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This paper is devoted to the asymptotic analysis of the eigenvalues of the Laplace operator with a strong magnetic field and Robin boundary condition on a smooth planar domain and with a negative boundary parameter. We study the singular limit when the Robin parameter tends to infinity which is equivalent to a semi-classical limit involving a small positive semi-classical parameter. The main result is a comparison between the spectrum of the Robin Laplacian with an effective operator defined on the boundary of the domain via the Born-Oppenheimer approximation. More precisely, the low-lying eigenvalue of the Robin Laplacian is approximated by the those of the effective operator. When the curvature has a unique non-degenerate maximum, we estimate the spectral gap and find that the magnetic field does not contribute to the three-term expansion of the eigenvalues. In the case of the disc domains, the eigenvalue asymptotics displays the contribution of the magnetic field explicitly.

Introduction 1.Magnetic Robin Laplacian

Let Ω be a bounded open subset of R 2 . We assume that the boundary Γ = ∂Ω is C ∞ -smooth. In this paper, we study the low-lying spectrum of the Laplacian in L 2 (Ω) with a strong mixed (Robin) "attractive" boundary condition on Γ, together with the strong magnetic field. Our investigation is partially motivated by recent works on the Robin Laplacian, in the context of superconductivity [START_REF] Helffer | Eigenvalues for the Robin Laplacian in domains with variable curvature[END_REF][START_REF] Kachmar | Diamagnetism versus Robin condition and concentration of ground states[END_REF] and spectral geometry [START_REF] Kachmar | Counterexample to strong diamagnetism for the magnetic Robin Laplacian[END_REF]. The operator is

P b γ = -(∇ -ibA 0 ) 2 ,
with domain Dom(P b γ ) = {u ∈ H 2 (Ω) : ν • (∇ -ibA 0 )u + γ u = 0 on Γ} , where -A 0 is the vector potential, -ν is the unit outward normal vector of Γ, -γ < 0 is the Robin parameter, -b > 0 is the intensity of the applied magnetic field, -ν • (∇ -ibA 0 )u + γ u = 0 on Γ is the Robin boundary condition.

The magnetic potential defined by A 0 (x 1 , x 2 ) = (A 0 1 , A 0 2 ) := 1 2 (-x 2 , x 1 ) , generates a constant magnetic field:

B := ∇ × A 0 = ∂ x 1 A 0 2 -∂ x 2 A 0 1 = 1 .
To be more precise, the magnetic Robin Laplacian P b γ is defined via the Lax-Milgram theorem, from the closed semi-bounded quadratic form (see for example [START_REF] Helffer | Spectral theory and its applications[END_REF]Ch. 4])

H 1 (Ω) ∋ u → Q b γ (u) := Ω |(∇ -ibA 0 )u(x)| 2 dx + γ Γ |u(x)| 2 ds(x) ,
where ds is the standard surface measure on the boundary. Note that, by the inequality in [1, Lemma 2.6], the trace of u is well defined as an element of H 1 2 (Γ) , and combining with the diamagnetic inequality in [START_REF] Lieb | Analysis[END_REF]Theorem 7.21], we obtain that, the quadratic form Q b γ is well defined and bounded from below.

Since Ω is bounded and regular, then the embedding of H 1 (Ω) into L 2 (Ω) is compact, therefore the operator P b γ has a compact resolvent. Its spectrum is purely discrete, and since P b γ is self-adjoint and bounded from below, it consists of an increasing sequence of eigenvalues. Our aim is to examine the magnetic effects on the low-lying eigenvalues λ n (b, γ) n∈N * , when the Robin parameter γ tends to -∞ and b tends to +∞ simultaneously.

If Ω is simply connected, the eigenvalue λ n (b, γ) is independent of the choice of the vector potential A 0 of the magnetic field. This is a consequence of invariance under gauge transformations; if A ∈ H 1 (Ω; R 2 ) and curl A = 1, then A = A 0 + ∇ϕ for a function ϕ ∈ H 2 (Ω) (cf. [3, Propositions D.1.1 and D.2.1]), and in turn e ibϕ (∇ -ibA 0 ) 2 e -ibϕ = (∇ -ibA 0 -ib∇ϕ) 2 = (∇ -ibA) 2 .

Apart from its own interest, the study of the spectrum of the operator P b γ arises in several contexts, where both situations subject to magnetic fields, b > 0, or without magnetic fields, b = 0, occur. Estimating the ground state energy of P b γ , leads to information on the critical temperature/critical fields of certain superconductors surrounded by other materials ( cf. [START_REF] Kachmar | Counterexample to strong diamagnetism for the magnetic Robin Laplacian[END_REF][START_REF] Kachmar | On the ground state energy for a magnetic Schrödinger operator and the effect of the de Gennes boundary condition[END_REF]) . On the other hand, eigenvalue asymptotics in the singular limit γ → -∞, provide counterexamples in the context of spectral geometry, see e.g. [START_REF] Freitas | The first Robin eigenvalue with negative boundary parameter[END_REF][START_REF] Pankrashkin | An effective Hamiltonian for the eigenvalue asymptotics of the Robin Laplacian with a large parameter[END_REF], and has connections to the study of Steklov eigenvalues, see e.g. [START_REF] Helffer | Semi-classical edge states for the robin laplacian[END_REF]. The case γ = 0 corresponds to the Neumann magnetic Laplacian, which has been studied in [START_REF] Raymond | Sharp asymptotics for the Neumann Laplacian with variable magnetic field: case of dimension 2[END_REF][START_REF] Raymond | Bound states of the magnetic Schrödinger operator[END_REF].

Main results.

In the case without magnetic field, b = 0, the asymptotic expansion of the eigenvalues of the Robin Laplacian has been the subject of recent studies, see e.g. [START_REF] Exner | Asymptotic eigenvalue estimates for a Robin problem with a large parameter[END_REF][START_REF] Helffer | Eigenvalues for the Robin Laplacian in domains with variable curvature[END_REF][START_REF] Levitin | On the principal eigenvalue of a Robin problem with a large parameter[END_REF][START_REF] Pankrashkin | An effective Hamiltonian for the eigenvalue asymptotics of the Robin Laplacian with a large parameter[END_REF][START_REF] Kachmar | Weyl formulae for the Robin Laplacian in the semiclassical limit[END_REF][START_REF] Kachmar | Diamagnetism versus Robin condition and concentration of ground states[END_REF][START_REF]Formules de Weyl par réduction de dimension: application à des Laplaciens électromagnétiques[END_REF]. In particular, the derivation of an effective operator on the boundary, involving the Laplace-Beltrami operator as well as the mean curvature of the boundary. In the same spirit, we will study the negative spectrum of the Robin's Laplacian on a bounded domain with the Robin condition at the boundary. Our aim is to improve/complement earlier estimates and also clarify the magnetic field's contribution in the spectral asymptotic.

The main contribution of this article is Theorem 1.1 below, which involves an effective operator that we introduce as follows. We denote by |Ω| the area of the domain Ω and by |∂Ω| the arc-length of its boundary. Let us parameterize the boundary, ∂Ω, by the arc-length, which we denote by s. Let κ(s) be the curvature of ∂Ω at the point defined by the arc-length s, with the convention that κ(s) ≥ 0 when ∂Ω is convex in a neighborhood of s, and negative otherwise. The effective operators are self-adjoint operators in the Hilbert space L 2 (∂Ω), acting on periodic functions, and defined as follows

L eff γ,β 0 = -γ -2 (∂ s -ibβ 0 ) 2 -1 + γ -1 κ(s) Dom L eff γ,β 0 = H 2 ( R/|∂Ω|Z ) (1.1)
with β 0 being the circulation of the magnetic field,

β 0 = |Ω| |∂Ω| . (1.2)
By the min-max principle, and standard semi-classical approximation,

λ n (L eff γ,β 0 ) = -1 + κ max γ -1 + o(γ -1 ) , (1.3) 
where

κ max = max ∂Ω κ(s) . (1.4)
We will describe the asymptotics of the negative eigenvalues of P b γ , via those of the effective operator on the boundary. More precisely, the n-th eigenvalue for the Laplace operator P b γ , is approximated by the n-th eigenvalue of the operators L eff γ,β 0 . We will use the following notation:

M = Õ(|γ| β ) iff ∀ ϵ > 0, M = O(|γ| β-ϵ ). (1.5) Theorem 1.1. Let 0 ≤ η < 3 2 and 0 < c 1 < c 2 . Suppose that c 1 |γ| η ≤ b ≤ c 2 |γ| η .
As γ tends to -∞ , for any n ∈ N * , we have

|λ n (b, γ) -γ 2 λ n ( L eff γ,β 0 )| = Õ(γ 2(η-1) ) ,
where λ n (L eff γ,β 0 ) is the n-th eigenvalue of the effective operator introduced in (1.1).

It results from Theorem 1.1 and (1.3),

λ n (b, γ) = -γ 2 + κ max γ + Õ(γ 2(η-1) ) . (1.6)
When b is a fixed constant (i.e. η = 0), (1.6) is known in [START_REF] Kachmar | On the isoperimetric inequality for the magnetic robin laplacian with negative boundary parameter[END_REF]Proposition 5.1] and in the absence of the magnetic field (b = 0) [6, Theorem 1.1] and [START_REF] Pankrashkin | Mean curvature bounds and eigenvalues of Robin Laplacians[END_REF]Theorem 1]. Note that the remainder term is of lower order as long as η < 3 2 . If η = 3 2 , by [START_REF] Kachmar | Diamagnetism versus Robin condition and concentration of ground states[END_REF], we have

λ n (b, γ) = -γ 2 + κ max + b 2 γ -3 4 γ + o(γ) .
In a generic situation where the curvature has a unique non-degenerate maximum, Theorem 1.1 allows us to determine the leading order term of the spectral gap between the successive eigenvalues. This is valid under the following assumption:

Assumption A κ attains its maximum κ max at a unique point; the maximum is non-degenerate, i.e. κ ′′ (0) < 0 , where κ max is introduced in (1.4), denotes the maximal curvature along the boundary ∂Ω and the arclength parametrization of the boundary is selected so that κ(0) = κ max .

Under Assumption A , we study the three terms of the eigenvalue asymptotics of the effective operator and find that

λ n ( L eff γ,β 0 ) = -1 + κ max γ -1 + (2n -1) -κ ′′ (0) 2 |γ| -3/2 + o(|γ| -3/2 ) . (1.7)
This yields the following corollary of Theorem 1.1:

Corollary 1.1. Let 0 ≤ η < 5 4 and 0 < c 1 < c 2 . Suppose that c 1 |γ| η ≤ b ≤ c 2 |γ| η .
Under the Assumption A, as γ tends to -∞ , for any n ∈ N * , we have

λ n (b, γ) = -γ 2 + κ max γ + (2n -1) -κ ′′ (0) 2 |γ| 1/2 + o(|γ| 1/2 ) .
The technical condition on η appears as follows. After inserting (1.7) into the estimate of Theorem 1.1, we get the error Õ(γ 2(η-1) ), which is of order o(|γ| 1/2 ) if and only if η < 5 4 . In the asymptotics of Corollary 1.1, the dependence with respect to the labeling of the eigenvalues, n, appears in the third term of the expansion. However, in the generic situations described by Assumption A , the contribution of the magnetic field is hidden in the remainder term, and is of lower order compared to that of the curvature. Corollary 1.1 follows from the spectral asymptotics of the 1D effective operators, which is valid under a weaker assumption on the strength of the magnetic field (b = O(|γ| 5/4 )) when compared to the one in Theorem 1.1 (b = O(|γ| 3/2 )).

