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MAGNETIC PERTURBATIONS OF THE ROBIN LAPLACIAN IN THE STRONG
COUPLING LIMIT

RAYAN FAHS

ABSTRACT. This paper is devoted to the asymptotic analysis of the eigenvalues of the Laplace opera-
tor with a uniform magnetic field and Robin boundary condition on a smooth planar domain. We show
how the singular limit when the Robin parameter tends to infinity is equivalent to a semi-classical limit
involving a small positive parameter h (the semi-classical parameter). The main result is a comparison
between the spectrum of the Robin Laplacian with an effective operator defined on the boundary of the
domain via the Born-Oppenheimer approximation. More precisely, the n-th eigenvalue of the Robin
Laplacian is approximated, modulo O(h2), by the n-th eigenvalue of the effective operator. When the
curvature has a unique non-degenerate maximum, the eigenvalue asymptotics displays the contribution
of the magnetic field explicitly.
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1. INTRODUCTION

1.1. Magnetic Robin Laplacian. Let Ω be a bounded open subset of R2 . It is assumed that the
boundary Γ = ∂Ω is smooth C∞. In this paper, we study the eigenvalues of the magnetic Robin
Laplacian in L2(Ω) with a large negative parameter, in a continuation of the works initiated in [5, 15,
11]. The operator is

Pb
γ = −(∇− ibA0)

2 ,

with domain
Dom(Pb

γ) = {u ∈ H2(Ω) : ν · (∇− ibA0)u+ γ u = 0 on Γ} ,
where

− A0 is the vector field,
− ν is the unit outward normal vector of Γ,
− γ < 0 is the Robin parameter,
− b = b0|γ|η is the intensity of the applied magnetic field, with b0 and η are strictly positive

constants,
− ν · (∇− ibA0)u+ γ u = 0 on Γ is the Robin boundary condition.

The magnetic potential A0 generates a constant magnetic field B equal to 1 and it is defined by

A0(x1, x2) = (A01 , A02) =
1

2
(−x2, x1) .

We have:

B := ∇×A0 = ∂x1A02 − ∂x2A01 = 1 .

To be more precise, the operator Pb
γ is defined via the Lax-Milgram theorem, from the closed

semi-bounded quadratic form [1, Ch. 4]

H1(Ω) ∋ u 7→ Qb
γ (u) :=

∫
Ω
|(∇− ibA0)u(x)|2 dx+ γ

∫
Γ
|u(x)|2 ds(x) ,

where ds is the standard surface measure on the boundary. Note that, by a classical trace theorem
(see for instance [14] in the case of straight boundary), the trace of u is well defined as an element
of H

1
2 (Γ) , and the quadratic form Qb

γ is well defined and bounded from below.
Since Ω is bounded and regular, the operator Pb

γ has a compact resolvent, by Sobolev embedding.
Its spectrum is purely discrete, and since Pb

γ is self-adjoint and bounded from below, it consists of
an increasing sequence of eigenvalues. Our aim is to examine the magnetic effects on the principal
eigenvalues

(
λn(b, γ)

)
n∈N∗ , when the Robin parameter γ tends to −∞ .

A part from its own interest, the study of the spectrum of the operator Pb
γ arises in several contexts,

where both situations subject to magnetic fields, b > 0, or without magnetic fields, b = 0, occur. Es-
timating the ground state energy of Pb

γ , leads to information on the critical temperature/critical fields
of certain superconductors surrounded by other materials [11, 18]. On the other hand, eigenvlaue
asymptotics in the singular limit γ → −∞, provide counter examples in the context of spectral
geometry [19, 4], and has connections to the study of Steklov eigenvalues [20].

1.2. Main results. In the case without magnetic field, b = 0, the asymptotic expansion of the eigen-
values of the Robin Laplacian has been the subject of recent studies [2, 5, 3, 4, 9, 15, 17]. In particular,
the derivation of an effective operator on the boundary, involving the Laplace-Beltrami operator as
well as the mean curvature of the boundary. In the same spirit, we will study the negative spectrum
of the Robin’s Laplacian on a bounded domain with Robin condition at the boundary. Our aim is to
improve/complement earlier estimates and also clarify the magnetic field’s contribution in the spec-
tral asymptotics.

The main contribution of this article is Theorem 1.1 below, which involves two effective operators
that we introduce as follows. We denote by |Ω| the area of the domain Ω and by |∂Ω| the arc-length
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of its boundary. Let us parameterize the boundary, ∂Ω, by the arc-length, which we denote by s.
Let κ(s) be the curvature of ∂Ω at the point defined by the arc-length s, with the convention that
κ(s) ≥ 0 when ∂Ω is convex in a neighborhood of s, and negative otherwise. The effective operators
are self-adjoint operators in the Hilbert space L2(∂Ω), acting on periodic functions, and defined as
follows

(1.1)
Leff,±
γ = −γ−2(1± c± γ

−1)(∂s − ibβ0)
2 − 1 + γκ(s)− κ(s)2

2
γ−2

Dom
(
Leff,±
γ

)
= H2(R/|∂Ω|Z )

,

with c−, c+ are are positive constants, and β0 is the circulation of the magnetic field,

(1.2) β0 =
|Ω|
|∂Ω|

.

We will describe the asymptotics of the negative eigenvalues of Pb
γ , via those of the effective oper-

ators on the boundary. More precisely, the n-th eigenvalues for the Laplace operator Pb
γ , is approxi-

mated modulo o(1) by the n-th eigenvalue of the operators Leff,±
γ .

Theorem 1.1. Let 0 ≤ η < 1
2 and b0 > 0 . Suppose that b = b0|γ|η . Then, as γ tends to −∞ , for

any n ∈ N∗ , we have

γ2λn(Leff,−
γ ) + o(1) ≤ λn(b, γ) ≤ γ2λn(Leff,+

γ ) + o(1) ,

where λn(Leff,±
γ ) is the n-eigenvalues of the effective operator introduced in (1.1), with c± being

constants dependent on η, b0 and the domain Ω solely.

Remark 1.1. Theorem 1.1 allows for the magnetic field to grow as the Robin parameter tends to
−∞, and at the same time, the spectral asymptotics remains valid. In the case of the unit disk
(hence with constant curvature), and with large magnetic field ( 0 < η < 1

2 ), Theorem 1.1 leads to
an improvement of the work by Kachmar-Sunddqvist [11, Thm. 1.1]. In fact, by well-chosen quasi
modes, we find in Section 5.3, the following asymptotics of the lowest eigenvalue

λ1(b, γ) = −γ2 + γ +

(
inf
m∈Z

(
m− b0|γ|η

2

)2

− 1

2

)
+ o(1) ,

which was derived in [11, Thm. 1.1] when b is fixed and γ → −∞.

In a generic situation where the curvature has a unique non-degenerate maximum, Theorem 1.1
allows us to determine the leading order term of the spectral gap between the successive eigenvalues.
This is valid under the following assumption:

Assumption A
{

κ attains its maximum κmax at a unique point;
the maximum is non-degenerate, i.e. κ′′(0) < 0 ,

where κmax = max
0≤0≤|∂Ω|

κ(s) denotes the maximal curvature along the boundary ∂Ω, and the arc-

length parametrization of the boundary is selected so that κ(0) = κmax .
After the study of the spectrum of the effective operator, under Assumption A above, we show

that, the contribution of the magnetic field is of lower order compared to that of the curvature. Note
that, the dependence with respect to the labeling of the eigenvalues, n, appears in the third term of
the expansion.

Corollary 1.1. Let 0 ≤ η ≤ 1
8 and b0 > 0 . Suppose that b = b0|γ|η . Under the Assumption A, as

γ tends to −∞ , for any n ∈ N∗ , we have

λn(b, γ) = −γ2 + κmaxγ + (2n− 1)

√
−κ′′(0)

2
|γ|1/2 +O(|γ|1/4) .
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The first two terms in the asymptotics of λn(b, γ) were known [15, Thm. 1.1] while the third term,
which displays the spectral gap, is new. Corollary 1.1 follows from the spectral asymoptotics of the
1D effective operators, which is valid under a weaker assumption on the strength of the magnetic
field (b = O(|γ|1/8)) when compared to the one in Theorem 1.1 (b = o(|γ|1/2)).

In the absence of the magnetic field, b = 0, the full asymptotic expansion for the low-lying
eigenvalues was determined in [5] and they read as follows. For a fixed label n ≥ 1 and as γ → −∞,
we have

(1.3) λn(0, γ) ∼ −γ2 + κmaxγ + (2n− 1)

√
−κ′′(0)

2
|γ|1/2 + β0,n +

∑
j≥1

βj,n|γ|−j/2 ,

where (βj,n)j≥0 ⊂ R is a sequence defined by recursion. Notice that the first three terms in Corol-
lary 1.1 are consistent with those in (1.3).

In the presence of a magnetic field, knowing the spectral gap, we can improve the asymptotics
in Corollary 1.1 by constructing accurate quasi-modes for the operator Pb

γ (not for the effective
operator).

Corollary 1.2. Let 0 ≤ η ≤ 1
8 and b0 > 0 . Suppose that b = b0|γ|η . Under the Assumption A, as

γ tends to −∞ , for any n ∈ N∗ , we have

λn(b, γ) = −γ2 + κmaxγ + (2n− 1)

√
−κ′′(0)

2
|γ|1/2 + ζ1,n(b) +O(|γ|−1/4) ,

where
ζ1,n(b) = β0,n + β20b

2
(
1− 4I2,n

)
,

where β0,n is the constant in (1.3), β0 is the constant in (1.2), and I2,n is a constant independent of b
(see (1.6)).

Let us introduce the constant I2,n explicitly. Let fn be the n-th normalized eigenfunction of the
harmonic oscillator

(1.4) Hharm = − d2

dσ2
− κ′′(0)

2
σ2 .

Note that, the eigenfunctions fn can be determined by recursion as follows,

(1.5) f1(σ) = c1 exp
−
√

−κ′′(0)
2

σ2

2 , fn(σ) = cn(L
+)n−1f1(σ) (n ≥ 1) ,

where L+ = − d
dσ +

√
−κ′′(0)

2 σ, and, for every n ≥ 1, the constant cn normalizes fn(σ) in L2(R).
We introduce then the constant I2,n as follows

(1.6) I2,n := ⟨i∂σfn, Rn(i∂σfn)⟩L2(R) = ⟨∂σfn, Rn(∂σfn)⟩L2(R) ,

where Rn is the regularized resolvent, the self-adjoint operator which vanishes on the eigenspace

En = span(fn), and equals to the inverse ofHn
harm := Hharm−(2n−1)

√
−κ′′(0)

2 on the orthogonal
complement of En, then extended by linearity to all of L2(R).

Remark 1.2. When n = 1, I2,n = 1
4 , hence the term that depends on b in the asymptotics of

Corollary 1.2 vanishes. To see this, we observe that

∂σf1(σ) = −
√

−κ′′(0)
2

σf1(σ) ⊥ f1(σ) .
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Hence

I2,1 =
−κ′′(0)

2
⟨σf1, R1(σf1)⟩ .

Now, arguing as [21, Prop. A.3], we find that

2(1− 4I2,1) = E′′(0) ,

where E(z) is the ground state energy of the harmonic oscillator

Hharm(z) = − d2

dσ2
− κ′′(0)

2
(σ + z)2 .

Since R is invariant by translation, we observe that E(z) = E(0) =

√
−κ′′(0)

2 , hence E′′(0) = 0.

1.3. Organization of the paper. The paper is organized as follows. In Section 3, we introduce
an effective semiclassical parameter, and we recall why the eigenfunctions are localized, via Agmon
estimates near the boundary. As a consequence, we replace the initial problem by a problem on a thin
tubular neighborhood of the boundary. In Section 4, by using the Born-Oppenheimer approximation,
we derive an effective operator whose eigenvalues simultaneously describe the eigenvalues of the
magnetic Robin Laplacian. In Section 5, we estimate the eigenvalues for the effective operator with
large magnetic field, thereby proving Corollary 1.1. Finally, in Section 6, we describe the term which
determines the influence of the magnetic field on the spectrum of Robin Laplacian, thereby proving
corollary 1.2. In Appendix A, we recall the known results related to some one dimensional auxiliary
differential operators.

2. BOUNDARY COORDINATES

The key to proving Theorem 1.1 is a reduction to the boundary. Indeed, the eigenfunctions as-
sociated with eigenvalues lower than −ϵ h with ϵ > 0 concentrate exponentially near the boundary
(cf. Proposition 3.1). To single out the influence of the boundary curvature, we need a special coor-
dinate system displaying the arc-length along the boundary and the normal distance to the boundary.
Those are the tubular coordinates. In this section, we introduce the necessary notation to use these
coordinates (cf. [7, 6]). Let

R/(|∂Ω|Z) ∋ s 7−→M(s) ∈ ∂Ω

be the arc-length parametrization of ∂Ω. We will always work with |∂Ω|-periodic functions some-
times restricted to the interval ]

−|∂Ω|
2
,
|∂Ω|
2

]
=]− L,L ] .

