
Since Ω is a bounded domain with a smooth boundary, the curvature κ is also bounded, hence there
exists C > 0 independent of s, such that∣∣∣∣qeff,bh,α,2(φ)− qeff,bℏ,α,3(φ) + κmax∥φ∥2

∣∣∣∣ ≤ C ℏ2∥φ∥2 .

Applying the min-max principle, we finishes the proof.
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From (5.30), (5.31) and (5.32), we obtain

λn(Leff,b
h,α,0) = −1 + ℏ2λn(Leff,b

ℏ,α,3)− ℏ2κmax +O(ℏ4) . (5.33)

Therefore, to study the spectrum of the effective operator Leff,b
h,α,0 , it suffices to study the spectrum of

the operator Leff,b
ℏ,α,3 , introduced in Lemma 5.1.

5.1 Localization near the point of maximum curvature

Let κmax be the maximum curvature along the boundary Γ introduced in (1.4).

Proposition 5.1. Let us consider the effective operator of the form

Leff,b
ℏ,4 = −ℏ2(∂s − ibβ0)

2 + κmax − κ(s) ,

and the associated quadratic form on L2(R/2LZ) is

qeff,bℏ,4 (φ) =

∫ L

−L

(
κmax − κ(s)

)
|φ(s)|2 ds+ ℏ2

∫ L

−L
| (∂s − ibβ0)φ|2 ds .

Then, we have
λn(Leff,b

ℏ,α,3) = (1 +O( ℏmin(4α,2))λn(Leff,b
ℏ,4 ) .

Proof. Let φ ∈ H1(R/2LZ). We have:

|qeff,bℏ,α,3(φ)− qeff,bℏ,4 (φ)| = |c|ℏmin(4α,2)ℏ2
∫ L

−L
| (∂s − ibβ0)φ|2 ds

≤ |c|ℏmin(4α,2)

[
ℏ2
∫ L

−L
| (∂s − ibβ0)φ|2 ds+

∫ L

−L

(
κmax − κ(s)

)
|φ(s)|2 ds

]
≤ |c|ℏmin(4α,2)qeff,bℏ,4 (φ) .

The conclusion of the lemma is now a simple application of the min-max principle.

From (5.33) and Proposition 5.1, we obtain

λn(Leff,b
h,α,0) = −1− ℏ2κmax + ℏ2(1 +O( ℏmin(4α,2))λn(Leff,b

ℏ,4 ) +O(ℏ4) .

In the following, we show that λn(Leff,b
h,4 ) = O(ℏ) then, for 0 < η ≤ 3

2 , we get (recall that ℏ = h1/4)

λn(Leff,b
h,α,0) = −1− ℏ2κmax + ℏ2λn(Leff,b

ℏ,4 ) + o(ℏ3) = λn(Leff
h,β0) + Õ(h2−η) . (5.34)

Note that Theorem 4.1 and equality (5.34), yield the Proof of Theorem 3.1 which is a reformulation of
Theorem 1.1.
The goal is to show that the eigenfunctions of Leff,b

ℏ,4 , associated with the eigenvalues of order ℏ, concen-
trate exponentially near the point of maximum curvature.

Proposition 5.2. For ϵ ∈ (0, 1) , there exist C > 0 and ℏ0 > 0 such that, for all ℏ ∈ (0, ℏ0) and for all
eigenfunctions ψ of Leff,b

ℏ,4 , associated with the eigenvalues of orders ℏ , we have:

∥eϵϕ0/ℏ ψ∥2 ≤ C∥ψ∥2 , qeff,bℏ,4 (eϵϕ0/ℏ ψ) ≤ Cℏ∥ψ∥2 ,

where

ϕ0(s) = min
k∈Z

∣∣∣∣∫ s+2kL

0

√
κmax − κ(y) dy

∣∣∣∣ .
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Proof. The Proof of Proposition 5.2 is a standard application of the method of Agmon estimates (see
for example [22, Proposition 4.10]). The proof is formed by three steps. Let ϵ ∈ (0, 1). Consider an
eigenvalue λ = O(ℏ) of Leff,b

ℏ,4 , and an associated eigenfunction ψ.