In the case of disc domains, Assumption A fails, but we can improve Theorem 1.1 and display the influence of the magnetic field in the lowest eigenvalue asymptotics.

Theorem 1.2. Assume that Ω = D(0, 1) is the unit disc and that 0 ≤ η < 1. We have, as γ → -∞,

λ 1 (b, γ) = -γ 2 + γ + inf m∈Z m - b 2 2 - 1 2 + o(1) ,
uniformly with respect to b up to b = O(|γ| η ).

Theorem 1.2 was known when b is fixed in [START_REF] Kachmar | Counterexample to strong diamagnetism for the magnetic Robin Laplacian[END_REF]Theorem 1.1]. The proof of Theorem 1.2 relies on the derivation of the following explicitly solvable effective operator, which is more accurate than the one in (1.1) (note that in the unit disc, the curvature is constant and equal to 1),

L eff γ,disc = -γ -2 (∂ s -ibβ 0 ) 2 -1 + γ -1 - 1 2 γ -2 .
(1.8)

Organization of this paper.

This paper is organized as follows. In Section 3, we introduce an effective semiclassical parameter, we discuss a semi-classical version of the operator, and we recall why the eigenfunctions are localized, via Agmon estimates near the boundary. As a consequence, we replace the initial problem by a problem on a thin tubular neighborhood of the boundary. In Section 4, by using the Born-Oppenheimer approximation, we derive an effective operator whose eigenvalues simultaneously describe the eigenvalues of the magnetic Robin Laplacian. In Section 5, we recall that the bound states for the effective operator decay exponentially away from points of maximal curvature. Then, we reduce the study to a free-flux operator, which is a perturbation of the harmonic oscillator. Moreover, we estimate the eigenvalues for the effective operator with large magnetic field, thereby proving Corollary 1.1. Finally, in Section 6, in the case of the disc domains, we describe the term that determines the influence of the magnetic field on the spectrum of the Robin Laplacian, thereby proving Theorem 1.2. In Appendix A, we recall the known results related to a family of one dimensional auxiliary differential operators.

Boundary coordinates

The key to proving Theorem 1.1 is a reduction to the boundary. Indeed, the eigenfunctions associated with low-lying eigenvalues concentrate exponentially near the boundary (cf. Proposition 3.1). To single out the influence of the boundary curvature, we need a special coordinate system displaying the arclength along the boundary and the normal distance to the boundary. We will refer to such as boundary coordinates. In this section, we introduce the necessary notation to use these coordinates (cf. [START_REF] Helffer | Magnetic bottles in connection with superconductivity[END_REF][START_REF] Fournais | Spectral methods in surface superconductivity[END_REF]). Let R/(|∂Ω|Z) ∋ s -→ M (s) ∈ ∂Ω be the arc-length parametrization of ∂Ω. We will always work with |∂Ω|-periodic functions sometimes restricted to the interval

- |∂Ω| 2 , |∂Ω| 2 =] -L, L ] .
At the point M (s) ∈ ∂Ω, T (s) = M ′ (s) is the unit tangent vector and ν(s) is the unit normal vector such that ∀s ∈ R/(|∂Ω|Z), det(T (s), ν(s)) = 1 .

The curvature κ(s) at point M (s) is then defined as follows

T ′ (s) = κ(s)ν(s) .
The smoothness of the boundary yields the existence of a constant t 0 > 0 such that, upon defining

V t 0 = {x ∈ Ω : dist(x, ∂Ω) < t 0 }
the change of coordinates Φ : R/(|∂Ω|Z) × (0, t 0 ) ∋ (s, t) → x = M (s) -tν(s) ∈ V t 0 becomes a diffeomorphism. Let us note that, for x ∈ V t 0 , one can write

Φ -1 (x) := (s(x), t(x)) ∈ R/(|∂Ω|Z) × (0, t 0 )
where t(x) = dist(x, ∂Ω) and s(x) is the coordinate of the point

M (s(x)) ∈ R/(|∂Ω|Z) satisfying the relation dist(x, ∂Ω) = |x -M (s(x))| .
The inverse of Φ defines a coordinate system on a tubular neighborhood of ∂Ω in Ω that can be used locally. Now we express various integrals in the new coordinates (s, t).

For all s, the determinant of the Jacobian matrix of the transformation Φ -1 is given by:

det J Φ (s, t) = 1 -tκ(s).
In the new coordinates, the components of the vector field A 0 are given as follows:

Ã1 (s, t) = (1 -tκ(s))A 0 (Φ(s, t)) • M ′ (s) , Ã2 (s, t) = A 0 (Φ(s, t)) • ν(s) .
The new magnetic potential Ã0 = ( Ã1 , Ã2 ) satisfies

∂ Ã2 ∂s (s, t) - ∂ Ã1 ∂t (s, t) ds ∧ dt = curl A 0 (Φ -1 (s, t))dx ∧ dy = (1 -tκ(s))ds ∧ dt .
For all u ∈ L 2 (V t 0 ), we assign the pull-back function ũ defined in the new coordinates as follows

ũ = u • Φ .
Consequently, for all u ∈ H 1 (V t 0 ) , we have

Vt 0 |(∇ -ibA 0 )u(x)| 2 dx = (1 -tκ(s)) -2 |(∂ s -ib Ã1 )ũ| 2 + |(∂ t -ib Ã2 )ũ| 2 (1 -tκ(s)) dtds, Vt 0 |u(x)| 2 dx = Φ -1 (Vt 0 ) |ũ| 2 (1 -tκ(s)) dtds ,
and

Vt 0 ∩ ∂Ω |u(x)| 2 dx = |ũ(s, t = 0)| 2 ds .
Finally, we recall a useful gauge transformation that we borrow from [START_REF] Helffer | Magnetic bottles in connection with superconductivity[END_REF][START_REF] Fournais | Spectral methods in surface superconductivity[END_REF]. For t 0 > 0 small enough, there exists a gauge transformation φ(s, t) on R/(|∂Ω|Z) × (0, t 0 ) such that Ā0 defined by

Ā0 = Ã0 -∇ (s,t) φ = Ā1 (s, t) Ā2 (s, t) =   β 0 -t + t 2 2 κ(s) 0   , (2.9) 
with

β 0 = 1 |∂Ω| Ω curl A 0 dx = |Ω| |∂Ω| ,
and for all u ∈ H 1 (V t 0 ), we have

Vt 0 |(∇ -ibA 0 )u(x)| 2 dx = Φ -1 (Vt 0 ) (1 -tk(s)) -2 ∂ s -ib Ā1 w 2 + |∂ t w| 2 (1 -tk(s)) dsdt,
where w = e iφ ũ and ũ = u • Φ.

Preliminaries

Transformation into a semi-classical problem

We will prove the results of Section 1.2 in a semiclassical framework. Let us consider the semi-classical parameter h = γ -2 .

The limit γ → -∞ is now equivalent to the semi-classical limit h → 0 + . The quadratic form can be written as

Q b γ (u) = h -2 Ω |(h∇ -ibhA 0 )u(x)| 2 dx -h 3 2 Γ |u(x)| 2 ds(x) := h -2 q b h (u) .
Consequently, we obtain the self-adjoint operator depending on h

L b h = -(h∇ -ihbA 0 ) 2 , with domain Dom(L b h ) = { u ∈ H 2 (Ω) : ν • (∇ -ibA 0 )u -h -1 2 u = 0 on Γ } . Clearly, P b γ = h -2 L b h
, and thus the relation between the spectra of the operators P b γ and L b h is displayed as follows : 

σ(P b γ ) = h -2 σ(L b h ) . ( 3 
3.1. Let n ∈ N * , 0 ≤ η < 3 2 and 0 < c 1 < c 2 . There exist h 0 > 0, such that, if h ∈ (0, h 0 ) and b satisfies c 1 h -η 2 ≤ b ≤ c 2 h -η 2 ,
then we have :

|µ n (h, b) -h λ n (L eff h,β 0 )| = Õ(h 3-η ) , with L eff h,β 0 = -h(∂ s -ibβ 0 ) 2 -1 -κ(s)h 1 2 .
Remark 3.1. We distinguish the following two important cases of η : 4 ) .

-If 0 ≤ η < 5 4 , then, Õ(h 3-η ) = o(h 7 
-

If 5 4 ≤ η < 3 2 , then, Õ(h 3-η ) = o(h 3 
2 ) . By the method of harmonic approximation, we deduce the following corollary:

Corollary 3.1. Let n ∈ N * , 0 ≤ η < 5 4 and 0 < c 1 < c 2 . Under Assumption A, there exist h 0 > 0, for all h ∈ (0, h 0 ) and b satisfies c 1 h -η 2 ≤ b ≤ c 2 h -η 2 ,
we have : 4 ) .

µ n (h, b) = -h -κ max h 3/2 + (2n -1) -κ ′′ (0) 2 h 7/4 + o(h 7 
In the case of the disc, we derive the following effective operator

L eff h,disc = -h(∂ s -ibβ 0 ) 2 -1 -h 1 2 - h 2 . (3.11) 
As a consequence, we get the following theorem.

Theorem 3.2. Assume that Ω = D(0, 1) is the unit disc, 0 ≤ η < 1 and that 0 < c 1 < c 2 . There exist h 0 > 0, and for all h ∈ (0, h 0 ) and b satisfies

c 1 h -η 2 ≤ b ≤ c 2 h -η 2 ,
and we have

µ 1 (h, b) = -h -h 3 2 + inf m∈Z m - b 2 2 - 1 2 h 2 + o(h 2 ) .

Reduction near the boundary via Agmon estimates.

The goal of this section is to show that the eigenfunctions associated with eigenvalues less than -ϵ h, with 0 < ϵ < 1 a fixed constant, are concentrated exponentially near the boundary at the scale

h 1/2 . Proposition 3.1. Let M ∈ (-1, 0). For all α < √ -M , there exist constants C > 0 and h 0 ∈ (0, 1) such that, for h ∈ (0, h 0 ), if u h,b is a normalized ground state of L b h with eigenvalue µ(h, b) such that µ(h, b) < M h , then Ω |u h,b (x)| 2 + h|(∇ -ibA 0 )u h,b (x)| 2 exp 2αdist(x, Γ) h 1/2 dx ≤ C. (3.12)
Proof. The proof is identical to the one of Refs. [START_REF] Helffer | Eigenvalues for the Robin Laplacian in domains with variable curvature[END_REF]Theorem 5.1]. We just mention the minor adjustment due to the presence of the magnetic field term. As a consequence of introducing a partition of unity, we are led to bound from below q b h (u) when u is supported in a ball of size Rh 1/2 , with R large enough. If the support of u avoids the boundary, we use the trivial lower bound, q b h (u) ≥ 0, while if the support of u intersects the boundary, we use the diamagnetic inequality and write the lower bound for the nonmagnetic Robin Laplacian,

q b h (u) ≥ q 0 h (|u|) ≥ -h + o(h) ∥u∥ 2 .
We record the following simple corollary of Proposition 3.1.

Corollary 3.2. Let M ∈ (-1, 0) , ρ ∈ (0, 1 2 ) and c > 0 . For all 0 < α < √ -M , there exists C > 0 and h 0 ∈ (0, 1) such that, if u h,b is a normalized ground state of L b h with eigenvalue µ(h, b) such that µ(h, b) < M h , then for all h ∈ (0, h 0 ), dist(x,Γ) ≥c h 1 2 -ρ |u h,b (x)| 2 + h|(∇ -ibA 0 ) u h,b (x)| 2 dx ≤ C exp(-2 α c h -ρ ) . (3.13)
As a consequence, for small h, the ground states of the operator L b h are concentrated near the boundary of Ω (cf. Corollary 3.2). This will allow us to work in a tubular neighborhood of ∂Ω .