At the point M(s) ∈ ∂Ω, T (s) =M ′(s) is the unit tangent vector and v(s) is the unit normal vector
such that

∀s ∈ R/(|∂Ω|Z), det(T (s), v(s)) = 1 .

The curvature κ(s) at point M(s) is then defined as follows

T ′(s) = κ(s)v(s) .

The smoothness of the boundary yields the existence of a constant t0 > 0 such that, upon defining

Vt0 = {x ∈ Ω : dist(x, ∂Ω) < t0}
the change of coordinates

Φ : R/(|∂Ω|Z)× (0, t0) ∋ (s, t) 7→ x =M(s) + tv(s) ∈ Vt0

becomes a diffeomorphism. Let us note that, for x ∈ Vt0 , one can write

Φ−1(x) := (s(x), t(x)) ∈ R/(|∂Ω|Z)× (0, t0)

where t(x) = dist(x, ∂Ω) and s(x) is the coordinate of the point M(s(x)) ∈ R/(|∂Ω|Z) satisfying
dist(x, ∂Ω) = |x−M(s(x))| .
The inverse of Φ defines a coordinate system on a tubular neighborhood of ∂Ω in Ω that can be used
locally or semi-globally. Now we express various integrals in the new coordinates (s, t).
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For all s, the Jacobian matrix JΦ is written, as follows

JΦ(s, t) =
(
M ′(s) + tν ′(s), ν(s)

)
.

As ν ′(s) = −κ(s)M ′(s), the determinant of the Jacobian matrix of the transformation Φ−1 is given
by:

detJΦ(s, t) = 1− tκ(s).

In the new coordinates, the components of the vector field A0 are given as follows,

Ã1(s, t) = (1− tκ(s))A0(Φ(s, t)) ·M ′(s) ,

Ã2(s, t) = A0(Φ(s, t)) · v(s) .

For all u ∈ L2(Vt0), we assign the pull-back function ũ defined in the new coordinates as follows

ũ = u ◦ Φ .

Consequently, for all u ∈ H1(Vt0) , we have∫
Vt0

|(∇− ibA0)u(x)|2 dx

=

∫
Φ−1(Vt0)

[
(1− tκ(s))−2|(∂s − ibÃ1)ũ|2 + |(∂t − ibÃ2)ũ|2

]
(1− tκ(s)) dtds ,

∫
Vt0

|u(x)|2 dx =

∫
Φ−1(Vt0)

|ũ|2(1− tκ(s)) dtds ,

and ∫
Vt0∩ ∂Ω

|u(x)|2 dx =

∫
|ũ(s, t = 0)|2 ds .

The following lemma can be found in [8] .

Lemma 2.1. For t0 > 0 small enough, there exists a gauge transformation φ(s, t) on R/(|∂Ω|Z)×
(0, t0) such that Ā0 defined by

Ā0 = Ã0 −∇(s,t)φ ,

satisfies

Ā0(s, t) =

(
Ā1(s, t)
Ā2(s, t)

)
=

β0 − t+
t2

2
κ(s)

0

 ,

with

β0 =
1

|∂Ω|

∫
Ω
curlA0 dx =

|Ω|
|∂Ω|

,

and for all u ∈ H1(Vt0) , we have∫
Vt0

|(∇−ibA0)u(x)|2 dx =

∫
Φ−1(Vt0)

(
(1− tk(s))−2

∣∣(∂s − ibĀ1

)
w
∣∣2 + |∂tw|2

)
(1−tk(s)) dsdt

where we noted w = eiφũ and ũ = u ◦ Φ.
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3. TRANSFORMATION INTO A SEMI-CLASSICAL PROBLEM

We will prove the results of Section 1.2 by a semiclassical framework. Let us consider the semi-
classical parameter

h = γ−2 .

The limit γ → −∞ is now equivalent to the semi-classical limit h→ 0+. The quadratic form can be
written as

Qb
γ(u) = h−2

(∫
Ω
|(h∇− ibhA0)u(x)|2 dx− h

3
2

∫
Γ
|u(x)|2 ds(x)

)
:= h−2Qb

h(u) .

Consequently, we obtain the self-adjoint operator depending on h

Lb
h = −(h∇− ihbA0)

2 ,

with domain

Dom(Lb
h) = {u ∈ H2(Ω) : ν.(∇− ibA0)u− h

1
2u = 0 on Γ } .

Clearly,

Pb
γ = h−2Lb

h ,

and thus the relation between the spectra of the operators Pb
γ and Lb

h is displayed as follows :

(3.7) σ(Pb
γ) = h−2 σ(Lb

h) .

Let (µn(h, b))n∈N∗ be the sequence of eigenvalues of the operator Lb
h . Theorem 1.1 and Corollary

1.1 can be reformulated in semi-classical form as follows.

Theorem 3.1. Let 0 ≤ η < 1
2 and b0 > 0 . Suppose that b = b0h

−η
2 . There exist constants c± > 0

and h0 > 0, for all h ∈ (0, h0), for any n ∈ N∗, we have :

hλn(Leff,−
h ) + o(h2) ≤ µn(h, b) ≤ hλn(Leff,+

h ) + o(h2) ,

with

Leff,±
h = −h(1± c± h

1
2 )(∂s − ibγ0)

2 − 1− κ(s)h
1
2 − κ(s)2

2
h .

Corollary 3.1. Let η ≤ 1
8 and b0 > 0 . Suppose that b = b0h

−η
2 . Under the Assumption A, there

exist constants c± and h0 > 0, for all h ∈ (0, h0), for any n ∈ N∗, we have :

µn(h, b) = −h− κmaxh
3/2 + (2n− 1)

√
−κ′′(0)

2
h7/4 +O(h15/8) .

Corollary 3.2. Let η ≤ 1
8 and b0 > 0 . Suppose that b = b0h

−η
2 . Under the Assumption A, there

exist constants c± and h0 > 0, for all h ∈ (0, h0), for any n ∈ N∗, we have :

µn(h, b) = −h− h3/2κmax + h7/4
√

−κ
′′(0)

2
(2n− 1) + h2ζ1,n(b) +O(h17/8) ,

where

ζ1,n(b) = β0,n + β20b
2
(
1− 4I2,n

)
,

where β0,n is the constant in (1.3), β0 is the constant in (1.2), and I2,n is a constant independent of
b.
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3.1. Reduction near the boundary via Agmon estimates. The goal of this section is to show that
the eigenfunctions associated to eigenvalues less than −ϵ h, with 0 < ϵ < 1 a fixed constant, are
concentrated exponentially near the boundary at the scale h1/2 .

Proposition 3.1. Let M ∈ (−1, 0). For all α <
√
−M , there exist constants C > 0 and h0 ∈ (0, 1)

such that, for h ∈ (0, h0), if uh,b is a normalized ground state of Lb
h with eigenvalue µ(h, b) such

that µ(h, b) < M h , then

(3.8)
∫
Ω

(
|uh,b(x)|2 + h|(∇− ibA0)uh,b(x)|2

)
exp

(
2αdist(x,Γ)

h1/2

)
dx ≤ C.

Proof. The proof is similar to the one of [5, Thm. 5.1], and only notice that it is a consequence
(modulo a partition of unity with balls of size Rh1/2 with R large enough and the fact, if the support
of u avoids the boundary, we have Qb

h(u) ≥ −Ch . □

We record the following simple corollary of Proposition 3.1.

Corollary 3.3. Let M ∈ (−1, 0) , ρ ∈ (0, 12) and c > 0 . For all 0 < α <
√
−M , there exist

h0 ∈ (0, 1) such that, if uh,b is a normalized ground state of Lb
h with eigenvalue µ(h, b) such that

µ(h, b) < M h , then for all h ∈ (0, h0),

(3.9)
∫
dist(x,Γ)≥c h

1
2−ρ

(|uh,b(x)|2 + h|(∇− ibA0)uh,b(x)|2) dx ≤ exp(−2α c h−ρ) .

As a consequence, for small h, the ground states of the operator Lb
h are concentrated near the

boundary of Ω (cf. Corollary 3.3). This will allows us to work in a tubular neighborhood of ∂Ω .

Let ρ ∈ (0, 1/2) , we introduce the δ-neighborhood of the boundary

Ωδ = {x ∈ Ω : dist(x,Γ) < δ } , δ = h
1
2
−ρ .

The quadratic form, defined on the variational space

Wδ = {u ∈ H1(Ωδ) : u(x) = 0 , ∀x ∈ Ω such that dist(x,Γ) = δ} ,

is given by the formula

(3.10) qb,ρh (u) = h2
∫
Ωδ

|(∇− ibA0)u(x)|2 dx− h
3
2

∫
∂Ωδ

|u(x)|2 d(x) .

Note again that the trace is well-defined by a classical trace theorem. The associated self-adjoint
operator is:

Lb,ρ
h = −(h∇− ihbA0)

2 ,

with domain

Dom(Lb,ρ
h ) = {u ∈ H2(Ωδ) : ν.(∇− ibA0)u− h

1
2u = 0 on Γ and

u(x) = 0 , ∀x ∈ Ω such that dist(x,Γ) = δ} .

That is, we consider the realization with mixed boundary conditions (Robin and Dirichlet conditions).
Let (µn(h, b, ρ))n∈N∗ be the sequence of eigenvalues of the operator Lb,ρ

h . The following proposition
allows the reduction of the analysis to the operator Lb,ρ

h .

Proposition 3.2. Let ϵ > 0 and α ∈ (0,
√
ϵ) , there exist constants C > 0 , h0 ∈ (0, 1) such that,

for all h ∈ (0, h0) , n ≥ 1 and µn(h, b) < −ϵh,

µn(h, b, ρ) ≤ µn(h, b) + C exp(−αh−ρ ) .

Moreover, we have, for all n ≥ 1 , h > 0

µn(h, b) ≤ µn(h, b, ρ) .



MAGNETIC ROBIN LAPLACIAN 9

Proof. The inequality µn(h, b) ≤ µn(h, b, ρ) is not asymptotic. Let (vk,h)1≤k≤n be an orthonormal
family of eigenfunctions associated with eigenvalues (µ̃k(h, b, ρ))1≤k≤n . We define the function

uk,h =

{
vk,h if x ∈ Ωδ

0 if x ∈ Ω \ Ωδ .

Let E be the vector subspace generated by the family (uk,h)1≤k≤n and u ∈ E which is written as
follows:

u =

n∑
k=1

αkuk,h .

Inserting u into the quadratic form Qb
h(u), we obtain

Qb
h(u) =

〈
Lb,ρ
h

n∑
k=1

αkvk,h,
n∑

k=1

αkvk,h

〉
=

n∑
k=1

αkq
b,ρ
h (vk,h) ≤ µn(h, b, ρ)

n∑
k=1

αk∥uk,h∥2 = µn(h, b, ρ)∥u∥2.

By the min-max theorem, we get the non-asymptotic inequality µn(h, b) ≤ µn(h, b, ρ) .

Now we determine an upper bound of µn(h, b, ρ) in terms of µn(h, b) . Let (uk,h)1≤k≤n be an
orthonormal family of eigenvectors associated with the eigenvalues (µk(h, b))1≤k≤n . Let us consider
the cut off function define on R as following:

0 ≤ χ ≤ 1 , χ = 1 sur ]−∞, 1/2 ] et χ = 0 sur [1,+∞[ .

We define the function

χ1(x) = χ

(
t(x)

δ

)
.

For k = 1, ..., n , we set
vk,h = χ1uk,h .

Let Fh the vector subspace of Dom(Lb,ρ
h ) spanned by the family (vk,h)1≤k≤n and wh ∈ Fh which

is written as follows:

wh =
n∑

k=1

βkvk,h .

The functions (vk,h) are almost orthonormal ( Proposition 3.1). We note that dimFh = n and

∥wh∥2 =
n∑

k=1

|βk|2 +O(exp(−αh−ρ )) .

Inserting wh into the quadratic form qb,ρh (wh)

qb,ρh (wh) = ⟨Lb,ρ
h wh, wh⟩ =

n∑
j,k=1

βjβk⟨Lb,ρ
h vj,h, vk,h⟩ .

For j, k fixed and for h small enough, we have

⟨Lb,ρ
h vj,h, vk,h⟩ = δj,k µj(h, b)− h2⟨uj,h∆χ1, χ1uk,h⟩ − 2h2⟨∇χ1.(∇− ibA0)uj,h, χ1uk,h⟩

+O(exp(−αh−ρ )) .