1. First step.

Let ϕ be a regular and 2L periodic function, with real value. We have:

qeff,bh,4 (eϕ ψ) = λ∥eϕ ψ∥2 + ℏ2∥∂seϕ ψ∥2. (5.35)

Indeed,

Leff,b
h,4 (eϕ ψ) = −ℏ2(∂s − ibβ0)

2(eϕψ) +
(
κmax − κ(s)

)
eϕψ

= −ℏ2
(
ψ∂2se

ϕ + eϕ∂2sψ + 2∂se
ϕ∂sψ − 2ibβ0(ψ∂se

ϕ + eϕ∂sψ)− b2β20e
ϕψ

)
+
(
κmax − κ(s)

)
eϕψ

= eϕLeff,b
h,4 (ψ)− ℏ2

(
ψ∂2se

ϕ + 2∂se
ϕ∂sψ − 2ibβ0ψ∂se

ϕ

)
,

Hence,

qeff,bh,4 (eϕψ) = ⟨Leff,b
h,4 (eϕψ), eϕψ⟩

= ⟨eϕLeff,b
h,4 (ψ), eϕψ⟩ − ℏ2

∫ L

−L

[
ψ∂2se

ϕ + 2∂se
ϕ∂sψ − 2ibβ0ψ∂se

ϕ
]
ψ̄eϕds .

Therefore, as ψ is the eigenfunction of Leff,b
h,4 associated with the eigenvalue λ, we get

qeff,bh,4 (eϕψ) = λ∥eϕψ∥2 − ℏ2
∫ L

−L

[
ψ∂2se

ϕ + 2∂se
ϕ∂sψ − 2ibβ0ψ∂se

ϕ
]
ψ̄eϕds . (5.36)

Let’s calculate
∫ L

−L

[
ψ∂2se

ϕ + 2∂se
ϕ∂sψ − 2ibβ0ψ∂se

ϕ
]
ψ̄eϕds := E.

By integration by part, we have:∫ L

−L
ψ∂2se

ϕψ̄eϕds =

∫ L

−L
eϕ|ψ|2∂2seϕds

= −
∫ L

−L
∂s(e

ϕ|ψ|2)∂seϕds+ eϕ|ψ|2∂seϕ
∣∣∣∣L
−L

= −
∫ L

−L
∂se

ϕ
[
|ψ|2∂seϕ + eϕ∂s|ψ|2

]
ds+ eϕ|ψ|2∂seϕ

∣∣∣∣L
−L

= −∥∂seϕψ∥2 −
∫ L

−L
eϕ∂se

ϕ∂s|ψ|2ds+ eϕ|ψ|2∂seϕ
∣∣∣∣L
−L

.

Since ϕ is 2L periodic, then∫ L

−L

[
ψ∂2se

ϕ + 2∂se
ϕ∂sψ − 2ibβ0ψ∂se

ϕ
]
ψ̄eϕds

= −∥∂seϕψ∥2 −
∫ L

−L
eϕ∂se

ϕ∂s|ψ|2ds+ 2

∫ L

−L
∂se

ϕ∂sψ ψ̄e
ϕds− 2ibβ0

∫ L

−L
ψ∂se

ϕψ̄eϕds

= −∥∂seϕψ∥2 +
∫ L

−L
eϕ∂se

ϕ
[
−∂s|ψ|2 + 2∂sψ ψ̄ − 2ibβ0|ψ|2

]
ds
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Therefore,

E = −∥∂seϕψ∥2 +
∫ L

−L
eϕ∂se

ϕ
[
−∂s|ψ|2 + 2∂sψ ψ̄ − 2ibβ0|ψ|2

]
ds . (5.37)

From (5.36), we have:
ℏ2E = −qeff,bh,4 (eϕψ) + λ∥eϕψ∥2 ∈ R

Consequently, (5.37) gives
E = −∥∂seϕψ∥2 . (5.38)

From (5.36) and (5.38), we obtain:

qeff,bh,4 (eϕ ψ) = λ∥eϕ ψ∥2 + ℏ2∥∂seϕ ψ∥2 .

2. Second step.

Let us show that:
qeff,bh,4 (eϵϕ0/ℏ ψ) ≤ Cℏ∥eϵϕ0/ℏ ψ∥2 (5.39)

and ∫ L

−L

(
κmax − κ(s)

)
e2ϵϕ0/ℏ|ψ|2ds ≤ Cℏ∥eϵϕ0/ℏ ψ∥2 (5.40)

For ϕ =
ϵϕ0
ℏ
, with ϕ0(s) = mink∈Z

∣∣∣∣∫ s+2kL

0

√
κmax − κ(y) dy

∣∣∣∣. We notice that

|ϕ′(s)|2 = ϵ2

ℏ2
|ϕ′0(s)|2 =

ϵ2

ℏ2
(κmax − κ(s)) . (5.41)