Let ρ ∈ (0, 1/2) , we introduce the δ-neighborhood of the boundary

Ω δ = { x ∈ Ω : dist(x, Γ) < δ } , δ = h 1 2 -ρ .
The quadratic form, defined on the variational space

W δ = {u ∈ H 1 (Ω δ ) : u(x) = 0 , ∀ x ∈ Ω such that dist(x, Γ) = δ} ,
is given by the formula

q b,ρ h (u) = h 2 Ω δ |(∇ -ibA 0 )u(x)| 2 dx -h 3 2 ∂Ω δ |u(x)| 2 ds(x) . (3.14)
Note again that the trace on ∂Ω δ is well-defined by a classical trace theorem. The associated self-adjoint operator is:

L b,ρ h = -(h∇ -ihbA 0 ) 2 , with domain Dom(L b,ρ h ) = {u ∈ H 2 (Ω δ ) : ν.(∇ -ibA 0 )u -h -1 2 u = 0 on Γ and u(x) = 0 , ∀ x ∈ Ω such that dist(x, Γ) = δ} .
That is, we consider the realization with mixed boundary conditions (Robin and Dirichlet conditions). Let (µ n (h, b, ρ)) n∈N * be the sequence of eigenvalues of the operator L b,ρ h . It is then standard to deduce from the min-max principle and the Agmon estimates of Corollary 3.2 the following proposition.

Proposition 3.2. Let ϵ > 0 and α ∈ (0, √ ϵ) , there exist constants C > 0 , h 0 ∈ (0, 1) such that, for all h ∈ (0, h 0 ) , n ≥ 1 and µ n (h, b) < -ϵh, µ n (h, b, ρ) ≤ µ n (h, b) + C exp(-αh -ρ ) .
Moreover, for all n ≥ 1 and h > 0, we have

µ n (h, b) ≤ µ n (h, b, ρ) . Proof. The inequality µ n (h, b) ≤ µ n (h, b, ρ) is not asymptotic. Let (v k,h ) 1≤k≤n be a family of eigen- function of L b,ρ
h associated with the eigenvalues (µ k (h, b, ρ)) 1≤k≤n . We define the function

u n,h = v n,h if x ∈ Ω δ 0 if x ∈ Ω \ Ω δ .
Let E be the vector subspace generated by the family (u k,h ) 1≤k≤n . We will find an upper bound of the quadratic form q b h (u) for all u ∈ E. By inserting u in the quadratic form q b h (u), we get

q b h (u) = q b,ρ h (v) = L b,ρ h v, v ≤ µ n (h, b, ρ)∥v∥ 2 = µ n (h, b, ρ)∥u∥ 2 .
By the min-max theorem, we get the non-asymptotic inequality

µ n (h, b) ≤ µ n (h, b, ρ).

Now we determine an upper bound of µ

n (h, b, ρ) in terms of µ n (h, b). Let (u k,h
) 1≤k≤n an orthonormal family of eigenfunctions associated with the eigenvalues (µ k (h, b)) 1≤k≤n . Let the truncation function define on R as follows:

0 ≤ χ ≤ 1, χ = 1 on ] -∞, 1/2 ] and χ = 0 on [1, +∞[ .
We define the function

χ 1 (x) = χ t(x) δ , with δ = h 1 2 -ρ . For k = 1, ..., n , we let v k,h = χ 1 u k,h .
Let F h be the sub-vector space of Dom(L b,ρ h ) generated by the family (v k,h ) 1≤k≤n and w h ∈ F h which is written as follows:

w h = n k=1 β k v k,h .
The functions (v k,h ) are quasi-orthonormal (using Proposition 3.1). We notice that dimF h = n, and

∥w h ∥ 2 = n k=1 |β k | 2 + O(exp(-αh -ρ )) .
Now we have to find an upper bound of q b,ρ h (w h ) by making µ n (h, b) appear. We have the following decomposition:

q b,ρ h (w h ) = L b,ρ h w h , w h = n j,k=1 β j β k L b,ρ h v j,h , v k,h .
For j, k fixed and for h small enough, we have

L b,ρ h v j,h , v k,h = χ 1 L b h u j,h , χ 1 u k,h -h 2 ⟨u j,h ∆χ 1 , χ 1 u k,h ⟩ -2h 2 ⟨∇χ 1 • (∇ -ibA 0 )u j,h , χ 1 u k,h ⟩ = µ j (h, b) ⟨χ 1 u j,h , χ 1 u k,h ⟩ -h 2 ⟨u j,h ∆χ 1 , χ 1 u k,h ⟩ -2h 2 ⟨∇χ 1 • (∇ -ibA 0 )u j,h , χ 1 u k,h ⟩ = δ j,k µ j (h, b) -h 2 ⟨u j,h ∆χ 1 , χ 1 u k,h ⟩ -2h 2 ⟨∇χ 1 • (∇ -ibA 0 )u j,h , χ 1 u k,h ⟩ + O(exp(-αh -ρ )) .
We have

∇χ 1 (x) = h ρ-1/2 ∇t(x)χ ′ (h ρ-1/2 t(x)),
and

∆χ 1 (x) = h 2ρ-1 |∇t(x)| 2 χ ′′ (h ρ-1/2 t(x)) + h ρ-1/2 ∆t(x) χ ′ (h ρ-1/2 t(x)) .
According to the Hölder inequality, we have

h 2 |⟨u j,h ∆χ 1 , χ 1 u k,h ⟩| = h 2 {t(x)≥δ/2} u j,h ∆χ 1 χ 1 u k,h dx ≤ h 2 {t(x)≥δ/2} |u j,h ∆χ 1 | 2 dx 1/2 {t(x)≥δ/2} |u k,h χ 1 | 2 dx 1/2
, and

h 2 |⟨∇χ 1 • (∇ -ibA 0 )u j,h , χ 1 u k,h ⟩| = h 2 {t(x)≥δ/2} ∇χ 1 .(∇ -ibA 0 )u j,h χ 1 u k,h dx ≤ h 2 {t(x)≥δ/2} |∇χ 1 .(∇ -ibA 0 )u j,h | 2 dx 1/2 {t(x)≥δ/2} |u k,h χ 1 | 2 dx 1/2 .
Since h.h ρ-1/2 < 1 and h.h 2ρ-1 < 1 and by Corollary 3.2, there exist constants c > 0 such that :

h 2 |⟨u j,h ∆χ 1 , χ 1 u k,h ⟩| ≤ c {t(x)≥δ/2} |u j,h | 2 dx 1/2 {t(x)≥δ/2} |u k,h | 2 dx 1/2 ≤ c exp(-αh -ρ ),
and

h 2 |⟨∇χ 1 • (∇ -ibA 0 )u j,h , χ 1 u k,h ⟩| ≤ c {t(x)≥δ/2} h|(∇ -ibA 0 )u j,h | 2 dx 1/2 {t(x)≥δ/2} |u k,h | 2 dx 1/2 ≤ c exp(-αh -ρ ) . hence h 2 ⟨u j,h ∆χ 1 , χ 1 u k,h ⟩ + 2h 2 ⟨∇χ 1 • (∇ -ibA 0 )u j,h , χ 1 u k,h ⟩ = O(exp(-αh -ρ )).
Consequently,

q b,ρ h (w h ) = n j,k=1 β j β k L b,ρ h v j,h , v k,h = n j=1 µ j (h, b)|β j | 2 + O(exp(-αh -ρ )) n j,k=1 β j β k ≤ µ n (h, b) + C exp(-αh -ρ ) ∥w h ∥ 2 .
By the min-max theorem, we have

µ n (h, b, ρ) = inf E⊂W δ dimE=n sup u ∈ E u̸ =0 q b,ρ h (u) Ω h |u| 2 dx , therefore, µ n (h, b, ρ) ≤ µ n (h, b) + C exp(-αh -ρ ).
Proposition 3.2 leads us to replace the initial problem by a new Robin-Dirichlet in a δ-neighborhood of the boundary Γ , and then reduces the analysis to the operator L b,ρ h .

The Robin Laplacian in boundary coordinates.

By (2.9), the new quadratic form is expressed in tubular coordinates and is written as follows:

q b,ρ h (u) = h 2 L -L δ 0 ∂ s -ibβ 0 -ib -t + t 2 2 κ(s) ũ 2 (1 -tκ(s)) -1 dtds + h 2 L -L δ 0 |∂ t ũ| 2 (1 -tκ(s)) dt ds -h 3/2 L -L |ũ(s, t = 0)| 2 ds , with ũ = e iφ u • Φ and L = |∂Ω| 2 .
The operator L b,ρ h is unitarily equivalent to L b,ρ h the self-adjoint realization on L 2 ((-L, L] × (0, δ), a dtds), of the differential operator, with the 2L-periodic boundary condition with respect to s,

L b,ρ h = -h 2 a -1 ∂ s -ibβ 0 -ib -t + t 2 2 κ(s) a -1 ∂ s -ibβ 0 -ib -t + t 2 2 κ(s) -h 2 a -1 ∂ t a∂ t (in (L 2 (a dtds)) ,
with a = 1 -tκ(s) . In boundary coordinates, the Robin condition becomes

∂ t u(s, t = 0) = -h -1/2 u(s, t = 0) .
We introduce,

Ω δ = {(s, t) : s ∈ [-L, L[ and 0 < t < δ } , Dom( q b,ρ h ) = {u ∈ H 1 ( Ω δ ) : u(s, δ) = 0} , Dom( L b,ρ h ) = {u ∈ H 2 ( Ω δ ) : u(s, δ) = 0 and ∂ t u(s, t = 0) = -h -1/2 u(s, t = 0)} .
We know that the eigenfunctions are localized near the boundary, at the scale h 1 2 (cf. Proposition 3.1) and in order to obtain a Robin condition independent of h, we get a partially semiclassical problem by changing the variable (s, t) = (s, h

1 2 τ ).
This change of variable transforms the above expression of L b,ρ h into an operator as follows

h -hâ -1 ∂ s -ibβ 0 -ib -h 1 2 τ + h τ 2 2 κ(s) â-1 ∂ s -ibβ 0 -ib -h 1 2 τ + h τ 2 2 κ(s) -â-1 ∂ τ â∂ τ ,
where the new weight is

â(s, τ ) = 1 -h 1 2 τ κ(s) .
The boundary condition becomes

∂ τ u(s, τ = 0) = -u(s, τ = 0) .
We consider rather the operator L b,ρ h = h -1 L b,ρ h , and the domain of integration becomes

[-L, L[×(0, δ/h 1/2 ) = [-L, L[×(0, h -ρ ) .
The associated quadratic form is

q b,ρ h (ψ) = L -L h -ρ 0 h 1/2 ∂ s -ibh 1/2 β 0 -ibh -τ + h 1/2 τ 2 2 κ(s) ψ 2 â-1 dτ ds + L -L h -ρ 0 |∂ τ ψ| 2 â dτ ds - L -L |ψ(s, τ = 0)| 2 ds . (3.15) 
We let

Ω δ = {(s, τ ) : s ∈ [-L, L[ and 0 < τ < h -ρ } , Dom( q b,ρ h ) = {u ∈ H 1 ( Ω δ ) : u(s, h -ρ ) = 0} , Dom( L b,ρ h ) = {u ∈ H 2 ( Ω δ ) : u(s, h -ρ ) = 0 and ∂ τ u(s, τ = 0) = -u(s, τ = 0)} . (3.16) 
Let µ n (h, b, ρ) be the n-th eigenvalue of the self-adjoint operator L b,ρ h . We have

µ n (h, b, ρ) = h -1 µ n (h, b, ρ) . (3.17)
4 Asymptotics of the eigenvalues of Robin's Laplacian

The aim of this section is to prove the following result, which implies Theorem 1.1.