From Hölder’s inequality and the Corollary 3.3, we obtain

h2⟨uj,h∆χ1, χ1uk,h⟩+ 2h2⟨∇χ1.(∇− ibA0)uj,h, χ1uk,h⟩ = O(exp(−αh−ρ )) .
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Therefore,

qb,ρh (wh) =
n∑

j=1

µj(h, b)|βj |2 +O(exp(−αh−ρ ))
n∑

j,k=1

βjβk

≤
(
µn(h, b) + C exp(−αh−ρ )

)
∥wh∥2 .

By the min-max theorem, we have µn(h, b, ρ) ≤ µn(h, b) + C exp(−αh−ρ ) . □

Proposition 3.2 leads us to replace the initial problem by a new Robin-Dirichlet leaving in a δ-
neighborhood of the boundary Γ .

3.2. The Robin Laplacian in boundary coordinates. By Lemma 2.1, the new quadratic form is
expressed in tubular coordinates and is written as follows:

q̃ b,ρh (u) = h2
∫ L

−L

∫ δ

0

∣∣∣∣ (∂s − ibβ0 − ib
(
− t+

t2

2
κ(s)

))
ũ

∣∣∣∣2 (1− tκ(s))−1 dtds

+ h2
∫ L

−L

∫ δ

0
|∂tũ|2 (1− tκ(s)) dt ds− h3/2

∫ L

−L
|ũ(s, t = 0)|2 ds ,

with ũ = eiφu ◦ Φ and L =
|∂Ω|
2

. The operator Lb,ρ
h is expressed in tubular coordinates (s, t) as

follows:

L̃b,ρ
h = −h2a−1

(
∂s − ibβ0 − ib

(
− t+

t2

2
κ(s)

))
a−1

(
∂s − ibβ0 − ib

(
− t+

t2

2
κ(s)

))
− h2a−1∂ta∂t (in (L2(a dtds)) .

With a = 1− tκ(s) . In boundary coordinates, the Robin condition becomes

∂tu(s, t = 0) = −h−1/2u(s, t = 0) .

We introduce,

Ω̃δ = {(s, t) : s ∈ [−L,L[ and 0 < t < δ } ,

Dom(q̃ b,ρh ) = {u ∈ H1(Ω̃δ) : u(s, δ) = 0} ,

Dom(L̃b,ρ
h ) = {u ∈ H2(Ω̃δ) ∩ W̃δ : ∂tu(s, t = 0) = −h−1/2u(s, t = 0)} .

We know that the eigenfunctions are localized near the boundary, at the scale h
1
2 (cf. Prop 3.1) and

in order to obtain a Robin condition independent of h , we get a partially semiclassical problem by
changing the variable

(s, t) = (s, h
1
2 τ).

This change of variable transforms the above expression of L̃b,ρ
h into an operator L̃b,ρ

h as follows

h

[
− hâ−1

(
∂s − ibβ0 − ib

(
− h

1
2 τ + h

τ2

2
κ(s)

))
â−1

(
∂s − ibβ0 − ib

(
− h

1
2 τ + h

τ2

2
κ(s)

))
− â−1∂τ â∂τ

]
,

where the new weight
â(s, τ) = 1− h

1
2 τκ(s) .

The boundary condition becomes

∂τu(s, τ = 0) = −u(s, τ = 0) .
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We consider rather the operator
L̂ b,ρ
h = h−1L̃ b,ρ

h ,

and the domain of integration becomes

[−L,L[×(0, δ/h1/2) = [−L,L[×(0, h−ρ) .

The associated quadratic form is

q̂ b,ρh (ψ) =

∫ L

−L

∫ h−ρ

0

∣∣∣∣ (h1/2∂s − ibh1/2β0 − ibh
(
− τ + h1/2

τ2

2
κ(s)

))
ψ

∣∣∣∣2 â−1 dτ ds

+

∫ L

−L

∫ h−ρ

0
|∂τψ|2 â dτ ds−

∫ L

−L
|ψ(s, τ = 0)|2 ds .

We let

Ω̂δ = {(s, τ) : s ∈ [−L,L[ and 0 < τ < h−ρ } ,

Dom(q̂ b,ρh ) = {u ∈ H1(Ω̂δ) : u(s, h−ρ) = 0} ,

Dom(L̂b,ρ
h ) = {u ∈ H2(Ω̂δ) ∩ W̃δ : ∂τu(s, τ = 0) = −u(s, τ = 0)} .

Let µ̂n(h, b, ρ) the n-th eigenvalue of the self-adjoint operator L̂ b,ρ
h . We have

(3.11) µ̂n(h, b, ρ) = h−1µn(h, b, ρ) .

4. ASYMPTOTIC OF THE EIGENVALUES OF THE ROBIN’S LAPLACIAN

The aim of this section is to prove the following result, which implies Theorem 1.1.

Theorem 4.1. Let 0 ≤ η < 1
2 , ρ ∈ (0, 1/4) and b0 > 0 . Suppose that b = b0h

−η
2 . There exist

constants c± > 0 and h0 > 0 , for all h ∈ (0, h0) , for any n ∈ N∗ , we have:

hλn(Leff,−
h ) + o(h2) ≤ µ̂n(h, b, ρ) ≤ hλn(Leff,+

h ) + o(h2) .

4.1. The Feshbach projection. Following the writing of the magnetic Robin Laplacian in tubular
coordinates in Section 3.2, there appears a one-dimensional operator defined, for s fixed, by{

− ã−1∂τ ã∂τ = −∂2τ + h1/2κ(s)ã−1∂τ

∂τu(s, τ = 0) = −u(s, τ = 0) in L2((0, h−ρ), (1− τh1/2κ(s)) dτ) .

This operator is denoted by
Hκ(s),h = H{T}

B ,

with
T = h−ρ and B = h1/2κ(s) .

and where H{T}
B is defined in A.2. Let vκ(s),h be a normalized groundstate of Hκ(s),h associated with

λ1(Hκ(s),h) . By [11, Lemma 2.5], we have

(4.12) λ1(Hκ(s),h) = −1− κ(s)h
1
2 − κ(s)2

2
h+ o(h) ,

and, for C > 0

(4.13) λ2(Hκ(s),h) ≥ −Ch1/2−ρ .

According to Lemma A.1 and Proposition A.2, there exist constants C and Ck , such that

(4.14) ∥∂svκ(s),h∥L2((0, h−ρ),(1−h1/2κ(s)τ) dτ) ≤ Ch1/2 ,

and

(4.15)
∫ h−ρ

0
τk|vκ(s),h|2(1− h1/2κ(s)τ) dτ ≤ Ck .
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We introduce for s ∈ [−L,L], the Feshbach projection Πs on the normalized ground state vκ(s),h of
Hκ(s),h

(4.16) Πsψ = ⟨ψ, vκ(s),h⟩L2((0, h−ρ), â dτ)vκ(s),h .

We also let
Π⊥

s = Id −Πs ,

and
Rh(s) = ∥∂svκ(s),h∥2L2((0, h−ρ), â dτ) .

The quantity Rh is sometimes called “Born-Oppenheimer correction”.

Lemma 4.1. There exist constants C > 0 and h0 > 0 such that, for all ψ ∈ Dom(q̂ b,ρh ) and
h ∈ (0, h0) , we have:

∥[Πs, ∂s]ψ∥L2(â dτ ds) = ∥[Π⊥
s , ∂s]ψ∥L2(â dτ ds) ≤

∫ L

−L

[
2Rh(s)

1
2 + ch1/2

]
∥ψ∥L2(â dτ) ds .

Proof. We estimate the commutator:

[Πs, ∂s]ψ = −[Π⊥
s , ∂s]ψ

= ⟨∂sψ, vκ(s),h ⟩L2(â dτ) vκ(s),h − ∂s

(
⟨ψ, vκ(s),h ⟩L2(â dτ) vκ(s),h

)
= −⟨ψ, ∂svκ(s),h⟩L2(â dτ) vκ(s),h − ⟨ψ, vκ(s),h⟩L2(ã dτ) ∂svκ(s),h

+ h1/2κ
′
(s)

(∫ h−ρ

0
ψvκ(s),hτ dτ

)
vκ(s),h .

We get, thanks to the Cauchy-Schwarz inequality and the inequality (4.15)

∥[Πs, ∂s]ψ∥L2(â dτ ds) ≤
∫ L

−L

[
2Rh(s)

1
2 + ch1/2

]
∥ψ∥L2(â dτ) ds .

□

4.2. Approximation of the norm on the weighted space. In this section, we introduce an approx-
imation of the weight.

Lemma 4.2. Let ψ ∈ L2(â dτds) . There exist constant c > 0 such that:

(4.17) ∥ψ∥2L2(â−1 dτds) ≤ (1 + ch1/2 ) ∥Πsψ∥2L2(â dτds) + (1 + ch1/4 ) ∥Π⊥
s ψ∥2L2(â dτds) ,

and

(4.18) ∥ψ∥2L2(â−1 dτds) ≥ (1− ch1/2 ) ∥Πψ∥2L2(â dτds) + (1− ch1/4 ) ∥Π⊥
s ψ∥2L2(â dτds) .

Proof. We have∣∣∣∣∫ L

−L

∫ h−ρ

0
|ψ|2â dτds−

∫ L

−L

∫ h−ρ

0
|ψ|2â−1 dτds

∣∣∣∣ ≤ C

∫ L

−L

∫ h−ρ

0
h1/2τ |ψ|2â dτds .

Then, we use an orthogonal decomposition to get∣∣∣∣∫ L

−L

∫ h−ρ

0
|ψ|2â dτds−

∫ L

−L

∫ h−ρ

0
|ψ|2â−1 dτds

∣∣∣∣
≤ C

[∫ L

−L

∫ h−ρ

0
h1/2τ |Πsψ|2â dτds+

∫ L

−L

∫ h−ρ

0
h1/2τ |Π⊥

s ψ|2â dτds
]
.

Thanks to (4.15), we get∫ L

−L

∫ h−ρ

0
h1/2τ |Πsψ|2â dτds = h1/2

∫ L

−L
|φ(s)|2

[∫ h−ρ

0
τ |vκ(s),h|2â dτ

]
ds ≤ c h1/2 ∥Πsψ∥2L2(â dτds) .
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We use that h1/2−ρ ≤ h1/4, we obtain:∫ L

−L

∫ h−ρ

0
h1/2τ |Π⊥

s ψ|2â dτds ≤ h1/2−ρ

∫ L

−L

∫ h−ρ

0
|Π⊥

s ψ|2â dτds ≤ h1/4 ∥Π⊥
s ψ∥2L2(â dτds) .

□

The following corollary is a direct consequence of (4.17).

Corollary 4.1. Let ψ ∈ L2(â dτds) . There exist c > 0 such that :

∥Πsψ∥2L2(â−1 dτds) ≤ (1 + ch1/2 )

∫ L

−L
|φ(s)|2 ds ,

with φ = ⟨ψ, vκ(s),h⟩L2((0, h−ρ), â dτ) .

4.3. Upper bound. To separate the variables, we consider the function of the form :

ψ(s, t) = φ(s) · vκ(s),h(τ) ,

with φ ∈ H1(R/2LZ) .

The following proposition provides an upper bound of the quadratic form on a subspace.

Proposition 4.1. Let 0 ≤ η < 1
2 , ρ ∈ (0, 1/4) and b0 > 0 . Suppose that b = b0h

−η
2 . There exist

constant c > 0, h0 > 0 , and a quadratic form qeff,+h in L2(R/2LZ)

qeff,+h (φ) =

∫ L

−L

(
− 1− κ(s)h

1
2 − κ(s)2

2
h
)
|φ(s)|2 ds+ h(1 + c h

1
2 )

∫ L

−L
| (∂s − ibβ0)φ|2 ds ,

such that, for all h ∈ (0, h0) , we have:

q̂ b,ρh (ψ) ≤ qeff,+h (φ) + o(h)∥φ∥2L2(R/2LZ) .