We recall that

qeff,bh,4 (φ) =

∫ L

−L

(
κmax − κ(s)

)
|φ(s)|2ds+ ℏ2

∫ L

−L
|(∂s − ibβ0)φ|2ds,

consequnetly,

qeff,bh,4 (φ) ≥
∫ L

−L

(
κmax − κ(s)

)
|φ(s)|2ds. (5.42)

From (5.35) and (5.42), we have:∫ L

−L

(
κmax − κ(s)

)
e2ϕ |ψ|2ds ≤ λ∥eϕ ψ∥2 + ℏ2∥∂seϕ ψ∥2

⇒
∫ L

−L

[(
κmax − κ(s)

)
− λ− ℏ2|ϕ′|2

]
e2ϕ |ψ|2ds ≤ 0.

By (5.41), we get ∫ L

−L

[
κmax − κ(s)− λ− ϵ2

(
κmax − κ(s)

)]
e2ϕ|ψ|2ds ≤ 0

⇒
∫ L

−L

[
1− ϵ2

] (
κmax − κ(s)

)
e2ϕ|ψ|2ds ≤ λ∥eϕ ψ∥2.

Therefore, ∫ L

−L

[
1− ϵ2

](
κmax − κ(s)

)
e2ϕ |ψ|2ds ≤ Cℏ∥eϕ ψ∥2 . (5.43)
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We notice that for any ϵ > 0 and for ℏ small enough, there is a constant C > 0 independent of ℏ such
that

1− ϵ2 ≥ C .

We deduce the inequality (5.40)∫ L

−L

(
κmax − κ(s)

)
e2ϕ |ψ|2ds ≤ Cℏ∥eϕ ψ∥2 .

On the other hand, by (5.35) and (5.41), we have:

qeff,bh,4 (eϕ ψ) ≤ λ∥eϕ ψ∥2 + ℏ2∥∂seϕ ψ∥2

≤ λ∥eϕ ψ∥2 + ϵ2
∫ L

−L

(
κmax − κ(s)

)
e2ϕ |ψ|2ds .

we use (5.40), to deduce the inequality (5.39).

3. Third step.

Show that: ∫ L

−L
e2ϵϕ0/ℏ|ψ|2ds ≤ C∥ψ∥2, (5.44)

and
qeff,bh,4 (eϵϕ0/ℏ ψ) ≤ Cℏ∥ψ∥2. (5.45)

We use that κmax − κ(s) admits a unique non-degenerate minimum, we deduce that there exists c > 0
such that for all C0 > 0, there exist constants C, ℏ0 such that ∀ℏ ∈ (0, ℏ0),∫

|s|≤C0ℏ1/2

(
κmax − κ(s)

)
e2εΦ0/ℏ|ψ|2ds ≤ Cℏ∥ψ∥2, (5.46)∫

|s|≤C0ℏ1/2
e2εΦ0/ℏ|ψ|2ds ≤ C∥ψ∥2, (5.47)

and ∫
|s|≥C0ℏ1/2

(
κmax − κ(s)

)
e2ϵϕ0/ℏ|ψ|2ds ≥ cC2

0ℏ
∫
|s|≥C0ℏ1/2

e2ϵϕ0/ℏ|ψ|2ds . (5.48)

By the inequality (5.47), to show (5.44), it is enough to show the following inequality:∫
|s|≥C0ℏ1/2

e2ϵϕ0/ℏ|ψ|2ds ≤ C∥ψ∥2 . (5.49)

Let’s fix C0 > 0 large enough,∫
|s|≥C0ℏ1/2

e2ϵϕ0/ℏ|ψ|2ds ≤ 1

cC2
0ℏ

∫
|s|≥C0h1/2

(
κmax − κ(s)

)
e2ϵϕ0/ℏ|ψ|2ds

≤ 1

cC2
0ℏ

∫ L

−L

(
κmax − κ(s)

)
e2ϵϕ0/ℏ|ψ|2ds .

From the inequality (5.40),we get∫
|s|≥C0ℏ1/2

e2ϵϕ0/ℏ|ψ|2ds

≤ C

cC2
0

∫ L

−L
e2ϵϕ0/ℏ|ψ|2ds

≤ C

cC2
0

∫
|s|≤C0ℏ1/2

e2ϵϕ0/ℏ|ψ|2ds+ C

cC2
0

∫
|s|≥C0ℏ1/2

e2ϵϕ0/ℏ|ψ|2ds .
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Thus, (
1− C

cC2
0

)∫
|s|≥C0ℏ1/2

e2ϵϕ0/ℏ|ψ|2ds ≤ C

cC2
0

∫
|s|≤C0ℏ1/2

e2ϵϕ0/ℏ|ψ|2ds .