Theorem 4.1. Let n ∈ N * , 0 ≤ η < 3 2 , α > 0 and 0 < c 1 < c 2 .
There exist c ± > 0 and h 0 > 0, such that, if h ∈ (0, h 0 ) and b satisfies

c 1 h -η 2 ≤ b ≤ c 2 h -η 2 ,
then we have :

λ n (L eff,- h,β 0 ) + O(h 2-α-η ) ≤ µ n (h, b, ρ) ≤ λ n (L eff,+ h,β 0 ) + O(h 2-α-η ) ,
where λ n (L eff,± h,β 0 ) is the n-th eigenvalue of L eff,± h,β 0 defined by

L eff,± h,β 0 = -h(1 ± c ± h r )(∂ s -ibβ 0 ) 2 -1 -κ(s)h 1 2 - κ(s) 2 2 h ± c ± h 3 2 
, and r = min α, 1 2 .

The Feshbach projection

Following the writing of the magnetic Robin Laplacian in tubular coordinates in Section 3.3, there appears a one-dimensional operator defined, for s fixed, by

-â-1 ∂ τ â∂ τ = -∂ 2 τ + h 1/2 κ(s)â -1 ∂ τ ∂ τ u(s, τ = 0) = -u(s, τ = 0) in L 2 ((0, h -ρ ), (1 -τ h 1/2 κ(s)) dτ ) ,
where â(s, τ ) = 1 -h 1 2 τ κ(s) . This operator is denoted by

H κ(s),h = H {T } B , with T = h -ρ and B = h 1/2 κ(s) ,
where H

{T }

B is defined in (A.1). The associated quadratic form is:

q κ(s),h (u) = h -ρ 0 |∂ τ u(τ )| 2 â dτ -|u(0)| 2 . (4.18)
Let v κ(s),h be a normalized groundstate of H κ(s),h associated with λ 1 (H κ(s),h ) . By [14, Lemma 2.5], we have

λ 1 (H κ(s),h ) = -1 -κ(s)h 1 2 - κ(s) 2 2 h + O(h 3 2 ) , (4.19) 
and for

C > 0 λ 2 (H κ(s),h ) ≥ -Ch 1/2-ρ . (4.20)
According to Lemma A.1 and Proposition A.1, there exist constants C and C k , such that

∥∂ s v κ(s),h ∥ L 2 ((0, h -ρ ),(1-h 1/2 κ(s)τ ) dτ ) ≤ Ch 1/2 , (4.21) 
and, the Agmon estimates

h -ρ 0 τ k |v κ(s),h | 2 (1 -h 1/2 κ(s)τ ) dτ ≤ C k . (4.22)
For s ∈ [-L, L], we introduce the Feshbach projection Π s on the normalized ground state v κ(s),h of H κ(s),h ,

Π s ψ = ⟨ψ, v κ(s),h ⟩ L 2 ((0, h -ρ ), â dτ ) v κ(s),h , ∀ ψ ∈ L 2 ([-L, L[×(0, h -ρ ), â ds dτ ). (4.23) 
We also let

Π ⊥ s = Id -Π s , and R h (s) = ∥∂ s v κ(s),h ∥ 2 L 2 ((0, h -ρ ), â dτ ) .
The quantity R h is sometimes called the "Born-Oppenheimer correction". It measures the commutation defect between ∂ s and Π s . Lemma 4.1. There exist constants C > 0 and h 0 > 0 such that, for all ψ ∈ Dom( q b,ρ h ) and h ∈ (0, h 0 ) , we have:

∥[Π s , ∂ s ]ψ∥ L 2 (â dτ ) = ∥[Π ⊥ s , ∂ s ]ψ∥ L 2 (â dτ ) ≤ 2R h (s) 1 2 + ch 1/2 ∥ψ∥ L 2 (â dτ ) .
Proof. We estimate the commutator:

[Π s , ∂ s ]ψ = -[Π ⊥ s , ∂ s ]ψ = -⟨ψ, ∂ s v κ(s),h ⟩ L 2 (â dτ ) v κ(s),h -⟨ψ, v κ(s),h ⟩ L 2 (â dτ ) ∂ s v κ(s),h + h 1/2 κ ′ (s) h -ρ 0 ψv κ(s),h τ dτ v κ(s),h .
We get, thanks to the Cauchy-Schwarz inequality and the Agmon estimates [see inequality (4.22)]

∥[Π s , ∂ s ]ψ∥ L 2 (â dτ ) ≤ 2R h (s) 1 2 + ch 1/2 ∥ψ∥ L 2 (â dτ ) .

Approximation of the norm on the weighted space

In this section, we introduce an approximation of the weight.

Lemma 4.2. There exist constants c > 0 and h 0 > 0 such that, for all ψ ∈ L 2 (â dτ ds) and h ∈ (0, h 0 ) , we have:

∥ψ∥ 2 L 2 (â -1 dτ ds) ≤ (1 + ch 1/2 ) ∥Π s ψ∥ 2 L 2 (â dτ ds) + (1 + ch 1/4 ) ∥Π ⊥ s ψ∥ 2 L 2 (â dτ ds) , (4.24) 
and

∥ψ∥ 2 L 2 (â -1 dτ ds) ≥ (1 -ch 1/2 ) ∥Π s ψ∥ 2 L 2 (â dτ ds) + (1 -ch 1/4 ) ∥Π ⊥ s ψ∥ 2 L 2 (â dτ ds) . (4.25) 
Proof. We have

A := L -L h -ρ 0 |ψ| 2 â dτ ds - L -L h -ρ 0 |ψ| 2 â-1 dτ ds ≤ C L -L h -ρ 0 h 1/2 τ |ψ| 2 â dτ ds .
Then, we use an orthogonal decomposition to get

A ≤ C L -L h -ρ 0 h 1/2 τ |Π s ψ| 2 â dτ ds + L -L h -ρ 0 h 1/2 τ |Π ⊥ s ψ| 2 â dτ ds .
Thanks to (4.22), we get

L -L h -ρ 0 τ |Π s ψ| 2 â dτ ds = L -L |⟨ψ, v κ(s),h ⟩ L 2 (â dτ ) | 2 h -ρ 0 τ |v κ(s),h | 2 â dτ ds ≤ c∥Π s ψ∥ 2 L 2 (â dτ ds) .
We use that h 1/2-ρ ≤ h 1/4 , and we obtain

L -L h -ρ 0 h 1/2 τ |Π ⊥ s ψ| 2 â dτ ds ≤ h 1/2-ρ L -L h -ρ 0 |Π ⊥ s ψ| 2 â dτ ds ≤ h 1/4 ∥Π ⊥ s ψ∥ 2 L 2 (â dτ ds) .
The following corollary is a direct consequence of (4.24).

Corollary 4.1. There exist constants c > 0 and h 0 > 0 such that, for all ψ ∈ L 2 (â dτ ds) and h ∈ (0, h 0 ) , we have:

∥Π s ψ∥ 2 L 2 (â -1 dτ ds) ≤ (1 + ch 1/2 ) L -L |φ(s)| 2 ds , with φ = ⟨ψ, v κ(s),h ⟩ L 2 ((0, h -ρ ), â dτ ) .

Upper bound.

To separate the variables, we consider the function of the form :

ψ(s, τ ) = φ(s) • v κ(s),h (τ ) , (4.26) 
with φ ∈ H 1 (R/2LZ) .

The following proposition provides an upper bound of the quadratic form on a subspace.

Proposition 4.1. Let ρ ∈ (0, 1/4) , 0 ≤ η < 3 2 , α > 0 , and 0 < c 1 < c 2 . There exist constants c > 0 and, h 0 > 0 such that, for all h ∈ (0, h 0 ) and b satisfying

c 1 h -η 2 ≤ b ≤ c 2 h -η 2 ,
we have for all ψ defined in (4.26)

q b,ρ h (ψ) ≤ q eff,+ h,β 0 (φ) + O(h 2-α-η )∥φ∥ 2 L 2 (R/2LZ) ,
where, for all φ ∈ H 1 (R/2LZ)

q eff,+ h,β 0 (φ) = L -L -1-κ(s)h 1 2 - κ(s) 2 2 h+c h 3 2 |φ(s)| 2 ds+h 1+c h min(α, 1 2 ) L -L | (∂ s -ibβ 0 )φ| 2 ds .
Proof. The proof will be done in a five steps. i. We recall the definition of q b,ρ h in (3.15). We write q b,ρ h (ψ) = q tang (ψ) + q trans (ψ) , where

q trans (ψ) = L -L h -ρ 0 h 1 2 ∂ s -ibh 1 2 β 0 -ibh -τ + h 1 2 τ 2 2 κ(s) ψ 2 â-1 dτ ds , and 
q tang (ψ) = L -L h -ρ 0 |∂ τ ψ| 2 â dτ ds - L -L |ψ(s, τ = 0)| 2 ds .
ii. We recall the definition of q κ(s),h in (4.18). By using the min-max principle and (4.19), we get an upper bound of q tang (ψ)

q tang (ψ) = L -L |φ(s)| 2 h -ρ 0 |∂ τ v κ(s),h (τ )| 2 â dτ -|v κ(s),h (0)| 2 ds = L -L q κ(s),h (v κ(s),h ) |φ(s)| 2 ds = L -L λ 1 (H κ(s),h ) |φ(s)| 2 ds ≤ L -L -1 -κ(s)h 1 2 - κ(s) 2 2 h |φ(s)| 2 ds + ch 3/2 ∥φ∥ 2 .
iii. Use the following classical inequality, for any a, b ∈ R , h > 0 and α > 0, we have

|a + b| 2 ≤ (1 + h α ) |a| 2 + (1 + h -α ) |b| 2 ,
and we obtain an upper bound of q trans (ψ)

q trans (ψ) ≤ (1 + h α ) q trans 1 (ψ) + (1 + h -α )q trans 2 (ψ) ,
where

q trans 1 (ψ) = L -L h -ρ 0 h 1 2 ∂ s -ibh 1 2 β 0 ψ 2 â-1 dτ ds , and 
q trans 2 (ψ) = b 2 h 2 L -L h -ρ 0 -τ + h 1 2 τ 2 2 κ(s) ψ 2 â-1 dτ ds .
iv. By use Lemma 4.2, there exists c > 0 such that

q trans 2 (ψ) ≤ b 2 h 2 (1 + c h 1/4 ) L -L |φ(s)| 2 h -ρ 0 -τ + h 1 2 τ 2 2 κ(s) v κ,h 2 â dτ ds .
Using inequality (4.22), and since the curvature is bounded, we get with a possible new constant c,

(1 + h -α ) q trans 2 (ψ) ≤ c b 2 h 2-α ∥φ∥ 2 ≤ ch 2-α-η ∥φ∥ 2 .
v. We have

q trans 1 (ψ) ≤ h (1 + h α ) L -L h -ρ 0 | v κ(s),h (∂ s -ibβ 0 )φ| 2 â-1 dτ ds + h( 1 + h -α ) L -L h -ρ 0 |∂ s v κ(s),h | 2 |φ(s)| 2 â-1 dτ ds .
Using Lemma 4.2 and Corollary 4.1, we write

q trans 1 (ψ) ≤ h (1 + h α )(1 + c h 1/2 ) L -L | (∂ s -ibβ 0 )φ| 2 ds + h (1 + h -α )(1 + c h 1/4 ) L -L |φ(s)| 2 h -ρ 0 |∂ s v κ(s),h | 2 â dτ ds .
From (4.21), we deduce that

(1 + h α )q trans 1 (ψ) ≤ h [1 + c h min(α, 1 2 ) ] L -L | (∂ s -ibβ 0 )φ| 2 ds + O(h 2-α )∥φ∥ 2 ≤ h [1 + c h min(α, 1 2 ) ] L -L | (∂ s -ibβ 0 )φ| 2 ds + O(h 2-α-η )∥φ∥ 2 .
Then the conclusion follows.