Proof. The proof will be done in a five steps.
i. We write

q̂ b,ρh (ψ) = q tang(ψ) + q trans(ψ) ,

where

q trans(ψ) =

∫ L

−L

∫ h−ρ

0

∣∣∣∣ (h 1
2∂s − ibh

1
2β0 − ibh

(
− τ + h

1
2
τ2

2
κ(s)

))
ψ

∣∣∣∣2 â−1 dτds ,

and

q tang(ψ) =

∫ L

−L

∫ h−ρ

0
|∂τψ|2 â dτds−

∫ L

−L
|ψ(s, τ = 0)|2 ds .

ii. Upper bound of q tang(ψ). We get, by using the min-max principle

q tang(ψ) =

∫ L

−L
|φ(s)|2

[ ∫ h−ρ

0
|∂τvκ(s),h(τ)|2 â dτ − |vκ(s),h(0)|2

]
ds

=

∫ L

−L
qκ(s),h(vκ(s),h) |φ(s)|2 ds

=

∫ L

−L
λ1(Hκ(s),h) |φ(s)|2 ds

≤
∫ L

−L

(
− 1− κ(s)h

1
2 − κ(s)2

2
h
)
|φ(s)|2 ds+ o(h)∥φ∥2 .
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iii. Upper bound of q trans(ψ). Using that for any a, b ∈ R ans h > 0

|a+ b|2 ≤ (1 + h
1
2 ) |a|2 + (1 + h−

1
2 ) |b|2 ,

we have

q trans(ψ) ≤ (1 + h
1
2 ) q trans1 (ψ) + (1 + h−

1
2 )q trans2 (ψ) ,

where

q trans1 (ψ) =

∫ L

−L

∫ h−ρ

0

∣∣∣∣ (h 1
2∂s − ibh

1
2β0

)
ψ

∣∣∣∣2â−1 dτds ,

and

q trans2 (ψ) = b2h2
∫ L

−L

∫ h−ρ

0

∣∣∣∣ (− τ + h
1
2
τ2

2
κ(s)

)
ψ

∣∣∣∣2â−1 dτds .

iv. We use Lemma 4.2, there exist constants c > 0 :

q trans2 (ψ) ≤ b2h2(1 + c h1/4)

∫ L

−L
|φ(s)|2

[ ∫ h−ρ

0

∣∣∣∣ (− τ + h
1
2
τ2

2
κ(s)

)
vκ,h

∣∣∣∣2â dτ] ds .
Using the inequality (4.15), and since the curvature is bounded, there exists a constant c > 0,
such that: ∫ h−ρ

0

∣∣∣∣ (− τ + h
1
2
τ2

2
κ(s)

)
vκ,h

∣∣∣∣2â dτ ≤ c .

Therefore,

(1 + h−
1
2 ) q trans2 (ψ) ≤ c b2h

3
2 ∥φ∥2 .

For η < 1
2 , we have:

b2h
3
2

h
= b0h

−η+ 1
2 −→

h→0+
0 ,

then,

(1 + h−
1
2 ) q trans2 (ψ) = o(h)∥φ∥2 .

v. We have

q trans1 (ψ) ≤ h (1 + h
1
2 )

∫ L

−L

∫ h−ρ

0
| vκ(s),h (∂s − ibβ0)φ|2 ã−1 dτds

+ h( 1 + h−
1
2 )

∫ L

−L

∫ h−ρ

0
|∂svκ(s),h|2|φ(s)|2 ã−1 dτds .

We use Lemma 4.2 and Corollary 4.1, there exists a constant c > 0, such that:

q trans1 (ψ) ≤ h (1 + h
1
2 )(1 + c h1/2)

∫ L

−L
| (∂s − ibβ0)φ|2 ds

+ h (1 + h−
1
2 )(1 + c h1/4)

∫ L

−L
|φ(s)|2

[ ∫ h−ρ

0
|∂svκ(s),h|2â dτ

]
ds .

From (4.14), we deduce that

(1 + h
1
2 )q trans1 (ψ) ≤ h (1 + c h

1
2 )

∫ L

−L
| (∂s − ibβ0)φ|2 ds+ o(h)∥φ∥2 .

Then the conclusion follows. □
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4.4. Lower bound. The following proposition provides a lower bound of the quadratic form.

Proposition 4.2. Let 0 ≤ η < 1
2 , ρ ∈ (0, 1/4) and b0 > 0 . Suppose that b = b0h

−η
2 . There exist

constants c− > 0, c > 0, h0 > 0 , and a quadratic form qeff,−h on L2(R/2LZ)

qeff,−h (φ) =

∫ L

−L

(
− 1− κ(s)h

1
2 − κ(s)2

2
h
)
|φ(s)|2 ds+ h(1− c− h

1
2 )

∫ L

−L
| (∂s − ibβ0)φ|2 ds ,

such that, for all h ∈ (0, h0) , ψ ∈ Dom(q̂ b,ρh ), we have:

q̂ b,ρh (ψ) ≥ qeff,−h (φ) + o(h)∥φ∥2L2(R/2LZ) − ch1/4∥Π⊥
s ψ∥2L2(â dτds) ,

and with
φ(s) := ⟨ψ(s, ·), vκ(s),h⟩L2((0, h−ρ), â dτ) .

Proof. We write

q̂ b,ρh (ψ) = q trans(ψ) + q tang(ψ) ,

with

q trans(ψ) =

∫ L

−L

∫ h−ρ

0

∣∣∣∣ (h 1
2∂s − ibh

1
2β0 − ibh

(
− τ + h

1
2
τ2

2
κ(s)

))
ψ

∣∣∣∣2 â−1 dτds ,

and

q tang(ψ) =

∫ L

−L

∫ h−ρ

0
|∂τψ|2â dτds−

∫ L

−L
|ψ(s, τ = 0)|2 ds .

i. We get, by using an orthogonal decomposition,

qκ(s),h(ψ) = qκ(s),h(Πsψ) + qκ(s),h(Π
⊥
s ψ) ,

Then, by using the min-max principle,we get

q tang(ψ) =

∫ L

−L
qκ(s),h(ψ) ds

=

∫ L

−L
qκ(s),h(φvκ(s),h) ds+

∫ L

−L
qκ(s),h(Π

⊥
s ψ) ds

≥
∫ L

−L
λ1(Hκ(s),h)∥φvκ(s),h∥2L2((0, h−ρ), â dτ) ds

+

∫ L

−L
λ2(Hκ(s),h)∥Π⊥

s ψ∥2L2((0, h−ρ), â dτ) ds ,

From (4.12) and (4.13), we have

q tang(ψ) ≥
∫ L

−L

(
− 1− κ(s)h

1
2 − κ(s)2

2
h
)
|φ(s)|2 ds+ o(h)∥φ∥2 − Ch1/2−ρ∥Π⊥

s ψ∥2L2(â dτds) .

ii. We use Lemma 4.2, we have

q trans(ψ) ≥ (1− ch1/2 )

∫ L

−L

∫ h−ρ

0

∣∣∣∣h 1
2 Πs∂sψ − ibh

1
2β0Πsψ − ibhΠs(αsψ)

∣∣∣∣2 â dτds
+ (1− ch1/4 )

∫ L

−L

∫ h−ρ

0

∣∣∣∣h 1
2 Π⊥

s ∂sψ − ibh
1
2β0Π

⊥
s ψ − ibhΠ⊥

s (αsψ)

∣∣∣∣2 â dτds .
with

αs(τ) = −τ + h1/2
τ2

2
κ(s) .
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We write
Πs∂sψ = ∂sΠsψ + [Πs, ∂s]ψ ,

and use
|a+ b|2 ≥ (1− h

1
2 )|a|2 − h−

1
2 |b|2 .

We obtain

q trans(ψ) ≥ (1− ch1/2)(1− h
1
2 )q trans1 (ψ)− (1− ch1/2)h−

1
2 q trans2 (ψ)

+ (1− ch1/4)(1− hα)q trans3 (ψ)− (1− ch1/4)h−αq trans2 (ψ) ,

with

• q trans1 (ψ) =

∫ L

−L

∫ h−ρ

0

∣∣∣h 1
2 ∂sΠsψ − ibh

1
2β0Πsψ − ibhΠs(αsψ)

∣∣∣2 â dτds ,
• q trans2 (ψ) = h

∫ L

−L

∫ h−ρ

0

∣∣∣[Πs, ∂s]ψ
∣∣∣2 â dτds = h

∫ L

−L

∫ h−ρ

0

∣∣∣[Π⊥
s , ∂s]ψ

∣∣∣2â dτds ,
• q trans3 (ψ) =

∫ L

−L

∫ h−ρ

0

∣∣∣h 1
2 ∂sΠ

⊥
s ψ − ibh

1
2β0Π

⊥
s ψ − ibhΠ⊥

s (αsψ)
∣∣∣2 â dτds .

iii. We have

q trans1 (ψ) ≥ (1− h
1
2 )

∫ L

−L

∫ h−ρ

0

∣∣∣h 1
2 ∂sΠsψ − ibh

1
2β0Πsψ

∣∣∣2 â dτds
− h−

1
2

∫ L

−L

∫ h−ρ

0

∣∣∣bhΠs(αsψ)
∣∣∣2â dτds

Clearly,∫ L

−L

∫ h−ρ

0

∣∣∣Πs(αsψ)
∣∣∣2 â dτds ≤ ∫ L

−L

∫ h−ρ

0

∣∣∣αsψ
∣∣∣2â dτds

≤
∫ L

−L

∫ h−ρ

0

∣∣∣αsΠsψ
∣∣∣2â dτds+ ∫ L

−L

∫ h−ρ

0

∣∣∣αsΠ
⊥
s ψ
∣∣∣2â dτds

With the same type of reasoning as for the upper bound, there exists a constant c > 0 such
that

q trans1 (ψ) ≥ h(1− c h
1
2 )

∫ L

−L
| (∂s − ibβ0)φ|2 ds− ch1/2∥Π⊥

s ψ∥2 + o(h)∥φ∥2 .

vi. We use Lemma 4.1 and the inequality (4.14), we obtain

q trans2 (ψ) ≤ ch2∥ψ∥L2(â dτds) ≤ ch2∥φ∥2 + ch2∥Π⊥
s ψ∥2L2(â dτds) .

v. As q trans3 (ψ) ≥ 0, we obtain:

q trans(ψ) ≥ h(1− c h
1
2 )

∫ L

−L
| (∂s − ibγ0)φ|2 ds− ch1/2 ∥Π⊥

s ψ∥2L2(â dτ ds) + o(h) ∥φ∥2 .

Then the conclusion follows. □

4.5. End of the proof. We now have everything we need to finish the proof of Theorem 4.1. The
self-adjoint operator associated with the quadratic form qeff,±h is :

Leff,±
h = −h(1± c± h

1
2 )(∂s − ibβ0)

2 − 1− κ(s)h
1
2 − κ(s)2

2
h

in L2(R/2LZ) , where c± is a constant independent of h. The operator Leff,±
h is with compact resol-

vent and it is bounded from below. Its spectrum is purely discrete and it is formed by an increasing
sequence of eigenvalues λn(Leff,±

h ) .
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Corollary 4.2. Let 0 ≤ η < 1
2 , ρ ∈ (0, 1/4) and b0 > 0 . Suppose that b = b0h

−η
2 . For h → 0+ ,

we have:
µ̂n(h, b, ρ) ≤ λn(Leff,+

h, ) + o(h) .

Proof. Let (φj)1≤j≤n an orthonormal family of eigenvectors associated with eigenvalues (λj)1≤j≤n .

Let E the subspace of Dom(qeff,+h ) generated by the family (φj)1≤j≤n . We use Proposition 4.1, we
have:

q̂ b,ρh (vk(s),h φ) ≤ qeff,+h (φ) + o(h)∥φ∥2 , ∀φ ∈ E .

We use the min-max theorem, we have:

qeff,+h (φ) ≤ λn(Leff,+
h )∥φ∥2 .

Consequently,

q̂ b,ρh (vk(s),h φ) ≤ λn(Leff,+
h )∥φ∥2 + o(h)∥φ∥2

≤
(
λn(Leff,+

h ) + o(h)
)
∥vk(s),hφ∥2 .

For all g ∈ vk(s),hE , we have:

q̂ b,ρh (g) ≤
(
λn(Leff,+

h ) + o(h)
)
∥g∥2 .

Since ∫ h−ρ

0
|vk(s),h(τ)|2â dτ = 1 ,

then the functions of the family (vk(s),hφj)1≤j≤n are linearly independent, so dim(fk(s),hE) = n .
By application of the min-max principle, we obtain

µ̂n(h, b, ρ) ≤ λn(Leff,+
h ) + o(h).

□

Corollary 4.3. Let 0 ≤ η < 1
2 , ρ ∈ (0, 1/4) and b0 > 0 . Suppose that b = b0h

−η
2 . For h → 0+ ,

we have:
µ̂n(h, b, ρ) ≥ λn(Leff,−

h ) + o(h) .

Proof. According to Proposition 4.2, there exists c > 0 , and ϵ0 ∈ (0, 1) such that, for all ψ ∈
Dom(q̂ b,ρh ) and h small enough, we have:

(4.19) q̂ b,ρh (ψ) ≥ Qtens
h (⟨ψ, vκ(s),h⟩,Π⊥ψ) ,

where, ∀(φ, f) ∈ Dom(qeff,−h,α )×Dom(q̂b,ρh )

Qtens
h (φ, f) = Qeff

h (φ)− ϵ0
2
∥f∥2L2(ã dτds) ,

with
Qeff

h (φ) = qeff,−h (φ) + o(h)∥φ∥2L2(R/2LZ) .