From the inequality (5.47), we obtain (5.49) and therefore we show the point (5.44).
From (5.39), we get

qeff,bh,4 (eϵϕ0/ℏ ψ) ≤ Cℏ∥eϵϕ0/ℏ ψ∥2

and from the inequality (5.44), we obtain the inequality (5.45).

5.2 Reduction to a flux-free operator

Consider the Dirichlet effective operator of the form:

L eff
ℏ = −ℏ2∂2s + κmax − κ(s) ,

with domain
Dom

(
L eff

ℏ
)
= {u ∈ H2([−L,L]), u(−L) = u(L) = 0 } ,

and the associated quadratic form on L2([−L,L]) is

qeffℏ (φ) =

∫ L

−L

(
κmax − κ(s)

)
|φ(s)|2 ds+ ℏ2

∫ L

−L
| ∂sφ|2 ds .

Let (λn(L eff
ℏ ))n∈N∗ be the sequence of eigenvalues of the operator L eff

ℏ . As a consequence of Proposi-
tion 5.2, for small ℏ, the eigenfunctions of Leff

ℏ,4 , associated with the eigenvalues of orders ℏ concentrate
exponentially near the point of maximum curvature at the scale ℏ1/2 . A standard application of the min-
max principle and the Agmon estimates of Proposition 5.2, is the reduction to analysis to the flux-free
operator L eff

ℏ (Proposition 5.3).
The notation O(ℏ∞) indicates a quantity satisfying that, for allN ∈ N, there exists CN > 0 and ℏN > 0
such that, for all ℏ ∈ (0, ℏN ), |O(ℏ∞)| ≤ CNℏN .

Proposition 5.3. Let n ∈ N, there exist constant ℏ0 ∈ (0, 1) such that, for all ℏ ∈ (0, ℏ0) and
λn(Leff,b

ℏ,4 ) = O(ℏ),
λn(L

eff
ℏ ) ≤ λn(Leff,b

ℏ,4 ) +O(ℏ∞) .

Moreover, for all n ≥ 1 , ℏ > 0, we have

λn(Leff,b
ℏ,4 ) ≤ λn(L

eff
ℏ ) .

Proof. For allN ≥ 1 ,we can take an orthonormal family eigenfunctions (ψn,ℏ)n=1,...,N associated with
the eigenvalues (λn(Leff,b

ℏ,4 )n=1,...,N . Let us consider the cut off function χ define on R as follows:

0 ≤ χ ≤ 1 , χ = 1 on
[
− L

2
,
L

2

]
and χ = 0 on R\]− L,L[ .

For k = 1, ..., N, we define the function

Φk,ℏ(s) = e−ibβ0sχ(s)ψj,ℏ(s) .

We notice that
Φk,ℏ(−L) = Φk,ℏ(L) = 0 and Φk,ℏ ∈ H2([−L,L ]) .

Let EN (ℏ) be the vector subspace of Dom(L eff
ℏ ) spanned by the family (Φn,ℏ)n=1,...,N . For ℏ small

enough, Proposition 5.2 yields that dim EN (ℏ) = N and, for all uℏ ∈ EN (ℏ),

qeffℏ (uh) ≤
(
λN (Leff,b

ℏ,4 ) +O(ℏ∞)

)
∥uh∥2 .
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By the min-max theorem, we get λN (L
eff
ℏ ) ≤ λN (Leff,b

ℏ,4 ) +O(ℏ∞) .

Now we determine an upper bound of λn(L eff
ℏ ) in terms of λn(Leff,b

ℏ,4 ) . For all N ≥ 1 , we can take
an orthonormal family eigenfunctions (un,ℏ)n=1,...,N associated with the eigenvalues (λn(L eff

ℏ ))n=1,...,N .
For k = 1, ..., N, we define the function

Ψk,ℏ(s) = eibβ0suk,ℏ(s) .

We notice that
Ψk,ℏ(−L) = Ψk,ℏ(L) = 0 and Ψk,ℏ ∈ H2(]− L,L [) .

Let EN (ℏ) the N -dimensional vector subspace of Dom(Leff,b
ℏ,4 ) spanned by the family (Ψn,ℏ)n=1,...,N .