Lower bound.

The following proposition provides a lower bound of the quadratic form.

Proposition 4.2. Let ρ ∈ (0, 1/4) , 0 ≤ η < 3 2 , 0 < α < 2 -η and 0 < c 1 < c 2 . There exist constants c > 0 and h 0 > 0 such that, for all h ∈ (0, h 0 ) and b satisfying

c 1 h -η 2 ≤ b ≤ c 2 h -η 2 ,
we have

q b,ρ h (ψ) ≥ q eff,- h,β 0 (φ) + O(h 2-α-η )∥φ∥ 2 L 2 (R/2LZ) -o(1)∥Π ⊥ s ψ∥ 2 L 2 (â dτ ds)
, where

• q b,ρ h define on Dom( q b,ρ h ) in (3.16).

• ψ ∈ Dom( q b,ρ h ).

• φ ∈ H 1 (R/2LZ) defined by φ(s) := ⟨ψ(s, •), v κ(s),h ⟩ L 2 ((0, h -ρ ), â dτ ) , and 
q eff,- h,β 0 (φ) = L -L -1 -κ(s)h 1 2 - κ(s) 2 2 h -ch 3 2 |φ(s)| 2 ds + h[1 -c h min(α, 1 2 ) )] L -L | (∂ s -ibβ 0 )φ| 2 ds .
Proof. We recall the definition of q b,ρ h in (3.15). We write q b,ρ h (ψ) = q trans (ψ) + q tang (ψ) , with

q trans (ψ) = L -L h -ρ 0 h 1 2 ∂ s -ibh 1 2 β 0 -ibh -τ + h 1 2 τ 2 2 κ(s) ψ 2 â-1 dτ ds , and 
q tang (ψ) = L -L h -ρ 0 |∂ τ ψ| 2 â dτ ds - L -L |ψ(s, τ = 0)| 2 ds .
i. We recall the definition of q κ(s),h in (4.18). By using the orthogonal decomposition

ψ = Π s ψ + Π ⊥ s ψ, q κ(s),h (ψ) = q κ(s),h (Π s ψ) + q κ(s),h (Π ⊥ s ψ) ,
Then, by using the min-max principle,we get

q tang (ψ) = L -L q κ(s),h (ψ) ds = L -L q κ(s),h (φv κ(s),h ) ds + L -L q κ(s),h (Π ⊥ s ψ) ds ≥ L -L λ 1 (H κ(s),h )∥φv κ(s),h ∥ 2 L 2 (â dτ ) ds + L -L λ 2 (H κ(s),h )∥Π ⊥ s ψ∥ 2 L 2 (â dτ ) ds .
From (4. [START_REF] Pankrashkin | Mean curvature bounds and eigenvalues of Robin Laplacians[END_REF]) and (4.20), we have

q tang (ψ) ≥ L -L -1 -κ(s)h 1 2 - κ(s) 2 2 h |φ(s)| 2 ds -ch 3/2 ∥φ∥ 2 -Ch 1/2-ρ ∥Π ⊥ s ψ∥ 2 L 2 (â dτ ds) .
For ρ ∈ (0, 1/4), we have h 1/2-ρ = o(1) .

ii. By Lemma 4.2, we have

q trans (ψ) ≥ (1 -ch 1/2 ) L -L h -ρ 0 h 1 2 Π s ∂ s ψ -ibh 1 2 β 0 Π s ψ -ibhΠ s (α s ψ) 2 â dτ ds + (1 -ch 1/4 ) L -L h -ρ 0 h 1 2 Π ⊥ s ∂ s ψ -ibh 1 2 β 0 Π ⊥ s ψ -ibhΠ ⊥ s (α s ψ) 2 â dτ ds . with α s (τ ) = -τ + h 1/2 τ 2 2 κ(s) .
We write

Π s ∂ s ψ = ∂ s Π s ψ + [Π s , ∂ s ]ψ ,
and using the following classical inequality, for any a, b ∈ R , h > 0 , and α > 0, we have

|a + b| 2 ≥ (1 -h α )|a| 2 -h -α |b| 2 .
We obtain

q trans (ψ) ≥ (1 -ch 1/2 )(1 -h α )q trans 1 (ψ) -(1 -ch 1/2 )h -α q trans 2 (ψ) + (1 -ch 1/4 )(1 -h α )q trans 3 (ψ) -(1 -ch 1/4 )h -α q trans 2 (ψ) , with • q trans 1 (ψ) = L -L h -ρ 0 h 1 2 ∂ s Π s ψ -ibh 1 2 β 0 Π s ψ -ibhΠ s (α s ψ) 2 â dτ ds , • q trans 2 (ψ) = h L -L h -ρ 0 [Π s , ∂ s ]ψ 2 â dτ ds = h L -L h -ρ 0 [Π ⊥ s , ∂ s ]ψ 2 â dτ ds , • q trans 3 (ψ) = L -L h -ρ 0 h 1 2 ∂ s Π ⊥ s ψ -ibh 1 2 β 0 Π ⊥ s ψ -ibhΠ ⊥ s (α s ψ) 2 â dτ ds .
iii. We have

q trans 1 (ψ) ≥ (1 -h α ) L -L h -ρ 0 h 1 2 ∂ s Π s ψ -ibh 1 2 β 0 Π s ψ 2 â dτ ds -h -α L -L h -ρ 0 bhΠ s (α s ψ) 2 â dτ ds .
With the same type of reasoning as for the upper bound, there exists a constant c > 0 such that

q trans 1 (ψ) ≥ h(1 -c h α ) L -L | (∂ s -ibβ 0 )φ| 2 ds + O(h 2-α-η )∥φ∥ 2 L 2 (R/2LZ) -O(b 2 h 2-α )∥ψ∥ 2 L 2 (â dτ ds) .
vi. We use Lemma 4.1 and inequality (4.21), to obtain

q trans 2 (ψ) ≤ ch 2 ∥ψ∥ L 2 (â dτ ds) ≤ ch 2 ∥φ∥ 2 + ch 2 ∥Π ⊥ s ψ∥ 2 L 2 (â dτ ds) .
v. Since q trans 3 (ψ) ≥ 0 , we obtain:

q trans (ψ) ≥ h(1 -c h min(α, 1 2 ) ) L -L | (∂ s -ibγ 0 )φ| 2 ds + O(h 2-α-η ) ∥φ∥ 2 -ch -η+2-α ∥Π ⊥ s ψ∥ 2 L 2 (â dτ ds) .
We have 0 < α < 2 -η. Therefore, -η + 2 -α > 0 and h -η+2-α = o(1). Then the conclusion of the proposition follows.

Derivation of the effective operator

We now have everything to finish the proof of Theorem 4.1. The self-adjoint operator associated with the quadratic form q eff,± h,β 0 is :

L eff,± h,β 0 = -h(1 ± c ± h min(α, 1 2 ) )(∂ s -ibβ 0 ) 2 -1 -κ(s)h 1 2 - κ(s) 2 2 h ± c ± h 3 2 in L 2 (R/2LZ)
, where c ± is a constant independent of h. The operator L eff,± h,β 0 is with compact resolvent and it is bounded from below. Its spectrum is purely discrete and it is consists of by an increasing sequence of eigenvalues λ n (L eff,± h,β 0 ) .

Corollary 4.2. Let n ∈ N * , ρ ∈ (0, 1/4) , 0 ≤ η < 3 2 , α > 0 and 0 < c 1 < c 2 . There exist h 0 > 0, such that, if h ∈ (0, h 0 ) and b satisfies c 1 h -η 2 ≤ b ≤ c 2 h -η 2 ,
we have :

µ n (h, b, ρ) ≤ λ n (L eff,+ h,β 0 ) + O(h 2-α-η ) .
Proof. Let (φ j ) 1≤j≤n an orthonormal family of eigenvectors associated with eigenvalues (λ j (L eff,+ h,β 0 )) 1≤j≤n . Let E be the subspace of Dom(q eff,+ h,β 0 ) generated by the family (φ j ) 1≤j≤n . By Proposition 4.1, we have:

q b,ρ h (v k(s),h φ) ≤ q eff,+ h,β 0 (φ) + O(h 2-α-η )∥φ∥ 2 , ∀φ ∈ E .
By application of the min-max principle, we deduce

q eff,+ h,β 0 (φ) ≤ λ n (L eff,+ h,β 0 )∥φ∥ 2 .
Consequently,

q b,ρ h (v k(s),h φ) ≤ λ n (L eff,+ h,β 0 )∥φ∥ 2 + O(h 2-α-η )∥φ∥ 2 ≤ λ n (L eff,+ h,β 0 ) + O(h 2-α-η ) ∥v k(s),h φ∥ 2 .
For all g ∈ v k(s),h E , we have:

q b,ρ h (g) ≤ λ n (L eff,+ h,β 0 ) + O(h 2-α-η ) ∥g∥ 2 .
We note from the normalization of v k(s),h that dim(v k(s),h E) = n . Hence, by application of the minmax principle, we obtain

µ n (h, b, ρ) ≤ λ n (L eff,+ h,β 0 ) + O(h 2-α-η ). Corollary 4.3. Let n ∈ N * , ρ ∈ (0, 1/4) , 0 ≤ η < 3 2 , α > 0 and 0 < c 1 < c 2 . There exist h 0 > 0, such that, if h ∈ (0, h 0 ) and b satisfies c 1 h -η 2 ≤ b ≤ c 2 h -η 2 ,
then we have :

µ n (h, b, ρ) ≥ λ n (L eff,- h,β 0 ) + O(h 2-α-η ) .
Proof. According to Proposition 4.2, there exist ϵ 0 ∈ (0, 1) such that, for all ψ ∈ Dom( q b,ρ h ) and h small enough,

q b,ρ h (ψ) ≥ Q tens h (⟨ψ, v κ(s),h ⟩, Π ⊥ ψ) , (4.27) 
where, ∀(φ, f ) ∈ Dom(q eff,- h,β 0 ) × Dom( q b,ρ h ), the quadratic form defined by

Q tens h (φ, f ) = Q eff h (φ) - ϵ 0 2 ∥f ∥ 2 L 2 ( a dτ ds) , with Q eff h (φ) = q eff,- h,β 0 (φ) + O(h 2-α-η ))∥φ∥ 2 L 2 (R/2LZ
) . By application of the min-max principle (see also [START_REF] Raymond | Bound states of the magnetic Schrödinger operator[END_REF]Chapter 13]), we have the comparison of the Rayleigh quotients: 

µ n (h, b, ρ) ≥ µ tens n (h) . ( 4 
µ tens n (h) = µ eff n (h) = λ n (L eff,- h,β 0 ) + O(h 2-α-η ) . (4.29)
5 Spectrum of the effective operator Let λ n (L) be the n-th eigenvalue of an operator L . Fix a constant c ∈ R . The effective operators L eff,± h,β 0 are special cases of the following operator:

L eff,b h,α,0 = -h(1 -c h min(α, 1 2 ) )(∂ s -ibβ 0 ) 2 -1 -κ(s)h 1 2 - κ(s) 2 2 h -ch 3 2 ,
with b > 0 and α > 0 . The associate quadratic form on L 2 (R/2LZ) is

q eff,b h,α,0 (φ) = L -L -1-κ(s)h 1 2 - κ(s) 2 2 h-ch 3 2 |φ(s)| 2 ds+h(1-c h min(α, 1 2 ) ) L -L | (∂ s -ibβ 0 )φ| 2 ds .
In the following, we will explain how the spectrum of the operator L eff,b h,α,0 reduces to the study of that stated in Theorem 3.1. The operator that we are going to study its spectrum is a perturbation of the harmonic oscillator. Then, the calculations are based on the context of the harmonic approximation (cf. [22, Sections 3.2 and 4.1.2] and [3, Section 7.1]) , with a small adjustment, since the operator is defined on a periodic space and with a phase term

ibβ 0 . Let L eff,b h,α,1 = L eff,b h,α,0 + 1.
By definition of the spectrum, we have

λ n (L eff,b h,α,0 ) = -1 + λ n (L eff,b h,α ,1 ) . (5.30) 
Factoring the term h -1/2 , we get the new operator

L eff,b h,α,2 = h -1/2 L eff,b h,α,1 . Clearly, λ n (L eff,b h,α,1 ) = h 1/2 λ n (L eff,b h,α,2 ) . (5.31) 
We introduce the semi-classical parameter

ℏ = h 1/4 .
Let κ max be the maximum curvature along the boundary Γ introduced in (1.4).