By application of min-max principle (see [12, Chapter 13]), we have the comparison of the Rayleigh
quotients:

(4.20) µ̂n(h, b, ρ) ≥ µ̂tensn (h) .

We note that the self-adjoint operators associated with the quadratic forms Qeff
h and Qtens

h are
respectively Leff

h and Ltens
h . It is easy to see that the spectrum of Ltens

h lying below −ϵ0 is coincides
with the spectrum of Leff

h . Then, for all n ∈ N∗ , µ̂tensn (h) and µ̂eff
n (h) are respectively the n-th

eigenvalues of Ltens
h and Leff

h and satisfy

(4.21) µ̂tensn (h) = µ̂eff
n (h) = λn(Leff,−

h ) + o(h) .

□
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5. SPECTRUM OF EFFECTIVE OPERATOR

Let λn(L) be the n-th eigenvalue of an operator L . Let c ∈ R , b0 > 0, η < 1
2 and b = b0h

−η
2 .

The aim of this section is to study the spectrum of the effective operator of the form:

Leff
h,0 = −h(1− c h

1
2 )(∂s − ibβ0)

2 − 1− κ(s)h
1
2 − κ(s)2

2
h ,

and the associate quadratic form on L2(R/2LZ) is

qeffh,0(φ) =

∫ L

−L

(
− 1− κ(s)h

1
2 − κ(s)2

2
h
)
|φ(s)|2 ds+ h(1− c h

1
2 )

∫ L

−L
| (∂s − ibβ0)φ|2 ds .

The calculations in this section are classical. The operator that we are going to study its spectrum
is a perturbation of the harmonic oscillator. Then, the calculations are based on the context of the
harmonic approximation (cf. [12, Section 4.3]), with a small adjustment, since the operator is defined
on a periodic space.

Let
Leff
h,1 = Leff

h,0 + 1.

By definition of the spectrum, we have

(5.22) λn(Leff
h,0) = −1 + λn(Leff

h,1) .

Either the operator
Leff
h,2 = h−1/2Leff

h,1 ,

then,

(5.23) λn(Leff
h,1) = h1/2λn(Leff

h,2) .

We introduce the semiclassical parameter

ℏ = h1/4 .

Lemma 5.1. Let us consider:

Leff
h,3 = −ℏ2(1− c ℏ2)(∂s − ibβ0)

2 − κ(s) ,

and the associated quadratic form on L2(R/2LZ) is:

qeffh,3(φ) = −
∫ L

−L
κ(s) |φ(s)|2 ds+ ℏ2(1− c ℏ2)

∫ L

−L
| (∂s − ibγ0)φ|2 ds .

We have,

(5.24) λn(Leff
h,2) = λn(Leff

h,3) +O(ℏ2) .

Proof. Let φ ∈ H1(R/2LZ), we have∣∣∣∣qeffh,2(φ)− qeffh,3(φ)

∣∣∣∣ = ℏ2
∣∣∣∣∫ L

−L

κ(s)2

2
|φ(s)|2 ds

∣∣∣∣ ,
we use that Ω is a bounded open, then the curvature κ is also bounded, hence there exists c > 0
independent of s, such that ∣∣∣∣qeffh,2(φ)− qeffh,3(φ)

∣∣∣∣ ≤ c ℏ2∥φ∥2 .

By application of min-max theorem, this ends the proof. □

From (5.22), (5.23) and (5.26), we obtain

(5.25) λn(Leff
h,0) = −1 + ℏ2λn(Leff

h,3) +O(ℏ4) .

Therefore, to study the spectrum of the effective operator Leff
h,0 , it suffices to study the spectrum of

the operator Leff
h,3 , introduced in Lemma 5.1.
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5.1. Localization near the point of maximum curvature. Let κmax be the maximum curvature
along the boundary Γ . Consider the effective operator of the form:

Leff
h,4 = −ℏ2(1− c ℏ2)(∂s − ibβ0)

2 + κmax − κ(s) ,

and the quadratic form on L2(R/2LZ) associated to it is:

qeffh,4(φ) =

∫ L

−L

(
κmax − κ(s)

)
|φ(s)|2 ds+ ℏ2(1− c ℏ2)

∫ L

−L
| (∂s − ibβ0)φ|2 ds .

Then,

(5.26) λn(Leff
h,3) = λn(Leff

h,4)− κmax .

The goal is to show that the eigenfunctions of Leff
h,4 , associated with the eigenvalues of orders ℏ

concentrate exponentially near the point of maximum curvature.

Proposition 5.1. For ϵ ∈ (0, 1), there exist C > 0 and h0 > 0 such that, for all h ∈ (0, h0) and for
all eigenfunctions ψ of Leff

h,4 , associated with the eigenvalues of orders ℏ , we have:

∥eϵϕ0/ℏ ψ∥2 ≤ C∥ψ∥2 , qeffh,α,4(e
ϵϕ0/ℏ ψ) ≤ Cℏ∥ψ∥2 ,

where

ϕ0(s) = min
k∈Z

∣∣∣∣∫ s+2kL

0

√
κmax − κ(s) ds

∣∣∣∣ .
Proof. The proof consists of three steps. Let ϵ ∈ (0, 1) . Consider an eigenvalue λ = O(ℏ) and an
associated eigenfunction ψ .

1. First step.

Let ϕ be a regular function, 2L periodic, with real value. We have:

Leff
h,4(e

ϕ ψ) = eϕLeff
h,4(ψ)− ℏ2(1− c ℏ2)

(
ψ∂2se

ϕ + 2∂se
ϕ∂sψ − 2ibβ0ψ∂se

ϕ

)
Then

qeffh,4(e
ϕψ) = ⟨Leff

h,4(e
ϕψ), eϕψ⟩

= ⟨eϕLeff
h,4(ψ), e

ϕψ⟩

− ℏ2(1− c ℏ2)
∫ L

−L

[
ψ∂2se

ϕ + 2∂se
ϕ∂sψ − 2ibβ0ψ∂se

ϕ

]
ψ̄eϕ ds

= λ∥eϕψ∥2 − ℏ2(1− c ℏ2)
∫ L

−L

[
ψ∂2se

ϕ + 2∂se
ϕ∂sψ − 2ibβ0ψ∂se

ϕ

]
ψ̄eϕ ds .

By the formula of integration by parts and as ϕ is 2L periodic, we have∫ L

−L

[
ψ∂2se

ϕ + 2∂se
ϕ∂sψ − 2ibβ0ψ∂se

ϕ

]
ψ̄eϕ ds = −∥∂seϕψ∥2 .

Then, we get

(5.27) qeffh,4(e
ϕ ψ) = λ∥eϕ ψ∥2 + ℏ2(1− cℏ2)∥∂seϕ ψ∥2 .

2. Second step.

For ϕ =
ϵϕ0
ℏ
, we notice that:

(5.28) |ϕ′ |2 = ϵ2

ℏ2
|ϕ′

0|2 =
ϵ2

ℏ2
(
κmax − κ(s)

)
.
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We have

qeffh,4(φ) =

∫ L

−L

(
κmax − κ(s)

)
|φ(s)|2 ds+ ℏ2(1− c ℏ2)

∫ L

−L
| (∂s − ibβ0)φ|2 ds .

Consequently

(5.29) qeffh,4(φ) ≥
∫ L

−L

(
κmax − κ(s)

)
|φ(s)|2 ds .

From (5.27) and (5.29), we have∫ L

−L

[(
κmax − κ(s)

)
− λ− ℏ2(1− cℏ2)|ϕ′ |2

]
e2ϕ |ψ|2 ds ≤ 0 .

From (5.28), we get∫ L

−L

[
1− ϵ2(1− cℏ2)

](
κmax − κ(s)

)
e2ϕ |ψ|2 ds ≤ λ∥eϕ ψ∥2 ≤ Cℏ∥eϕ ψ∥2 .

We notice that for any ϵ ∈ (0, 1) and for ℏ small enough, there exists a constant C > 0 independent
of ℏ such that

1− ϵ2(1− cℏ2) ≥ C .

We deduce the inequality

(5.30)
∫ L

−L

(
κmax − κ(s)

)
e2ϕ |ψ|2 ds ≤ Cℏ∥eϕ ψ∥2 .

From (5.30) and (5.28), we have

(5.31) qeffh,4(e
ϕ ψ) = λ∥eϕ ψ∥2 + ℏ2(1− cℏ2)∥∂seϕ ψ∥2 ≤ Cℏ∥eϕ ψ∥2 .

3. Third step.

Show that:

(5.32)
∫ L

−L
e2ϵϕ0/ℏ|ψ|2 ds ≤ C∥ψ∥2 ,

(5.33) qeffh,4(e
ϵϕ0/ℏ ψ) ≤ Cℏ∥ψ∥2 .

We use that u = κmax − κ admits a unique non-degenerate minimum, we deduce that there exists
c > 0 such that for any C0 > 0, there exist constants C, ℏ0 such that, for all ℏ ∈ (0, ℏ0) ,

(5.34)
∫
|s|≤C0ℏ1/2

(
κmax − κ(s)

)
e2εΦ0/ℏ|ψ|2 ds ≤ Cℏ∥ψ∥2 ,

(5.35)
∫
|s|≤C0ℏ1/2

e2εΦ0/ℏ|ψ|2 ds ≤ C∥ψ∥2 ,

(5.36)
∫
|s|≥C0h1/2

(
κmax − κ(s)

)
e2ϵϕ0/ℏ|ψ|2 ds ≥ cC2

0ℏ
∫
|s|≥C0ℏ1/2

e2ϵϕ0/ℏ|ψ|2 ds .

By the inequality (5.35), to show (5.32), it suffices to show the following inequality:

(5.37)
∫
|s|≥C0ℏ1/2

e2ϵϕ0/ℏ|ψ|2 ds ≤ C∥ψ∥2 .
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Taking C0 large enough, we deduce that∫
|s|≥C0ℏ1/2

e2ϵϕ0/ℏ|ψ|2 ds ≤ 1

cC2
0ℏ

∫
|s|≥C0h1/2

u(s)e2ϵϕ0/ℏ|ψ)|2 ds

≤ 1

cC2
0ℏ

∫ L

−L
u(s)e2ϵϕ0/ℏ|ψ|2 ds .

By inequality (5.30), we get∫
|s|≥C0ℏ1/2

e2ϵϕ0/ℏ|ψ|2ds ≤ C

cC2
0

∫ L

−L
e2ϵϕ0/ℏ|ψ|2 ds

≤ C

cC2
0

∫
|s|≤C0ℏ1/2

e2ϵϕ0/ℏ|ψ|2 ds+ C

cC2
0

∫
|s|≥C0ℏ1/2

e2ϵϕ0/ℏ|ψ|2 ds .

Thus, (
1− C

cC2
0

)∫
|s|≥C0ℏ1/2

e2ϵϕ0/ℏ|ψ|2 ds ≤ C

cC2
0

∫
|s|≤C0ℏ1/2

e2ϵϕ0/ℏ|ψ|2 ds .

From the inequality (5.35), we get (5.37) and hence we show the point (5.32).
From (5.31), we have

qeffh,4(e
ϵϕ0/ℏ ψ) ≤ Cℏ∥eϵϕ0/ℏ ψ∥2 ,

and from the inequality (5.32), we get the inequality (5.33). □

5.2. Construction of quasimodes. In this section we construct trial states (Φn) in the domain of
the effective operator Leff

h,4 , such that, for every fixed n ∈ N∗ and η < 1
2 , we have

(5.38)
∥∥∥∥Leff

h,4Φn − (2n− 1)ℏ
√

−κ′′(0)
2

Φn

∥∥∥∥
L2(R/2LZ)

≤ Cℏ3/2 ∥Φn∥L2(R/2LZ) .

We know that, the eigenfunctions are localized near the boundary at the scale ℏ
1
2 (cf. Prop 5.1). It

suggests to introduce the rescaling

(5.39) s = ℏ1/2σ .

The effective operator Leff
h,4 becomes

Leff
h,4 = −ℏ2

(
1− cℏ2

) (
ℏ−

1
2∂σ − ibβ0

)2
+ κmax − κ(ℏ

1
2σ) .