Let Ψ ∈ EN (ℏ) which is written as follows:

Ψ =

N∑
k=1

βkΨk,ℏ =

N∑
k=1

βke
ibβ0suk,ℏ(s) = eibβ0su , u =

N∑
k=1

βkuk,ℏ(s) .

We have
Leff,b
ℏ,4 Ψ = eibβ0s L eff

ℏ u ,

and,
⟨Leff,b

ℏ,4 Ψ,Ψ⟩ = ⟨L eff
ℏ u, u⟩ ≤ λN (L

eff
ℏ )∥u∥2 = λN (L

eff
ℏ )∥Ψ∥2 .

By the min-max theorem, we get the non-asymptotic inequality

λN (Leff,b
ℏ,4 ) ≤ λN (L

eff
ℏ ) .

5.3 End of the proof

In this section we will construct trial states (Φn) in the domain of the effective operator L eff
ℏ , such that,

for every fixed n ∈ N∗, we have∥∥∥∥∥L eff
ℏ Φn − (2n− 1)ℏ

√
−κ′′(0)

2
Φn

∥∥∥∥∥
L2(]− L,L[)

≤ Cℏ3/2. (5.50)

We know that, the eigenfunctions are localized near the boundary at the scale ℏ
1
2 (cf. Prop 5.2, the same

proof can be adapted for L eff
ℏ ). It suggests to introduce the rescaling

s = ℏ1/2σ. (5.51)

The effective operator L eff
ℏ becomes

L eff
ℏ = −ℏ ∂2σ + κmax − κ(ℏ

1
2σ).

Recall that the value of the maximum curvature is κmax = κ(0). We can use a Taylor expansion of κ
near 0, as follows

κ(ℏ
1
2σ) = κmax +

ℏσ2

2
κ′′(0) + ℏ

3
2 q(σ),

where the functions q satisfy for |σ| = O(ℏ−
1
2 )

|q(σ) ≤ C|σ|3. (5.52)
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Consequently, we write the effective operator L eff
ℏ as

ℏ−1L eff
ℏ = −∂2σ −

σ2

2
κ′′(0)− ℏ

1
2 q(σ) . (5.53)

Since κ(0) is the non-degenerate maximum of κ, we have κ′′(0) < 0. The eigenvalues of the harmonic
oscillator Hharm

− ∂2σ +
−κ′′(0)

2
σ2 in L2(R) (5.54)

are (2n − 1)

√
−κ′′(0)

2
with n ∈ N∗. The corresponding normalized eigenfunctions are denoted by

fn(σ). They have the form

fn(σ) = hn(σ) exp

(
−
√
−k

′′(0)

2

σ2

2

)
, (5.55)

where the (hn(σ))n≥1 are the rescaled Hermite polynomials.
Define the trial state Φn in L2(]− L,L[) as follows:

Φn(s) = ℏ−1/4 χ
( s

2L

)
fn(ℏ−1/2s) = ℏ−1/4 un(s) , (5.56)

where χ is a cut-off function defined on R by:

0 ≤ χ ≤ 1 , χ = 1 in ]− 1/4, 1/4 ] and χ = 0 in R\]− 1/2, 1/2[,

and
un(s) = χ

( s

2L

)
fn(ℏ−1/2s) .

Using the exponential decay of fn at infinity, it is easy to verify

∥Φn∥L2(]− L,L[) = 1 +O(ℏ∞) . (5.57)

Then, we observe that after a change of variables and by construction of Φn, (5.53) yields

ℏ−1L eff
ℏ Φn(s)

= −ℏ−1/4

[
∂2σun(σ) +

σ2

2
κ′′(0)un(σ) + ℏ

1
2 q(σ)un(σ)

]
= −ℏ−1/4

[
χ

(
ℏ1/2σ
2L

)
∂2σfn(σ) + 2ℏ

1
2χ′

(
ℏ

1
2σ

2L

)
f ′n(σ) + ℏχ′′

(
ℏ

1
2σ

2L

)
fn(σ)

+
σ2

2
κ′′(0)un(σ) + ℏ

1
2 q(σ)un(σ)

]

= −ℏ−1/4

[
− (2n− 1)

√
−κ′′(0)

2
un(σ) + 2ℏ

1
2χ′

(
ℏ

1
2σ

2L

)
f ′n(σ) + ℏχ′′

(
ℏ

1
2σ

2L

)
fn(σ)

+ ℏ
1
2 q(σ)un(σ)

]

= (2n− 1)

√
−κ′′(0)

2
Φn(s)− ℏ−1/4

[(
2ℏ

1
2χ′

(
ℏ

1
2σ

2L

)
f ′n(σ) + ℏχ′′

(
ℏ

1
2σ

2L

)
fn(σ)

)

+ ℏ
1
2 q(σ)un(σ)

]
.