Lemma 5.1. Let us consider:

L eff,b ℏ,α,3 = -ℏ 2 (1 -c ℏ min(4α,2) )(∂ s -ibβ 0 ) 2 + κ max -κ(s) , with the associated quadratic form on L 2 (R/2LZ), q eff,b ℏ,α,3 (φ) = L -L (κ max -κ(s)) |φ(s)| 2 ds + ℏ 2 (1 -c ℏ min(4α,2) ) L -L | (∂ s -ibβ 0 )φ| 2 ds .
Then, we have

λ n (L eff,b h,α,2 ) = λ n (L eff,b ℏ,α,3 ) -κ max + O(ℏ 2 ) . (5.32) Proof. Let φ ∈ H 1 (R/2LZ). We have q eff,b h,α,2 (φ) -q eff,b ℏ,α,3 (φ) + κ max ∥φ∥ 2 = ℏ 2 L -L κ(s) 2 2 -cℏ 2 |φ(s)| 2 ds .
Since Ω is a bounded domain with a smooth boundary, the curvature κ is also bounded, hence there exists C > 0 independent of s, such that

q eff,b h,α,2 (φ) -q eff,b ℏ,α,3 (φ) + κ max ∥φ∥ 2 ≤ C ℏ 2 ∥φ∥ 2 .
Applying the min-max principle, we finishes the proof.

From (5.30), (5.31) and (5.32), we obtain

λ n (L eff,b h,α,0 ) = -1 + ℏ 2 λ n (L eff,b ℏ,α,3 ) -ℏ 2 κ max + O(ℏ 4 ) . (5.33) 
Therefore, to study the spectrum of the effective operator L eff,b h,α,0 , it suffices to study the spectrum of the operator L eff,b ℏ,α,3 , introduced in Lemma 5.1.

Localization near the point of maximum curvature

Let κ max be the maximum curvature along the boundary Γ introduced in (1.4).

Proposition 5.1. Let us consider the effective operator of the form

L eff,b ℏ,4 = -ℏ 2 (∂ s -ibβ 0 ) 2 + κ max -κ(s) ,
and the associated quadratic form on L 2 (R/2LZ) is

q eff,b ℏ,4 (φ) = L -L κ max -κ(s) |φ(s)| 2 ds + ℏ 2 L -L | (∂ s -ibβ 0 )φ| 2 ds .
Then, we have

λ n (L eff,b ℏ,α,3 ) = (1 + O( ℏ min(4α,2) )λ n (L eff,b ℏ,4 ) . Proof. Let φ ∈ H 1 (R/2LZ
). We have:

|q eff,b ℏ,α,3 (φ) -q eff,b ℏ,4 (φ)| = |c|ℏ min(4α,2) ℏ 2 L -L | (∂ s -ibβ 0 )φ| 2 ds ≤ |c|ℏ min(4α,2) ℏ 2 L -L | (∂ s -ibβ 0 )φ| 2 ds + L -L κ max -κ(s) |φ(s)| 2 ds ≤ |c|ℏ min(4α,2) q eff,b ℏ,4 (φ) .
The conclusion of the lemma is now a simple application of the min-max principle.

From (5.33) and Proposition 5.1, we obtain

λ n (L eff,b h,α,0 ) = -1 -ℏ 2 κ max + ℏ 2 (1 + O( ℏ min(4α,2) )λ n (L eff,b ℏ,4 ) + O(ℏ 4 ) .
In the following, we show that

λ n (L eff,b h,4 ) = O(ℏ) then, for 0 < η ≤ 3 2 , we get (recall that ℏ = h 1/4 ) λ n (L eff,b h,α,0 ) = -1 -ℏ 2 κ max + ℏ 2 λ n (L eff,b ℏ,4 ) + o(ℏ 3 ) = λ n (L eff h,β 0 ) + Õ(h 2-η ) . (5.34) 
Note that Theorem 4.1 and equality (5.34), yield the Proof of Theorem 3.1 which is a reformulation of Theorem 1.1.

The goal is to show that the eigenfunctions of L eff,b ℏ,4 , associated with the eigenvalues of order ℏ, concentrate exponentially near the point of maximum curvature. Proposition 5.2. For ϵ ∈ (0, 1) , there exist C > 0 and ℏ 0 > 0 such that, for all ℏ ∈ (0, ℏ 0 ) and for all eigenfunctions ψ of L eff,b ℏ,4 , associated with the eigenvalues of orders ℏ , we have:

∥e ϵϕ 0 /ℏ ψ∥ 2 ≤ C∥ψ∥ 2 , q eff,b ℏ,4 (e ϵϕ 0 /ℏ ψ) ≤ Cℏ∥ψ∥ 2 ,
where

ϕ 0 (s) = min k∈Z s+2kL 0 κ max -κ(y) dy .
Proof. The Proof of Proposition 5.2 is a standard application of the method of Agmon estimates (see for example [START_REF] Raymond | Bound states of the magnetic Schrödinger operator[END_REF]Proposition 4.10]). The proof is formed by three steps. Let ϵ ∈ (0, 1). Consider an eigenvalue λ = O(ℏ) of L eff,b ℏ,4 , and an associated eigenfunction ψ.

1. First step.

Let ϕ be a regular and 2L periodic function, with real value. We have: (5.37) From (5.36), we have: ℏ 2 E = -q eff,b h,4 (e ϕ ψ) + λ∥e ϕ ψ∥ 2 ∈ R Consequently, (5.37) gives E = -∥∂ s e ϕ ψ∥ 2 .

q eff,b h,4 (e ϕ ψ) = λ∥e ϕ ψ∥ 2 + ℏ 2 ∥∂ s e ϕ ψ∥ 2 . ( 5 
(5.38) From (5.36) and (5.38), we obtain:

q eff,b h,4 (e ϕ ψ) = λ∥e ϕ ψ∥ 2 + ℏ 2 ∥∂ s e ϕ ψ∥ 2 .
2. Second step.

Let us show that: q eff,b h,4 (e ϵϕ 0 /ℏ ψ) ≤ Cℏ∥e ϵϕ 0 /ℏ ψ∥ 2 κ max -κ(y) dy . We notice that

|ϕ ′ (s)| 2 = ϵ 2 ℏ 2 |ϕ ′ 0 (s)| 2 = ϵ 2
ℏ 2 (κ max -κ(s)) .

(5.41)

We recall that

q eff,b h,4 (φ) = L -L κ max -κ(s) |φ(s)| 2 ds + ℏ 2 L -L |(∂ s -ibβ 0 )φ| 2 ds, consequnetly, q eff,b h,4 (φ) ≥ L -L κ max -κ(s) |φ(s)| 2 ds.
(5.42) From (5.35) and (5.42), we have:

L -L κ max -κ(s) e 2ϕ |ψ| 2 ds ≤ λ∥e ϕ ψ∥ 2 + ℏ 2 ∥∂ s e ϕ ψ∥ 2 ⇒ L -L κ max -κ(s) -λ -ℏ 2 |ϕ ′ | 2 e 2ϕ |ψ| 2 ds ≤ 0.
By (5.41), we get

L -L κ max -κ(s) -λ -ϵ 2 κ max -κ(s) e 2ϕ |ψ| 2 ds ≤ 0 ⇒ L -L 1 -ϵ 2 κ max -κ(s) e 2ϕ |ψ| 2 ds ≤ λ∥e ϕ ψ∥ 2 .
Therefore,

L -L 1 -ϵ 2 κ max -κ(s) e 2ϕ |ψ| 2 ds ≤ Cℏ∥e ϕ ψ∥ 2 .
(5.43)

We notice that for any ϵ > 0 and for ℏ small enough, there is a constant C > 0 independent of ℏ such that 1 -ϵ 2 ≥ C .

We deduce the inequality (5.40)

L -L κ max -κ(s) e 2ϕ |ψ| 2 ds ≤ Cℏ∥e ϕ ψ∥ 2 .
On the other hand, by (5.35) and (5.41), we have:

q eff,b h,4 (e ϕ ψ) ≤ λ∥e ϕ ψ∥ 2 + ℏ 2 ∥∂ s e ϕ ψ∥ 2 ≤ λ∥e ϕ ψ∥ 2 + ϵ 2 L -L
κ max -κ(s) e 2ϕ |ψ| 2 ds .

we use (5.40), to deduce the inequality (5.39).

3. Third step.

Show that:

L -L e 2ϵϕ 0 /ℏ |ψ| 2 ds ≤ C∥ψ∥ 2 , (5.44) and q eff,b h,4 (e ϵϕ 0 /ℏ ψ) ≤ Cℏ∥ψ∥ 2 .

(5.45)

We use that κ max -κ(s) admits a unique non-degenerate minimum, we deduce that there exists c > 0 such that for all C 0 > 0, there exist constants C, ℏ 0 such that ∀ℏ ∈ (0, ℏ 0 ), (5.49)

|s|≤C 0 ℏ 1/2 κ max -κ(s) e 2εΦ 0 /ℏ |ψ| 2 ds ≤ Cℏ∥ψ∥ 2 , (5.46) 
Let's fix C 0 > 0 large enough,

|s|≥C 0 ℏ 1/2 e 2ϵϕ 0 /ℏ |ψ| 2 ds ≤ 1 c C 2 0 ℏ |s|≥C 0 h 1/2 κ max -κ(s) e 2ϵϕ 0 /ℏ |ψ| 2 ds ≤ 1 c C 2 0 ℏ L -L
κ max -κ(s) e 2ϵϕ 0 /ℏ |ψ| 2 ds .