Recall that the value of the maximum curvature is κmax = κ(0). We can use a Taylor expansion of
κ near 0 , as follows

κ(ℏ
1
2σ) = κmax +

ℏσ2

2
κ′′(0) +

∑
j⩾3

ℏ
j
2

j!
σjκ(j)(0) .
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We consider the formal expansion of the operator Leff
h,α,4 (recall that b = b0ℏ−2η)

− ℏ2
(
1− cℏ2

) (
ℏ−

1
2∂σ − ibβ0

)2
+ κmax − κ(ℏ

1
2σ)

= −ℏ
(
1− cℏ2

) (
∂σ − ibℏ

1
2β0

)2
− ℏσ2

2
κ′′(0)−

∑
j⩾3

ℏ
j
2

j!
σjκ(j)(0)

= −ℏ
(
1− cℏ2

) (
∂2σ − 2ibℏ

1
2β0∂σ − b2ℏβ20

)
− ℏσ2

2
κ′′(0)−

∑
j⩾3

ℏ
j
2

j!
σjκ(j)(0)

= ℏ
(
−∂2σ − σ2

2
κ′′(0)

)
+ 2iβ0b0ℏ

3
2
−2η∂σ + ℏ2−4ηb20β

2
0 + cℏ3∂2σ

+ 2icb0β0ℏ
7
2
−2η∂σ − cℏ4−4ηb20β

2
0 − ℏ3/2

∑
j⩾3

ℏ
j−3
2

j!
σjκ(j)(0) .

Consequently, we have the formal expansion of the effective operator Leff
h,4 ,

(5.40) ℏ−1Leff
h,4 = P0 +Rℏ + ℏ1/2Qℏ,

where

P0 = −∂2σ − σ2

2
κ′′(0) ,

Rℏ = 2iβ0b0ℏ
1
2
−2η∂σ + ℏ1−4ηb20β

2
0 + cℏ2∂2σ + 2icb0β0ℏ

3
2
−2η∂σ − cℏ3−4ηb20β

2
0 ,

Qℏ = −
∑
j⩾3

ℏ
j−3
2

j!
σjκ(j)(0) .

Since κ(0) is the non-degenerate maximum of κ, we have κ′′(0) < 0. The eigenvalues of the
harmonic oscillator

−∂2σ +
−κ′′(0)

2
σ2 in L2(R)

are (2n− 1)

√
−κ′′(0)

2
with n ∈ N∗ . The corresponding normalized eigenfunctions are denoted by

fn(σ). They have the form

(5.41) fn(σ) = hn(σ) exp

(
−
√
−k

′′(0)

2

σ2

2

)
,

where the hn(σ) are the rescaled Hermite polynomials.

Define the trial state Φn in L2(R/2LZ) as follows:

(5.42) Φn(s) = ℏ−1/4 χ
( s

2L

)
fn(ℏ−1/2s) ,

where χ is a cut-off function defined on R as follows:

0 ≤ χ ≤ 1 , χ = 1 in ]− 1/2, 1/2 ] and χ = 0 in R\]− 1, 1[.

Using the exponential decay of fn to infinity, it is easy to verify

(5.43) ∥Φn∥L2(R/2LZ) = 1 + o(1) .

We have

⟨RℏΦn,Φn⟩L2(ℏ
1
2 dσ)

= 2iβ0b0ℏ
1
2
−2η⟨∂σΦn,Φn⟩+ 2icb0β0ℏ

3
2
−2η⟨∂σΦn,Φn⟩+ cℏ2⟨∂2σΦn,Φn⟩

+ ℏ1−4ηb20β
2
0 ∥Φn∥2L2(R/2LZ) − cℏ3−4ηb20β

2
0 ∥Φn∥2L2(R/2LZ) .
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We observe that, the function ∂σfn fn is odd. Using the exponential decay of fn at infinity, we have

⟨∂σΦn,Φn⟩L2(ℏ
1
2 dσ)

= O(ℏ
1
2 ) .

For η ≤ 1
8 , using the expression of ⟨RℏΦn,Φn⟩

L2(ℏ
1
2 dσ)

, it is easy to check that

⟨RℏΦn,Φn⟩
L2(ℏ

1
2 dσ)

= O(ℏ
1
2 ) .

Then, we observe that after a change of variables and by construction of Φn (5.40) yields

(5.44)

ℏ−1Leff
h,4Φn(s) = (2n− 1)

√
−κ′′(0)

2
Φn(σ) + ℏ

−1
4 ℏχ′′

(
ℏ

1
2σ

2L

)
fn(σ)

+ 2ℏ
−1
4 ℏ

1
2χ′

(
ℏ

1
2σ

2L

)
f ′n(σ) +RℏΦn(σ) + ℏ3/2QℏΦn(σ) ,

where Φn(σ) = Φn(ℏ1/2s) .

Now, we infer from (5.44) that〈
Leff
h,4Φn − (2n− 1)ℏ

√
−κ′′(0)

2
Φn,Φn

〉
L2(R/2LZ)

≤ Cℏ
3
2 .

As a consequence of the spectral theorem, (5.38) yields that, for every fixed n ∈ N∗, there exists
an eigenvalue λ̃n(Leff

h,4) of the operator Leff
h,4 such that

(5.45) λ̃n(Leff
h,4) = (2n− 1)ℏ

√
−κ′′(0)

2
+O(ℏ3/2) .

Proposition 5.2. For all n ≥ 1 and η ≤ 1
8 , there exist h0 > 0 such that, for all h ∈ (0, h0)

λn(Leff
h,4) = (2n− 1)ℏ

√
−κ′′(0)

2
+O(ℏ3/2) .

Proof. For all N ≥ 1 , we can take a family of eigenvalues and eigenfunctions
(λn(Leff

h,4), ψn,ℏ)n=1,...,N such that (ψn,ℏ)n=1,...,N is an orthonormal family. Let EN (ℏ) the vector
subspace of Dom(Leff

h,4) spanned by the family (ψn,ℏ)n=1,...,N .

For all ψ ∈ EN (ℏ), ψ also satifies the Agmon estimates (5.1). By using the proposition 5.1 which
gives that the eigenfunctions of Leff

h,4 , associated with the eigenvalues of orders ℏ concentrate expo-
nentially near the point of maximum curvature and using the change of variable introduced in (5.39),
we easily obtain that, for all ψ ∈ EN (ℏ) , there exists C > 0 such that

qeffh,4(ψ) ≥
∫ ℏ−1/2L

−ℏ−1/2L
ℏ
−κ′′(0)

2
σ2 |ψ(ℏ1/2σ)|2 d(ℏ1/2 σ)

+ ℏ(1− c ℏ2)
∫ ℏ−1/2L

−ℏ−1/2L
| (∂σ − ibℏ

1
2β0)ψ|2 d(ℏ1/2 σ)

≥ ℏ
[∫ ℏ−1/2L

−ℏ−1/2L

(
| ∂σψ(ℏ1/2σ)|2 +

−κ′′(0)
2

σ2 |ψ(ℏ1/2σ)|2
)
d(ℏ1/2 σ)

]
− Cℏ3/2∥ψ∥2L2(R/2LZ)

≥ (2N − 1)ℏ
√

−κ′′(0)
2

∥ψ∥2L2(R/2LZ) − Cℏ3/2∥ψ∥2L2(R/2LZ) .

Then, by the min-max principle, we have

λN (Leff
h,4) ≥ (2N − 1)ℏ

√
−κ′′(0)

2
− Cℏ3/2 .
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Finally, from (5.45), the asymptotic expansion of the n-th eigenvalue is:

λn(Leff
h,4) = (2n− 1)ℏ

√
−κ′′(0)

2
+O(ℏ3/2) .

□

Now, by inequalities (5.27) and (5.26), we deduce the asymptotic expansion of the n-th eigenvalue
of the effective operator Leff

h,0

(5.46) λn(Leff
h,0) = −1− κmaxℏ2 + (2n− 1)

√
−κ′′(0)

2
ℏ3 +O(ℏ7/2) .

From (5.46), we have shown Theorem 3.1, which was a reformulation of Theorem 1.1.

5.3. Unit disk case. This section is devoted to the proof of Remark 1.1. We will study the spectrum
of the effective operator Leff

h,0, where Ω = D(0, 1) and η < 1
2 . We have

L = π, β0 =
1

2
, b = b0h

−η
2 and κ = 1 .

Thus

Leff
h,0 = −h

(
1− ch

1
2

)(
∂s− i

b

2

)2

− 1− h
1
2 − h

2
,

the associate quadratic form on H1(R/2πZ) is

qeffh,0(φ) =

(
−1− h

1
2 − h

2

)∫ π

−π
|φ(s)|2 ds+ h

(
1− ch

1
2

)∫ π

−π

∣∣∣∣(∂s − i
b

2

)
φ

∣∣∣∣2 ds .

We use the completeness of the orthonormal family
{
eims/

√
2π
}
m∈Z in L2(R/2πZ), then, for all

φ ∈ H1(R/2πZ), we have

φ(s) =
∑
m∈Z

φ̂(m)
eims

√
2π

,

where
φ̂(m) =

1√
2π

∫ π

−π
φ(s)e−ims ds.

For all φ ∈ H1(R/2πZ), we have

qeffh,0(φ) =

(
−1− h

1
2 − h

2

)∫ π

−π
|φ(s)|2 ds+ h

(
1− ch

1
2

)∫ π

−π

∣∣∣∣(∂s − i
b

2

)
φ

∣∣∣∣2 ds

=
∑
m∈Z

(
−1− h

1
2 − h

2
+ h

(
1− ch

1
2

)(
m− b

2

)2
)
|φ̂(m)|2

Let k ∈ Z, we set

φk(s) =
eiks√
2π

:= ek(s) .

Inserting φk into the quadratic form, we have for all k ∈ Z

qeffh,0(φk) = −1− h
1
2 − h

2
+ h

(
1− ch

1
2

)(
k − b

2

)2

.

By application of min-max principle, we have

∀k ∈ Z, λ1

(
Leff
h,0

)
≤
qeffh,0 (ek)

∥ek∥2
≤ −1− h

1
2 − h

2
+ h

(
1− ch

1
2

)(
k − b

2

)2

,

then

λ1(Leff
h,0) ≤ −1− h

1
2 − h

2
+ h

(
1− ch

1
2

)
inf
k∈Z

(
k − b

2

)2

.
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For η < 1
2 , we get as h→ 0

h
1
2 inf
k∈Z

(
k − b0h

−η
2

2

)2

= o(1) ,

therefore, we have the following upper bound of the first eigenvalue

(5.47) λ1(Leff
h,0) ≤ −1− h

1
2 +

(
inf
m∈Z

(
m− b

2

)2

− 1

2

)
h+ o(h) .

Now, for lower bound. For all φ ∈ H1(R/2πZ), we have

qeffh,0(φ) =
∑
m∈Z

(
−1− h

1
2 − h

2
+ h

(
1− ch

1
2

)(
m− b

2

)2
)
|φ̂(m)|2

≥

(
−1− h

1
2 − h

2
+ h

(
inf
m∈Z

(
m− b

2

)2
))∑

m∈Z
|φ̂(m)|2 + o(h)

∑
m∈Z

|φ̂(m)|2

=

(
−1− h

1
2 − h

2
+ h

(
inf
m∈Z

(
m− b

2

)2
))

∥φ∥2L2(R/2LZ) + o(h)∥φ∥2L2(R/2LZ) .

Then, by the min-max principle, we have

(5.48) λ1(Leff
h,0) ≥ −1− h

1
2 +

(
inf
m∈Z

(
m− b

2

)2

− 1

2

)
h+ o(h) .

From (5.47) and (5.48), we deduce the asymptotic expansion of the first eigenvalue of the effective
operator Leff

h,0

(5.49) λ1(Leff
h,0) = −1− h

1
2 +

(
inf
m∈Z

(
m− b

2

)2

− 1

2

)
h+ o(h) .

According to Theorem 3.1, we get

µ1(h, b) = −h− h
3
2 +

(
inf
m∈Z

(
m− b

2

)2

− 1

2

)
h2 + o(h2) .

To obtain the proof of Remark 1.1, it suffices to use the relation (3.7) between the spectrum of the
departure operator and the semi-classical operator.
Then, in the case with constant magnetic field (η = 0), we found by a very simple proof, Theorem
1.1 of the article [11].