(5.58)
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Using the exponential decay of fn at infinity, we infer from (5.58) that∥∥∥∥∥ℏ−1L eff
ℏ Φn − (2n− 1)

√
−κ′′(0)

2
Φn

∥∥∥∥∥ ≤ Cℏ1/2.

As a consequence of the spectral theorem, (5.50) yields that, for every fixed n ∈ N∗, there exists an
eigenvalue λ̃n(L eff

ℏ ) of the operator L eff
ℏ such that

λ̃n(L
eff
ℏ ) = (2n− 1)ℏ

√
−κ′′(0)

2
+O(ℏ3/2). (5.59)

Now, looking for lower bound.

Proposition 5.4. For all n ≥ 1, there exist ℏ0 > 0 such that, for all ℏ ∈ (0, ℏ0)

λn(L
eff
ℏ ) ≥ (2n− 1)ℏ

√
−κ′′(0)

2
+O(ℏ3/2) .

Proof. For allN ≥ 1 , we can take a family of eigenvalues and eigenfunctions (λn(L eff
ℏ ), ψn,ℏ)n=1,...,N

such that (ψn,ℏ)n=1,...,N is an orthonormal family. Let EN (ℏ) the vector subspace of Dom(L eff
ℏ ) of

dimension N spanned by the family (ψn,ℏ)n=1,...,N .
It is rather easy to observe that, for ψ ∈ EN (ℏ)

⟨L eff
ℏ ψ,ψ⟩ ≤ λN (L

eff
ℏ )∥ψ∥2 .

Since ψ(−L) = ψ(L) = 0, the following function is in H1(R)

ψ̃ =

{
ψ if s ∈]− L,L[

0 if s ∈ R\]− L,L[ .

For N ≥ 1, let
ẼN (ℏ) = Span{ψ̃n,ℏ}n=1,...,N .

Since dim(EN (ℏ)) = N, then dim(ẼN (ℏ)) = N. We notice that, for all ψ ∈ EN (ℏ), ψ also satisfies the
Agmon estimates (Proposition 5.2). Using the change of variable introduced in (5.51), we easily obtain
that, there exists C > 0 such that, for all ψ ∈ EN (ℏ)∫ ℏ−

1
2L

−ℏ−
1
2L

|σ|3|ψ(σ)|2 d(ℏ1/2 σ) ≤ C∥ψ∥2 .

Consequently, we get

λN (L
eff
ℏ )∥ψ∥2

≥ ⟨L eff
ℏ ψ,ψ⟩

≥
∫
R
ℏ
−κ′′(0)

2
σ2 |ψ̃(ℏ1/2σ)|2 d(ℏ1/2 σ) + ℏ

∫
R
| ∂σψ̃|2 d(ℏ1/2 σ)− Cℏ3/2∥ψ∥2

≥ ℏ
[∫

R

(
| ∂σψ̃(ℏ1/2σ)|2 +

−κ′′(0)
2

σ2 |ψ̃(ℏ1/2σ)|2
)

d(ℏ1/2 σ)
]
− Cℏ3/2∥ψ∥2 .

This becomes

ℏ
[∫

R

(
| ∂σψ̃(ℏ1/2σ)|2 +

−κ′′(0)
2

σ2 |ψ̃(ℏ1/2σ)|2
)

d(ℏ1/2 σ)
]

≤ λN (L
eff
h )∥ψ∥2 +O(ℏ3/2)∥ψ∥2 .
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We deduce that

max
ψ̃∈ẼN (ℏ)

⟨Hharmψ̃, ψ̃⟩L2(R)

∥ψ̃∥2
L2(R)

≤ λN (L
eff
h ) +O(ℏ3/2) .

Thus, by the min-max principle, we have the comparison of the Rayleigh quotients

λN (L
eff
ℏ ) ≥ λN (Hharm) +O(ℏ3/2)

≥ (2N − 1)ℏ
√

−κ′′(0)
2

+O(ℏ3/2) .

Finally, from (5.59), the asymptotic expansion of the n-th eigenvalue of L eff
ℏ is:

λn(L
eff
h

) = (2n− 1)ℏ
√

−κ′′(0)
2

+O(ℏ3/2) .