From the inequality (5.40),we get

|s|≥C 0 ℏ 1/2 e 2ϵϕ 0 /ℏ |ψ| 2 ds ≤ C c C 2 0 L -L e 2ϵϕ 0 /ℏ |ψ| 2 ds ≤ C c C 2 0 |s|≤C 0 ℏ 1/2 e 2ϵϕ 0 /ℏ |ψ| 2 ds + C c C 2 0 |s|≥C 0 ℏ 1/2 e 2ϵϕ 0 /ℏ |ψ| 2 ds . Thus, 1 - C c C 2 0 |s|≥C 0 ℏ 1/2 e 2ϵϕ 0 /ℏ |ψ| 2 ds ≤ C c C 2 0 |s|≤C 0 ℏ 1/2 e 2ϵϕ 0 /ℏ |ψ| 2 ds .
From the inequality (5.47), we obtain (5.49) and therefore we show the point (5.44). From (5.39), we get q eff,b h,4 (e ϵϕ 0 /ℏ ψ) ≤ Cℏ∥e ϵϕ 0 /ℏ ψ∥ 2 and from the inequality (5.44), we obtain the inequality (5.45).

Reduction to a flux-free operator

Consider the Dirichlet effective operator of the form:

L eff ℏ = -ℏ 2 ∂ 2 s + κ max -κ(s) , with domain Dom L eff ℏ = { u ∈ H 2 ([-L, L]), u(-L) = u(L) = 0 } ,
and the associated quadratic form on

L 2 ([-L, L]) is q eff ℏ (φ) = L -L κ max -κ(s) |φ(s)| 2 ds + ℏ 2 L -L | ∂ s φ| 2 ds .
Let (λ n (L eff ℏ )) n∈N * be the sequence of eigenvalues of the operator L eff ℏ . As a consequence of Proposition 5.2, for small ℏ, the eigenfunctions of L eff ℏ,4 , associated with the eigenvalues of orders ℏ concentrate exponentially near the point of maximum curvature at the scale ℏ 1/2 . A standard application of the minmax principle and the Agmon estimates of Proposition 5.2, is the reduction to analysis to the flux-free operator L eff ℏ (Proposition 5.3). The notation O(ℏ ∞ ) indicates a quantity satisfying that, for all N ∈ N, there exists C N > 0 and ℏ N > 0 such that, for all ℏ ∈ (0, ℏ N ), |O(ℏ ∞ )| ≤ C N ℏ N . Proposition 5.3. Let n ∈ N, there exist constant ℏ 0 ∈ (0, 1) such that, for all ℏ ∈ (0, ℏ 0 ) and

λ n (L eff,b ℏ,4 ) = O(ℏ), λ n (L eff ℏ ) ≤ λ n (L eff,b ℏ,4 ) + O(ℏ ∞ ) . Moreover, for all n ≥ 1 , ℏ > 0, we have λ n (L eff,b ℏ,4 ) ≤ λ n (L eff ℏ ) .
Proof. For all N ≥ 1 , we can take an orthonormal family eigenfunctions (ψ n,ℏ ) n=1,...,N associated with the eigenvalues (λ n (L eff,b ℏ,4 ) n=1,...,N . Let us consider the cut off function χ define on R as follows:

0 ≤ χ ≤ 1 , χ = 1 on - L 2 , L 2 
and χ = 0 on R\] -L, L[ .

For k = 1, ..., N, we define the function

Φ k,ℏ (s) = e -ibβ 0 s χ(s)ψ j,ℏ (s) . We notice that Φ k,ℏ (-L) = Φ k,ℏ (L) = 0 and Φ k,ℏ ∈ H 2 ([-L, L ]) .
Let E N (ℏ) be the vector subspace of Dom(L eff ℏ ) spanned by the family (Φ n,ℏ ) n=1,...,N . For ℏ small enough, Proposition 5.2 yields that dim E N (ℏ) = N and, for all u ℏ ∈ E N (ℏ),

q eff ℏ (u h ) ≤ λ N (L eff,b ℏ,4 ) + O(ℏ ∞ ) ∥u h ∥ 2 .
By the min-max theorem, we get λ N (L eff ℏ ) ≤ λ N (L eff,b ℏ,4 ) + O(ℏ ∞ ) . Now we determine an upper bound of λ n (L eff ℏ ) in terms of λ n (L eff,b ℏ,4 ) . For all N ≥ 1 , we can take an orthonormal family eigenfunctions (u n,ℏ ) n=1,...,N associated with the eigenvalues (λ n (L eff ℏ )) n=1,...,N . For k = 1, ..., N, we define the function

Ψ k,ℏ (s) = e ibβ 0 s u k,ℏ (s) . We notice that Ψ k,ℏ (-L) = Ψ k,ℏ (L) = 0 and Ψ k,ℏ ∈ H 2 (] -L, L [) .
Let E N (ℏ) the N -dimensional vector subspace of Dom(L eff,b ℏ,4 ) spanned by the family (Ψ n,ℏ ) n=1,...,N . Let Ψ ∈ E N (ℏ) which is written as follows:

Ψ = N k=1 β k Ψ k,ℏ = N k=1 β k e ibβ 0 s u k,ℏ (s) = e ibβ 0 s u , u = N k=1 β k u k,ℏ (s) . We have L eff,b ℏ,4 Ψ = e ibβ 0 s L eff ℏ u , and, ⟨L eff,b ℏ,4 Ψ, Ψ⟩ = ⟨L eff ℏ u, u⟩ ≤ λ N (L eff ℏ )∥u∥ 2 = λ N (L eff ℏ )∥Ψ∥ 2 .
By the min-max theorem, we get the non-asymptotic inequality

λ N (L eff,b ℏ,4 ) ≤ λ N (L eff ℏ ) .

End of the proof

In this section we will construct trial states (Φ n ) in the domain of the effective operator L eff ℏ , such that, for every fixed n ∈ N * , we have

L eff ℏ Φ n -(2n -1)ℏ -κ ′′ (0) 2 Φ n L 2 (] -L, L[) ≤ Cℏ 3/2 .
(5.50)

We know that, the eigenfunctions are localized near the boundary at the scale ℏ 1 2 (cf. Prop 5.2, the same proof can be adapted for L eff ℏ ). It suggests to introduce the rescaling s = ℏ 1/2 σ.

(5.51)

The effective operator L eff ℏ becomes

L eff ℏ = -ℏ ∂ 2 σ + κ max -κ(ℏ 1 2 σ).
Recall that the value of the maximum curvature is κ max = κ(0). We can use a Taylor expansion of κ near 0, as follows κ(ℏ

1 2 σ) = κ max + ℏσ 2 2 κ ′′ (0) + ℏ 3 2 q(σ),
where the functions q satisfy for |σ| = O(ℏ -1 2 )

|q(σ) ≤ C|σ| 3 .

(5.52)

Consequently, we write the effective operator L eff ℏ as

ℏ -1 L eff ℏ = -∂ 2 σ - σ 2 2 κ ′′ (0) -ℏ 1 2 q(σ) .
(5.53) Since κ(0) is the non-degenerate maximum of κ, we have κ ′′ (0) < 0. The eigenvalues of the harmonic oscillator H harm

-∂ 2 σ + -κ ′′ (0) 2 σ 2 in L 2 (R) (5.54) are (2n -1) -κ ′′ (0) 2 with n ∈ N * .
The corresponding normalized eigenfunctions are denoted by f n (σ). They have the form

f n (σ) = h n (σ) exp -- k ′′ (0) 2 σ 2 2 , (5.55) 
where the (h n (σ)) n≥1 are the rescaled Hermite polynomials. Define the trial state Φ n in L 2 (] -L, L[) as follows:

Φ n (s) = ℏ -1/4 χ s 2L f n (ℏ -1/2 s) = ℏ -1/4 u n (s) , (5.56) 
where χ is a cut-off function defined on R by:

0 ≤ χ ≤ 1 , χ = 1 in ] -1/4, 1/4 ] and χ = 0 in R\] -1/2, 1/2[, and 
u n (s) = χ s 2L f n (ℏ -1/2 s) .
Using the exponential decay of f n at infinity, it is easy to verify

∥Φ n ∥ L 2 (] -L, L[) = 1 + O(ℏ ∞ ) .
(5.57)

Then, we observe that after a change of variables and by construction of Φ n , (5.53) yields

ℏ -1 L eff ℏ Φ n (s) = -ℏ -1/4 ∂ 2 σ u n (σ) + σ 2 2 κ ′′ (0)u n (σ) + ℏ 1 2 q(σ)u n (σ) = -ℏ -1/4 χ ℏ 1/2 σ 2L ∂ 2 σ f n (σ) + 2ℏ 1 2 χ ′ ℏ 1 2 σ 2L f ′ n (σ) + ℏχ ′′ ℏ 1 2 σ 2L f n (σ) + σ 2 2 κ ′′ (0)u n (σ) + ℏ 1 2 q(σ)u n (σ) = -ℏ -1/4 -(2n -1) -κ ′′ (0) 2 u n (σ) + 2ℏ 1 2 χ ′ ℏ 1 2 σ 2L f ′ n (σ) + ℏχ ′′ ℏ 1 2 σ 2L f n (σ) + ℏ 1 2 q(σ)u n (σ) = (2n -1) -κ ′′ (0) 2 Φ n (s) -ℏ -1/4 2ℏ 1 2 χ ′ ℏ 1 2 σ 2L f ′ n (σ) + ℏχ ′′ ℏ 1 2 σ 2L f n (σ)
+ ℏ 1 2 q(σ)u n (σ) .

(5.58)

Using the exponential decay of f n at infinity, we infer from (5.58) that

ℏ -1 L eff ℏ Φ n -(2n -1) -κ ′′ (0) 2 Φ n ≤ Cℏ 1/2 .
As a consequence of the spectral theorem, (5.50) yields that, for every fixed n ∈ N * , there exists an eigenvalue λn (L eff ℏ ) of the operator L eff ℏ such that λn (L eff ℏ ) = (2n -1)ℏ -κ ′′ (0) 2 + O(ℏ 3/2 ).

(5.59)

Now, looking for lower bound.

Proposition 5.4. For all n ≥ 1, there exist ℏ 0 > 0 such that, for all ℏ ∈ (0, ℏ 0 )

λ n (L eff ℏ ) ≥ (2n -1)ℏ -κ ′′ (0) 2 + O(ℏ 3/2 ) .
Proof. For all N ≥ 1 , we can take a family of eigenvalues and eigenfunctions (λ n (L eff ℏ ), ψ n,ℏ ) n=1,...,N such that (ψ n,ℏ ) n=1,...,N is an orthonormal family. Let E N (ℏ) the vector subspace of Dom(L eff ℏ ) of dimension N spanned by the family (ψ n,ℏ ) n=1,...,N . It is rather easy to observe that, for ψ ∈ E N (ℏ)

⟨L eff ℏ ψ, ψ⟩ ≤ λ N (L eff ℏ )∥ψ∥ 2 .
Since ψ(-L) = ψ(L) = 0, the following function is in H 1 (R)

ψ = ψ if s ∈] -L, L[ 0 if s ∈ R\] -L, L[ .
For N ≥ 1, let E N (ℏ) = Span{ ψn,ℏ } n=1,...,N .

Since dim(E N (ℏ)) = N, then dim( E N (ℏ)) = N. We notice that, for all ψ ∈ E N (ℏ), ψ also satisfies the Agmon estimates (Proposition 5.2). Using the change of variable introduced in (5.51), we easily obtain that, there exists C > 0 such that, for all ψ ∈ E N (ℏ)

ℏ -1 2 L -ℏ -1 2 L |σ| 3 |ψ(σ)| 2 d(ℏ 1/2 σ) ≤ C∥ψ∥ 2 .
Consequently, we get Finally, from (5.59), the asymptotic expansion of the n-th eigenvalue of L eff ℏ is: 

λ n (L eff h ) = (2n - 

Unit disc case

In this section we analyse the magnetic Robin Laplacian with a negative boundary parameter on the disc. There by proving Theorem 1.2. We will study the spectrum of the effective operator L eff,± h,disc , where Ω = D(0, 1) , 0 < c 1 < c 2 , 0 < α and 0 ≤ η < 1. We have

L = |∂Ω| 2 = π, β 0 = |Ω| |∂Ω| = 1 2 , c 1 h -η 2 ≤ b ≤ c 2 h -η 2 
and κ = 1 .