6. THE INFLUENCE OF THE MAGNETIC FIELD ON THE EIGENVALUES

This section is devoted to the proof of Corollary 3.2. The analysis in this section is inspired by
the article of B. Helffer and A. Kachmar [5] and its aim is to reveal the influence of the magnetic
field, which is not seen by the effective operator. The goal is to construct good trial states and use the
spectral theorem to establish existence of n-eigenvalues of the operator Lb,ρ

h satisfying the refined
asymptotics

µ̄n = −h− h3/2κmax + (2n− 1)h7/4
√
κ′′(0)

2
+ h2ζ1,n +O(h17/8) ,

which in light of three-term asymptotics for µn(h, b, ρ) yields the equality

µn(h, b, ρ) = µ̄n ,

for h > 0 sufficiently small.
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6.1. Construction of approximate eigenfunctions. In this section, we construct trial states (ϕn) in
the domain of the operator which determines the term in accurate expansion of the eigenvalues which
depends of the magnetic field b . The trial states (ϕn) will be supported near the boundary of Ω, so
that the use of the boundary coordinates (s, t) recalled in Section 2 is valid. By Section 3.2, we recall
that the operator Lb,ρ

h is expressed in tubular coordinates (s, t) as follows:

Lb,ρ
h = −h2a−1

(
∂s − ibβ0 − ib

(
− t+

t2

2
κ(s)

))
a−1

(
∂s − ibβ0 − ib

(
− t+

t2

2
κ(s)

))
− h2a−1∂ta∂t (in (L2(a dtds)) ,

where
a(s, t) = 1− tκ(s) ,

and with the Robin condition

∂tu(s, t = 0) = −h−1/2u(s, t = 0) .

We know that, the eigenfunctions are localized near the boundary at the scale h
1
2 in the t direction

(cf. Prop 3.1), and h
1
8 in the s direction ( cf. [5, Thm. 5.5]), then it suggests to introduce this change

of variable
(s, t) 7→

(
h1/8σ, h1/2τ

)
.

This change of variable transforms the above expression of Lb,ρ
h into

Lb,ρ
h = h

[
− a−1

(
h3/8∂σ − ibh1/2β0 − ibhα(σ, τ)

)
ã−1

(
h3/8∂σ − ibh1/2β0 − ibhα(σ, τ)

)
− ã−1∂τ (ã∂τ )

]
,

with

α(σ, τ) = −τ + h1/2

2
τ2κ(h1/8σ) and ã(σ, τ) = 1− h1/2τκ(h1/8σ) .

The boundary condition is now transformed into

∂τ ũ = −ũ on τ = 0 .

Recall that the value of the maximal curvature is κmax = κ(0). We have the following asymptotic
expansions:

ã(σ, τ) = 1− h1/2τκ(0)− h3/4τ
κ′′(0)

2!
σ2 + h7/8τϵ1(σ),(6.50)

∂τ ã(σ, τ) = −h1/2κ(0)− h3/4
κ′′(0)

2!
σ2 − h7/8

κ(3)(0)

3!
σ3 − h

κ(4)(0)

4!
σ4 + h9/8ϵ2(σ),(6.51)

ã(σ, τ)−1 = 1 + h1/2ϵ3(σ, τ) ,(6.52)

ã(σ, τ)−2 = 1 + h1/2ϵ4(σ, τ)(6.53)

∂σ
{
ā(σ, τ)−1

}
= −h5/8ϵ5(σ, τ),(6.54)

where, for 0 < h < 1
2 , 0 ≤ τ ≤ h−ρ and σ = O

(
h−1/8

)
, the functions ϵj , j = 1, · · · , 5, satisfy

|ϵ1(σ)| ≤ C|σ|3, |ϵ2(σ)| ≤ C|σ|5 and ϵ3(σ, τ)|+ |ϵ4(σ, τ)|+ |ϵ5(σ, τ) |≤ Cτ .

This gives us the following identities:

−ã−1∂τ (ã∂τ ) = −∂2τ −
(
ã−1∂τ ã

)
∂τ

= −∂2τ + h1/2κ(0)∂τ + h3/4
κ′′(0)

2!
σ2∂τ + h7/8

κ(3)(0)

3!
σ3∂τ + h

κ(4)(0)

4!
σ4∂τ

+ hτκ2(0)∂τ + h9/8q1(σ, τ)∂τ ,
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and

− ã−1

(
h3/8∂σ − ibh1/2β0 − ibhα(σ, τ)

)
ã−1

(
h3/8∂σ − ibh1/2β0 − ibhα(σ, τ)

)
= −ã−1h3/8∂σ

[
ã−1

(
h3/8∂σ − ibh1/2β0 − ibhα(σ, τ)

)]
+ ibh1/2β0ã

−2

(
h3/8∂σ − ibh1/2β0 − ibhα(σ, τ)

)
+ ibhα(σ, τ)ã−2

(
h3/8∂σ − ibh1/2β0 − ibhα(σ, τ)

)
= −h3/8ã−1∂σã

−1

(
h3/8∂σ − ibh1/2β0 − ibhα(σ, τ)

)
− h3/8ã−2

(
h3/8∂2σ − ibh1/2β0∂σ − ibh∂σα(σ, τ)− ibhα(σ, τ)∂σ

)
+ ibh1/2β0ã

−2

(
h3/8∂σ − ibh1/2β0 − ibhα(σ, τ)

)
+ ibhα(σ, τ)ã−2

(
h3/8∂σ − ibh1/2β0 − ibhα(σ, τ)

)
.

We have the following identities:

− h3/8ã−1∂σã
−1

(
h3/8∂σ − ibh1/2β0 − ibhα(σ, τ)

)
= h11/8q2(σ, τ)∂σ + h

3−η
2 q3(σ, τ) .

− h3/8ã−2

(
h3/8∂2σ − ibh1/2β0∂σ − ibh∂σα(σ, τ)− ibhα(σ, τ)∂σ

)
= −h6/8∂2σ + ibh7/8β0∂σ + h

11−4η
8 q4(σ, τ)∂σ + h

3−η
2 q5(σ, τ) + h10/8q6(σ, τ)∂

2
σ .

ibh1/2β0ã
−2

(
h3/8∂σ − ibh1/2β0 − ibhα(σ, τ)

)
= ibh7/8β0∂σ + b2β20h+ h

11−4η
8 q7(σ, τ)∂σ + h

3−2η
2 q8(σ, τ) .

ibhα(σ, τ)ã−2

(
h3/8∂σ − ibh1/2β0 − ibhα(σ, τ)

)
= h

11−4η
8 q9(σ, τ)∂σ + h

3−2η
2 q10(σ, τ) .

where the functions qi, for 1 ≤ i ≤ 10 satisfy for 0 < h < 1
2 , 0 ≤ τ ≤ h−ρ and |σ| = O

(
h−1/8

)
|q1(σ, τ)| ≤ C

(
|σ|3 + h1/8τ

)
and |qi(σ, τ)| ≤ Cτ for 1 ≤ i ≤ 10 .

This gives us the following identities:

− ã−1

(
h3/8∂σ − ibh1/2β0 − ibhα(σ, τ)

)
ã−1

(
h3/8∂σ − ibh1/2β0 − ibhα(σ, τ)

)
= −h3/4

[
∂2σ − 2ibh1/8β0∂σ − h1/4b2β20

+ h3/8
(
h1/8Q1(σ, τ)∂

2
σ + h

2−4η
8 Q2(σ, τ)∂σ + h

3−8η
8 Q3(σ, τ)

)]
,
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where

Q1 = q6

Q2 = hη/2q2 + q4 + q7 + q9 ,

Q3 = q8 + q10 + hη/2(q3 + q5) .

Consequently, we have the formal expansion of the operator Lb,ρ
h ,

h−1 Lb,ρ
h = P0 + h1/2P1 + h3/4P2 + h7/8P3 + hP4 + h9/8Qh

where
P0 = −∂2τ

P1 = κ(0)∂τ = κmax∂τ

P2 = −∂2σ + κ′′(0)
2 σ2∂τ

P3 =
κ(3)(0)

3!
σ3∂τ + 2ibβ0∂σ

P4 =
κ(4)(0)

4!
σ4∂τ + τκ2(0)∂τ + b2β20

Qh = q1(σ, τ)∂τ + h1/8Q1(σ, τ)∂
2
σ + h

2−4η
8 Q2(σ, τ)∂σ + h

3−8η
8 Q3(σ, τ) .

Remember from (5.41), fn(σ) is the n-th normalized eigenfunction of the harmonic oscillator

−∂2σ +
−κ′′(0)

2
σ2.

The function u0 should be interpreted as the ground state of the model operator H0,0 introduced in
Section A.1.

The construction of the trial state ϕn is based on the simple observation that the function g(σ, τ) =
u0(τ)fn(σ) satisfies

(6.55) P0g = −g, P1g = −κmaxg, P2g = (2n− 1)g .

Let n ∈ N. We will construct a function

Ψn(σ, τ) = u0(τ)fn(σ) + h1/8u0(τ)vn,1(σ) + h2/8u0(τ)vn,2(σ) + h7/8gn,0(σ, τ) + hgn,0(σ, τ)

in the Schwartz space S (R× R+) such that the real-valued Schwartz functions (vn,j)j=1,2 ⊂ S(R) ,
(gn,j)j=0,1 ⊂ S

(
R× R+

)
satisfies

∀j, ∂τgn,j |τ=0 = − gn,j |τ=0 ,

and as h→ 0+ and η ≤ 1
8 , there exist constant Cn > 0, such that

(6.56)
∥∥∥(h−1 Lb,ρ

h − µn

)
Φn

∥∥∥
L2(R×R+)

≤ Cnh
9
8

where

µn = −1− h1/2κmax + h3/4
√
−κ

′′(0)

2
(2n− 1) + h7/8ζ0,n + hζ1,n

and
Φn(s, t) = χ

( s

|∂Ω|

)
χ
( t

h1/8

)
Ψn(h

−1/8s, h−1/2t) .
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Where χ be a cut-off function. The function Φn is in the domain of the operator Lb,ρ
h since the

functions gn,j and u0 satisfy the Robin condition at τ = 0. Since all involved functions in the
expression of Ψn are in Schwartz space, multiplication by cut-off functions will produce small errors
in the various calculations. Notice that the explicit expression of Φn give us

(6.57) ∥Φn∥L2(R×R+) = 1 + o(1) .

As a consequence of the spectral theorem, (6.56) and (6.57) yield that, for every fixed n ∈ N,
there is an eigenvalue µ̄n of the operator Lb,ρ

h such that

(6.58) µ̄n = −h− h3/2κmax + h7/4
√

−κ
′′(0)

2
(2n− 1) + h15/8ζ0,n + h2ζ1,n +O(h17/8) .

with ζ0,n, ζ1,n ∈ R .
Thanks to Corollary 3.1, we observe that there exists h0 such that, for all h ∈ (0, h0) ,

µn(h, b, ρ) = µ̄n .

Thus, thanks to Proposition 3.2, µn(h, b) satisfies the asymptotic expansion in Corollary 3.2.

6.2. The sequence (ζj,n)j=0,1. We want to find a real number ζ0 and two functions v1(σ) and
g0(σ, τ) . According to the equalities in (6.55), for every Schwartz function v(σ), we have the two
simple identities (

P0 + h1/2P1

)
u0(τ)v(σ) =

(
−1− h1/2κmax

)
u0(τ)v(σ) and

P2u0(τ)v(σ) = u0(τ)Hharm v(σ)

where Hharm is the operator introduce in (1.4). A straightforward computation yields(
h−1 Lb,ρ

h − µn

)
Ψn

= h7/8
[
(P0 + 1) g0(σ, τ) + u0(τ)

(
Hharm −

√
−κ′′(0)

2
(2n− 1)

)
v1(σ) + (P3 − ζ0,n)u0(τ)fn(σ)

]
+h

[
(P0 + 1) g1(σ, τ) + u0(τ)

(
Hharm −

√
−κ′′(0)

2
(2n− 1)

)
v2(σ) + (P3 − ζ0,n)u0(τ)v1(σ)

+ (P4 − ζ1,n)u0(τ)fn(σ)

]
+O(h9/8) .

In order that (6.56) is satisfied, it is sufficient to select ζ0, g0(σ, τ) and v1(σ) as follows:

(6.59)

(P0 + 1) g0(σ, τ) + u0(τ)

(
Hharm −

√
−κ′′(0)

2
(2n− 1)

)
v1(σ) + (P3 − ζ0,n)u0(τ)fn(σ) = 0 .

We can select ζ0 such that

(P3 − ζ0,n)u0(τ)fn(σ) ⊥ u0(τ)fn(σ) in L2 (R× R+) .

The number ζ0,n is given by:

ζ0,n =

∫
R×R+

u0(τ)fn(σ)P3(u0(τ)fn(σ)) dτdσ

=

∫
R
−κ

(3)(0)

3!
σ3|fn(σ)|2 dσ − ibγ0

∫
R
fn(σ))∂σfn(σ)) dσ ,

we have the integral of the odd functions on R, then

(6.60) ζ0,n = 0 .
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Consequently,

h1(σ) := −
∫ ∞

0
u0(τ)P3(u0(τ)fn(σ)) dτ ⊥ fn(σ) in L2(R).