Now, collecting (5.34) and Propositions 5.3 and 5.4, we deduce the asymptotic expansion of the n-th
eigenvalue of the effective operator Leff,b

h,α,0

λn(Leff,b
h,α,0) = −1− κmaxℏ2 + (2n− 1)

√
−κ′′(0)

2
ℏ3 +O(ℏ7/2) . (5.60)

From Theorem 4.1 and Proposition 3.2, we deduce Corollary 3.1, which was a reformulation of Corol-
lary 1.1.

6 Unit disc case

In this section we analyse the magnetic Robin Laplacian with a negative boundary parameter on the
disc. There by proving Theorem 1.2. We will study the spectrum of the effective operator Leff,±

h,disc, where
Ω = D(0, 1) , 0 < c1 < c2 , 0 < α and 0 ≤ η < 1. We have

L =
|∂Ω|
2

= π, β0 =
|Ω|
|∂Ω|

=
1

2
, c1h

−η
2 ≤ b ≤ c2h

−η
2 and κ = 1 .

Thus, the effective operators can be written as follows

Leff,±
h,disc = −h(1± c± h

min(α, 1
2
))

(
∂s − i

b

2

)2

− 1− h
1
2 − h

2
± c±h

3
2 ,

in L2(R/2πZ) , where c± are constants independent of h.

The spectrum of −
(
∂s − i

b

2

)2

in L2(R/2πZ) can be explicitly computed by using Fourier series.

In fact, for all m ∈ Z, em(b) := (m− b
2)

2 is an eigenvalue with the eigenfunction vm(s) := eims/
√
2π.

Since {vm}m∈Z is a Hilbertian basis of L2(R/2πZ), we get that the spectrum of −
(
∂s − i

b

2

)2

is

{em(b)}m∈Z and its lowest eigenvalue is infm∈Z em(b).
We deduce the asymptotic expansion of the first eigenvalue of the effective operator Leff,±

h,disc

λ1(Leff,±
h,disc) = inf

m∈Z
λ1(Leff,±

h,disc,m) = −1− h
1
2 − h

2
± c±h

3
2 + h

(
1± c±h

min(α, 1
2
)
)

inf
m∈Z

(
m− b

2

)2

= −1− h
1
2 − h

2
+ h inf

m∈Z

(
m− b

2

)2

+ o(h).
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According to Theorem 4.1 and (3.17), for η < 1 , we have

µ1(h, b) = −h− h
3
2 +

(
inf
m∈Z

(
m− b

2

)2

− 1

2

)
h2 + o(h2) .

Then, we complete the proof of Theorem 3.2 which was a reformulation of Theorem 1.2. Note that,
in the case with constant magnetic field, we recover by a very simple proof, Theorem 1.1 of the article
[14].

A Auxiliary operator

The aim of this section is to recall some spectral properties related to the Robin Laplacian in dimension
one. This model naturally arises in our strategy of dimensional reduction and already appeares in [22, 6,
14, 12, 17, 8].

A.1 A weighted 1D Laplacian

Let B ∈ R, and T > 0 such that |B|T < 1
3 . In the weighted space L2( (0, T ), (1−Bτ) dτ ), we

introduce the operator

H{T}
B = − d2

dτ2
+

B

1−Bτ

d

dτ
,

with domain
Dom(H{T}

B ) = {u ∈ H2(0, T ) : u
′
(0) = −u(0) and u(T ) = 0 } .

This weight will come to measure the effect of the curvature. The operator H{T}
B is the self-adjoint

operator in L2( (0, T ), (1−Bτ) dτ ) associated with the following quadratic form:

q
{T}
B (u) =

∫ T

0
|u′

(τ)|2(1−Bτ) dτ − |u(0)|2 .

with domain
Dom(H{T}

B ) = {u ∈ H1(0, T ) : u(T ) = 0 } .

The operator H{T}
B is with a compact resolvent. Hence the spectrum σ(H{T}

B ) ⊆ R is purely discrete

and consists of a strictly increasing sequence of eigenvalues
(
λn

(
H{T}
B

))
n∈N∗

.

The following proposition gives an asymptotic two-term expansion of the eigenvalue λ1(H{T}
B ) (for the

proof, see for example [6, Prpo. 4.5]).

Proposition A.1 (Asymptotic of λ1(H{T}
B )). There exist constant C > 0 and T0 > 0, such that for all

T ≥ T0, B ∈ (−1/(3T ), 1/(3T )) , we have:

|λ1(H{T}
B )− (−1−B) | ≤ CB2.