Thus, the effective operators can be written as follows We deduce the asymptotic expansion of the first eigenvalue of the effective operator L eff,± h,disc

L eff,± h,disc = -h(1 ± c ± h min(α, 1 2 ) ) ∂ s -i b 2 2 -1 -h 1 2 - h 2 ± c ± h 3 
λ 1 (L eff,± h,disc ) = inf m∈Z λ 1 (L eff,± h,disc,m ) = -1 -h 1 2 - h 2 ± c ± h 3 2 + h 1 ± c ± h min(α, 1 2 ) inf m∈Z m - b 2 2 = -1 -h 1 2 - h 2 + h inf m∈Z m - b 2 2 + o(h).

. 10 )

 10 Let (µ n (h, b)) n∈N * be the sequence of eigenvalues of the operator L b h . Theorem 1.1 , Corollary 1.1 and Theorem 1.2 can be reformulated in semi-classical form as follows.

Theorem

  

L 2 L -L ψ∂ 2 s 2 L -L ψ∂ 2 s 2 s∂∂ s e ϕ |ψ| 2 ∂ 2 s

 2222222 eff,b h,4 (e ϕ ψ) = -ℏ 2 (∂ s -ibβ 0 ) 2 (e ϕ ψ) + κ max -κ(s) e ϕ ψ = -ℏ 2 ψ∂ 2 s e ϕ + e ϕ ∂ 2 s ψ + 2∂ s e ϕ ∂ s ψ -2ibβ 0 (ψ∂ s e ϕ + e ϕ ∂ s ψ) -b 2 β 2 0 e ϕ ψ + κ max -κ(s) e ϕ ψ = e ϕ L eff,b h,4 (ψ)ℏ 2 ψ∂ 2 s e ϕ + 2∂ s e ϕ ∂ s ψ -2ibβ 0 ψ∂ s e ϕ ,Hence,q eff,b h,4 (e ϕ ψ) = ⟨L eff,b h,4 (e ϕ ψ), e ϕ ψ⟩ = ⟨e ϕ L eff,b h,4 (ψ), e ϕ ψ⟩ℏ e ϕ + 2∂ s e ϕ ∂ s ψ -2ibβ 0 ψ∂ s e ϕ ψe ϕ ds .Therefore, as ψ is the eigenfunction of L eff,b h,4 associated with the eigenvalue λ, we get q eff,b h,4 (e ϕ ψ) = λ∥e ϕ ψ∥ 2ℏ e ϕ + 2∂ s e ϕ ∂ s ψ -2ibβ 0 ψ∂ s e ϕ ψe ϕ ds . e ϕ + 2∂ s e ϕ ∂ s ψ -2ibβ 0 ψ∂ s e ϕ ψe ϕ ds := E. By integration by part, we have: s (e ϕ |ψ| 2 )∂ s e ϕ ds + e ϕ |ψ| 2 ∂ s e ϕ L s e ϕ + e ϕ ∂ s |ψ| 2 ds + e ϕ |ψ| 2 ∂ s e ϕ L -L = -∥∂ s e ϕ ψ∥ 2 -L -L e ϕ ∂ s e ϕ ∂ s |ψ| 2 ds + e ϕ |ψ| 2 ∂ s e ϕ L e ϕ + 2∂ s e ϕ ∂ s ψ -2ibβ 0 ψ∂ s e ϕ ψe ϕ ds = -∥∂ s e ϕ ψ∥ 2 -L -L e ϕ ∂ s e ϕ ∂ s |ψ| 2 ds + 2 L -L ∂ s e ϕ ∂ s ψ ψe ϕ ds -2ibβ 0 L -L ψ∂ s e ϕ ψe ϕ ds = -∥∂ s e ϕ ψ∥ 2 + L -L e ϕ ∂ s e ϕ -∂ s |ψ| 2 + 2∂ s ψ ψ -2ibβ 0 |ψ| 2 ds Therefore, E = -∥∂ s e ϕ ψ∥ 2 + L -L e ϕ ∂ s e ϕ -∂ s |ψ| 2 + 2∂ s ψ ψ -2ibβ 0 |ψ| 2 ds .

κ

  max -κ(s) e 2ϵϕ 0 /ℏ |ψ| 2 ds ≤ Cℏ∥e ϵϕ 0 /ℏ ψ∥ 2 (5.40) For ϕ = ϵϕ 0 ℏ , with ϕ 0 (s) = min k∈Z s+2kL 0

|s|≤C 0 ℏ 1/ 2 eℏ |s|≥C 0 ℏ 1/ 2 e 2 e

 222 2εΦ 0 /ℏ |ψ| 2 ds ≤ C∥ψ∥ 2 , (5.47) and|s|≥C 0 ℏ 1/2 κ max -κ(s) e 2ϵϕ 0 /ℏ |ψ| 2 ds ≥ c C 2 0 2ϵϕ 0 /ℏ |ψ| 2 ds .(5.48) By the inequality (5.47), to show (5.44), it is enough to show the following inequality:|s|≥C 0 ℏ 1/2ϵϕ 0 /ℏ |ψ| 2 ds ≤ C∥ψ∥ 2 .

2 | 2 L 2

 222 ψ(ℏ 1/2 σ)| 2 d(ℏ 1/2 σ) + ℏ R | ∂ σ ψ| 2 d(ℏ 1/2 σ) -Cℏ 3/2 ∥ψ∥ 2 ≥ ℏ R | ∂ σ ψ(ℏ 1/2 σ)| 2 + -κ ′′ (0) 2 σ 2 | ψ(ℏ 1/2 σ)| 2 d(ℏ 1/2 σ) -Cℏ 3/2 ∥ψ∥ 2 .This becomesℏ R | ∂ σ ψ(ℏ 1/2 σ)| 2 + -κ ′′ (0) 2 σ 2 | ψ(ℏ 1/2 σ)| 2 d(ℏ 1/2 σ) ≤ λ N (L eff h )∥ψ∥ 2 + O(ℏ 3/2 )∥ψ∥ 2 .We deduce thatmax ψ∈ E N (ℏ) ⟨H harm ψ, ψ⟩ L 2 (R) ∥ ψ∥ (R) ≤ λ N (L eff h ) + O(ℏ 3/2 ) .Thus, by the min-max principle, we have the comparison of the Rayleigh quotientsλ N (L eff ℏ ) ≥ λ N (H harm ) + O(ℏ 3/2 )≥ (2N -1)ℏ -κ ′′ (0) 2 + O(ℏ 3/2 ) .

  ℏ 3/2 ) . Now, collecting (5.34) and Propositions 5.3 and 5.4, we deduce the asymptotic expansion of the n-th eigenvalue of the effective operator L eff,b h,α,0λ n (L eff,b h,α,0 ) = -1 -κ max ℏ 2 + (2n -1) -κ ′′ (0) 2 ℏ 3 + O(ℏ 7/2 ) . (5.60) From Theorem 4.1 and Proposition 3.2, we deduce Corollary 3.1, which was a reformulation of Corollary 1.1.

2 , 2 2in L 2 ( 2 is

 2222 in L 2 (R/2πZ) , where c ± are constants independent of h.The spectrum of -∂ s -i b R/2πZ) can be explicitly computed by using Fourier series.In fact, for all m ∈ Z, e m (b) := (m -b 2 ) 2 is an eigenvalue with the eigenfunction v m (s) := e ims / √ 2π. Since {v m } m∈Z is a Hilbertian basis of L 2 (R/2πZ), we get that the spectrum of -∂ s -i b 2 {e m (b)} m∈Z and its lowest eigenvalue is inf m∈Z e m (b).
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According to Theorem 4.1 and (3.17), for η < 1 , we have

Then, we complete the proof of Theorem 3.2 which was a reformulation of Theorem 1.2. Note that, in the case with constant magnetic field, we recover by a very simple proof, Theorem 1.1 of the article [START_REF] Kachmar | Counterexample to strong diamagnetism for the magnetic Robin Laplacian[END_REF].

A Auxiliary operator

The aim of this section is to recall some spectral properties related to the Robin Laplacian in dimension one. This model naturally arises in our strategy of dimensional reduction and already appeares in [START_REF] Raymond | Bound states of the magnetic Schrödinger operator[END_REF][START_REF] Helffer | Eigenvalues for the Robin Laplacian in domains with variable curvature[END_REF][START_REF] Kachmar | Counterexample to strong diamagnetism for the magnetic Robin Laplacian[END_REF][START_REF] Kachmar | Weyl formulae for the Robin Laplacian in the semiclassical limit[END_REF][START_REF] Lévy-Bruhl | Introduction à la théorie spectrale: cours et exercices corrigés[END_REF][START_REF] Helffer | Tunneling for the Robin Laplacian in smooth planar domains[END_REF].

A.1 A weighted 1D Laplacian

Let B ∈ R, and T > 0 such that |B|T < 1 3 . In the weighted space L 2 ( (0, T ), (1 -Bτ ) dτ ), we introduce the operator

This weight will come to measure the effect of the curvature. The operator H

{T } B

is the self-adjoint operator in L 2 ( (0, T ), (1 -Bτ ) dτ ) associated with the following quadratic form:

with domain Dom(H

The following proposition gives an asymptotic two-term expansion of the eigenvalue λ 1 (H {T } B ) (for the proof, see for example [START_REF] Helffer | Eigenvalues for the Robin Laplacian in domains with variable curvature[END_REF]Prpo. 4.5]).

). There exist constant C > 0 and T 0 > 0, such that for all T ≥ T 0 , B ∈ (-1/(3T ), 1/(3T )) , we have:

After the change of function u = (1 -Bτ ) -1 2 ũ , the new Hilbert space becomes L 2 ((0, T ), dτ ), the form domain is always independent of the parameter and the expression of the operator depends on B :

with the new Robin condition at 0 denoted by ũ′ (0) = -1 -B 2 ũ(0) and ũ(T ) = 0 . Note that the associated quadratic form is defined by

For further use, we would like to estimate ∥τ ũ{T } B ∥ L 2 ((0, T ),dτ ) and ∥∂ B ũ{T } B ∥ L 2 ((0, T ),dτ ) uniformly with respect to B and T . Proposition A.2. There exist constants C > 0 , α > 0 and T 0 > 0 such that, for all T ≥ T 0 , B ∈ (-1/(3T ), 1/(3T )) , we have:

Proof. Let ϕ α τ with α a real positive constant. We have the identity

which follows by integration by parts (see for instance [START_REF] Raymond | Bound states of the magnetic Schrödinger operator[END_REF]Proposition 4.7]). Then, by using that ũ{T } B is an eigenfunction, we get

We have

and then, there are constants C > 0 such that, for all ϵ > 0, we have:

Inserting (1.61) in q{T } B , there exist constants C > 0 such that:

and from Proposition A.1, we obtain:

and thus,

As T → +∞ , we have -1 ≤ B ≤ 1, and

We choose α such that For the proof, see for example [START_REF] Helffer | Tunneling for the Robin Laplacian in smooth planar domains[END_REF]Lemma 7.3].