After the change of function u = (1−Bτ)−
1
2 ũ , the new Hilbert space becomes L2((0, T ), dτ), the

form domain is always independent of the parameter and the expression of the operator depends on B :

H̃{T}
B = − d2

dτ2
− B2

4(1−Bτ)2
,

with the new Robin condition at 0 denoted by ũ
′
(0) =

(
− 1− B

2

)
ũ(0) and ũ(T ) = 0 .

Note that the associated quadratic form is defined by

q̃
{T}
B (ψ) =

∫ T

0
|∂τψ|2dτ −

∫ T

0

B2

4(1−Bτ)2
|ψ|2dτ −

(
1 +

B

2

)
|ψ(0)|2 .
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For further use, we would like to estimate ∥τ ũ{T}B ∥L2((0, T ),dτ) and ∥∂Bũ{T}B ∥L2((0, T ),dτ) uniformly
with respect to B and T .

Proposition A.2. There exist constants C > 0 , α > 0 and T0 > 0 such that, for all T ≥ T0 ,
B ∈ (−1/(3T ), 1/(3T )) , we have:

∥eατ ũ{T}B ∥L2((0, T ), dτ) ≤ C ,

with ũ{T}B is the normalized eigenfunction associated with λ1(H{T}
B ) .

Proof. Let ϕ = α τ with α a real positive constant. We have the identity〈
H̃{T}
B ũ

{T}
B , e2ϕũ

{T}
B

〉
= q̃

{T}
B (eϕũ

{T}
B )− ∥ϕ′eϕ ũ{T}B ∥2,

which follows by integration by parts (see for instance [22, Proposition 4.7]). Then, by using that ũ{T}B

is an eigenfunction, we get∫ T

0

∣∣∣∂τ(e2ϕũ{T}B

)∣∣∣2 dτ − ∫ T

0

B2

4(1−Bτ)2
e2ϕ|ũ{T}B |2 dτ −

(
1 +

B

2

)
e2ϕ(0)|ũ{T}B (0)|2

− ∥ϕ′
eϕ ũ

{T}
B ∥2

= λ1(H{T}
B ) ∥eϕ ũ{T}B ∥2 .

We have

|ũ{T}B (0)|2 = −2

∫ T

0
∂τ ũ

{T}
B (τ)ũ

{T}
B (τ) dτ ,

and then, there are constants C > 0 such that, for all ϵ > 0, we have:

|ũ{T}B (0)|2 ≤ Cϵ ∥∂τ ũ{T}B ∥2L2(0, T ) + Cϵ−1∥ũ{T}B ∥2L2(0, T ) (1.61)

Inserting (1.61) in q̃{T}B , there exist constants C > 0 such that:(
1− Cϵ− CϵB

2

)
∥∂τ ũ{T}B ∥2L2(0, T ) ≤

(
λ1(H{T}

B ) + Cϵ−1
(
1 +

B

2

)
+ C

)
∥ũ{T}B ∥2L2(0, T ) ,

For B → 0 , ϵ =
1

3C
and from Proposition A.1, we obtain:

∥ũ{T}B ∥H1(0, T ) ≤ C ,

thanks to (1.61), we get
|ũ{T}B (0)|2 ≤ C ,

which implies the simple estimate

−
∫ T

0

B2

4(1−Bτ)2
e2ϕ|ũ{T}B |2 dτ −

(
1 +

B

2

)
C −

∫ T

0
|ϕ′ |2e2ϕ|ũ{T}B |2 dτ ≤ λ1(H{T}

B ) ∥eϕ ũ{T}B ∥2 ,

and thus, ∫ T

0

[
− B2

4(1−Bτ)2
− λ1(H{T}

B )− |ϕ′ |2
]
e2ϕ |ũ{T}B |2 dτ ≤ C .

As T → +∞ , we have −1 ≤ B ≤ 1, and
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• B2

4(1−Bτ)2
≤ B2

4(1−BT )2
,

• λ1(H{T}
B ) ≤ −1−B + CB2 .

We choose α such that

− B2

4(1−BT )2
− 1−B + CB2 − α2 ≥ C,

and therefore, ∫ T

0
e2α τ |ũ{T}B |2 dτ ≤ C .

Lemma A.1. There exist constants C > 0 and T0 > 0, such that, for all T ≥ T0 and
B ∈ (−1/(3T ), 1/(3T )), we have:∣∣∣λ1(H{T}

B )
∣∣∣ ≤ C and ∥∂Bũ{T}B ∥L2((0, T ), dτ) ≤ C .

For the proof, see for example [8, Lemma 7.3].
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