SinceHn
harm := Hharm −(2n−1)

√
−κ′′(0)

2 can be inverted in the orthogonal of the n-th eigenfunction
fn(σ), we may select v1(σ) to be

v1(σ) =

(
Hharm −

√
−κ′′(0)

2
(2n− 1)

)−1

(h1(σ)) = Rn (h1(σ)) .

where Rn is the regularized resolvent, the self-adjoint operator which vanishes on the eigenspace
En = span(fn), and equals to the inverse of Hn

harm on the orthogonal complement of En, then ex-
tended by linearity to all of L2(R).

As a consequence of the choice of ζ0 and v1(σ), we get that, for all σ,

w1(σ, ·) := −u0(·)

(
Hharm −

√
−κ′′(0)

2
(2n− 1)

)
v1(σ)− (P3 − ζ0,n)u0(·)fn(σ)

is in the orthogonal of {u0(τ)} in L2 (R+), i.e.∫ ∞

0
w1(σ, τ)u0(τ) dτ = 0.

The operator P0 + 1 can be inverted in the orthogonal complement of {u0(τ)}, and the inverse is
an operator in L2 (R+) which sends S

(
R+

)
into itself. In that way, we may select g0(σ, τ) to be

g0 (σ, ·) = (P0 + 1)−1 (w1 (σ, ·)) .
Now, we want to find a real number ζ1 and two functions v2(σ), g1(σ, τ) . It is sufficient to select

ζ1, g1(σ, τ) and v2(σ) as follows:

(P0 + 1) g1(σ, τ) + u0(τ)

(
Hharm −

√
−κ′′(0)

2
(2n− 1)

)
v2(σ)

+ (P3 − ζ0,n)u0(τ)v1(σ) + (P4 − ζ1,n)u0(τ)fn(σ) = 0 .

We can select ζ1 such that

(P3 − ζ0,n)u0(τ)v1(σ) + (P4 − ζ1,n)u0(τ)fn(σ) ⊥ u0(τ)fn(σ) in L2 (R× R+) .

i.e.

ζ1,n =

∫
R×R+

u0(τ)fn(σ)

(
P4(u0(τ)fn(σ)) + (P3 − ζ0,n)u0(τ)v1(σ)

)
dτdσ .

Then,
(6.61)

ζ1,n = −κ
(4)(0)

4!

∫
R
σ4|fn(σ)|2 dσ + b2β20 −

κ2(0)

2
+

∫
R×R+

u0(τ)fn(σ)P3u0(τ)v1(σ) dτdσ .

Now, the goal is to separate the terms which depend on b and which do not depend on b. In fact, the
terms which are independent of b are already calculated in the article [5] which are denoted by β0,n.
We have

(6.62) P3u0(τ)v1(σ) = −κ
(3)(0)

3!
σ3u0(τ)v1(σ) + 2ibβ0u0(τ)∂σv1(σ) .

We recall that

(6.63) h1(σ) = −
∫ ∞

0
u0(τ)P3(u0(τ)fn(σ)) dτ =

κ(3)(0)

3!
σ3fn(σ)− 2ibβ0∂σfn(σ) .
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(6.64) v1(σ) = Rn(h1(σ)) =
κ(3)(0)

3!
Rn(σ

3fn(σ))− 2ibβ0Rn(∂σfn(σ)) .

Then, (6.62),(6.63) and (6.64), imply

P3u0(τ)v1(σ) = −κ
(3)(0)

3!
σ3u0(τ)

(
κ(3)(0)

3!
Rn(σ

3fn(σ))− 2ibβ0Rn(∂σfn(σ))

)
+ 2ibβ0u0(τ)∂σ

(
κ(3)(0)

3!
Rn(σ

3fn(σ))− 2ibβ0Rn(∂σfn(σ))

)
We have∫

R×R+

u0(τ)fn(σ)P3u0(τ)v1(σ) dτdσ

=

∫
R×R+

u0(τ)fn(σ)

[
− κ(3)(0)

3!
σ3u0(τ)

(
κ(3)(0)

3!
Rn(σ

3fn(σ)) + 2ibβ0Rn(∂σfn(σ))

)
− 2ibβ0u0(τ)∂σ

(
κ(3)(0)

3!
Rn(σ

3fn(σ)) + 2ibβ0Rn(∂σfn(σ))

)]
dτdσ

=

∫
R
fn(σ)

[
− κ(3)(0)

3!
σ3
(
κ(3)(0)

3!
Rn(σ

3fn(σ)) + 2ibβ0Rn(∂σfn(σ))

)
− 2ibβ0∂σ

(
κ(3)(0)

3!
Rn(σ

3fn(σ)) + 2ibβ0Rn(∂σfn(σ))

)]
dσ

= −
(
κ(3)(0)

3!

)2∫
R
σ3fn(σ)Rn(σ

3fn(σ)) dσ − 2ibβ0
κ(3)(0)

3!
⟨σ3fn, Rn(∂σfn)⟩

− 2ibβ0
κ(3)(0)

3!
⟨fn, ∂σRn(σ

3fn(σ))⟩+ 4b2β20⟨fn, ∂σRn(∂σfn)⟩ .

Using the exponential decay of fn at infinity, and since Rn is self-adjoint operator, then

⟨fn, ∂σRn(σ
3fn(σ))⟩ = −⟨σ3fn, Rn(∂σfn)⟩ ,

and
⟨fn, ∂σRn(∂σfn)⟩ = ⟨∂σfn, Rn(∂σfn)⟩ := I2,n .

Then, we obtain∫
R×R+

u0(τ)fn(σ)P3u0(τ)v1(σ) dτdσ = −
(
κ(3)(0)

3!

)2∫
R
σ3fn(σ)Rn(σ

3fn(σ)) dσ − 4b2β20I2,n .

Consequently, (6.61) gives

ζ1,n = −κ
(4)(0)

4!

∫
R
σ4|fn(σ)|2 dσ − κ2(0)

2
−
(
κ(3)(0)

3!

)2∫
R
σ3fn(σ)Rn(σ

3fn(σ)) dσ

+ b2β20(1− 4I2,n) .

The terms which are independent of b in the asymptotic estimate of ζ1,n are the same which can be
found in the article [5, Thm. 1.1] and denoted by β0,n .

Finally, we have

(6.65) ζ1,n = β0,n + b2β20(1− 4I2,n) .

Consequently,

h2(σ) := −
∫ ∞

0
u0(τ)

[
(P3 − ζ0,n)u0(τ)v1(σ)+(P4 − ζ1,n)u0(τ)fn(σ)

]
dτ ⊥ fn(σ) in L2(R).
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We take:

v2(σ) =

(
Hharm −

√
−κ′′(0)

2
(2n− 1)

)−1

(h2(σ)) .

As a consequence of the choices of ζ1,n and v2(σ), we get that, for all σ,

w2(σ, ·) := −u0(·)

(
Hharm −

√
−κ′′(0)

2
(2n− 1)

)
v2(σ)− (P3 − ζ0,n)u0(τ)v1(σ)

− (P4 − ζ1,n)u0(τ)fn(σ)

h is in the orthogonalof {u0(τ)} in L2 (R+) .

Finally, we select g1(σ, τ) as follows

g1 (σ, ·) = (P0 + 1)−1 (w2 (σ, ·)) .

APPENDIX A. AUXILIARY OPERATORS

The aim of this section is to recall some spectral properties related to the Robin Laplacian in
dimension one. This models naturally arise in our strategy of dimensional reduction and already
appeares in [12], [5], [11], [9], [16] and [13].

A.1. 1D Laplacian on the half line. We recall here some spectral properties of Robin’s Laplacian
on R+. Let the operator

H0,0 := − d2

dτ2
dans L2(R+) ,

with domain Dom(H0,0) = {u ∈ H2(R+) : u
′
(0) = − u(0) } .

This operator is self-adjoint but is not a compact resolvent, then the spectrum of this operator is
σ(H0) = spdis(H0,0) ∪ spess(H0,0) = {−1} ∪ [0,+∞[ . The subspace associated with the unique
eigenvalue −1 is generated by the normalized eigenfunction in L2

(1.66) u0(τ) =
√
2 exp(− τ) .

A.2. A weighted 1D Laplacian. Let B ∈ R, T > 0 such that |B|T < 1
3 . In weighted space

L2( (0, T ), (1−Bτ) dτ ), we introduce the operator

H{T}
B = − d2

dτ2
+

B

1−Bτ

d

dτ
,

with domain

Dom(H{T}
B ) = {u ∈ H2(0, T ) : u

′
(0) = −u(0) and u(T ) = 0 } .

This weight will come to measure the effect of the curvature. The operator H{T}
B is the self-adjoint

operator in L2( (0, T ), (1−Bτ) dτ ) associated with the following quadratic form:

q
{T}
B (u) =

∫ T

0
|u′

(τ)|2(1−Bτ) dτ − |u(0)|2 .

with domain
Dom(H{T}

B ) = {u ∈ H1(0, T ) : u(T ) = 0 } .

The operator H{T}
B is a compact resolvent. Hence the spectrum σ(H{T}

B ) ⊆ R , purely discrete and

it is formed by a strictly increasing sequence of eigenvalues
(
λn

(
H{T}

B

))
n∈N∗

.

The following proposition gives an asymptotic two-term expansion of the eigenvalue λ1(H{T}
B ) .
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Proposition A.1. (Asymptotic of λ1(H{T}
B ) ) there exist constant C > 0 and T0 > 0, such that for

all T ≥ T0, B ∈ (−1/(3T ), 1/(3T )) , we have:

|λ1(H{T}
B )− (−1−B) | ≤ CB2.

Either the change of function u = (1 − Bτ)−
1
2 ũ , the new Hilbert space becomes L2(0, T ), dτ),

the form domain is always independent of the parameter and the expression of the operator depends
on B :

H̃{T}
B = − d2

dτ2
− B2

4(1−Bτ)2
,

with the new Robin condition at 0 donate by ũ
′
(0) =

(
− 1− B

2

)
ũ(0) et ũ(T ) = 0 .

Note that the associated quadratic form is defined on

q̃
{T}
B (ψ) =

∫ T

0
|∂τψ|2dτ −

∫ T

0

B2

4(1−Bτ)2
|ψ|2dτ −

(
1 +

B

2

)
|ψ(0)|2 .

For further use, we would like to estimate ∥τ ũ{T}
B ∥L2(0, T ),dτ) and ∥∂Bũ{T}

B ∥L2(0, T ),dτ) uniformly
with regard to B and T .

Proposition A.2. There exist constants C > 0 , α > 0 and T0 > 0 such that, for all T ≥ T0,
B ∈ (−1/(3T ), 1/(3T )) , we have:

∥eατ ũ{T}
B ∥L2(0, T ), dτ) ≤ C ,

with ũ{T}
B is the normalized eigenfunction associated with λ1(H{T}

B ) .

Proof. Let ϕ a regular function. By the formula of integration by parts, we get:〈
H{T}

B ũ
{T}
B , e2ϕũ

{T}
B

〉
=

∫ T

0

∣∣∣∂τ(e2ϕũ{T}
B

)∣∣∣2 dτ − ∫ T

0

B2

4(1−Bτ)2
e2ϕ|ũ{T}

B |2 dτ

−
(
1 +

B

2

)
e2ϕ(0)|ũ{T}

B (0)|2 − ∥ϕ′
eϕ ũ

{T}
B ∥2

= λ1(H{T}
B ) ∥eϕ ũ{T}

B ∥2 .
We have

|ũ{T}
B (0)|2 = −2

∫ T

0
∂τ ũ

{T}
B (τ)ũ

{T}
B (τ) dτ ,

according to a trace theory, there are constants C > 0 such that, for all ϵ > 0, we have:

(1.67) |ũ{T}
B (0)|2 ≤ Cϵ ∥∂τ ũ{T}

B ∥2L2(0, T ) + Cϵ−1∥ũ{T}
B ∥2L2(0, T )

We replace (1.67) in the form of q̃{T}
B and we use Proposition A.2, there exist constants C > 0 such

that:(
1− Cϵ− CϵB

2

)
∥∂τ ũ{T}

B ∥2L2(0, T ) ≤
(
λ1(H{T}

B ) + Cϵ−1
(
1 +

B

2

)
+ C

)
∥ũ{T}

B ∥2L2(0, T )

for ϵ =
1

3C
and B → 0 , we obtain:

∥ũ{T}
B ∥H1(0, T ) ≤ C ,

then,
|ũ{T}

B (0)|2 ≤ C .

Which implies the simple estimate

−
∫ T

0

B2

4(1−Bτ)2
e2ϕ|ũ{T}

B |2 dτ −
(
1+

B

2

)
C −

∫ T

0
|ϕ′ |2e2ϕ|ũ{T}

B |2 dτ ≤ λ1(H{T}
B ) ∥eϕ ũ{T}

B ∥2 ,
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and thus, ∫ T

0

[
− B2

4(1−Bτ)2
− λ1(H{T}

B )− |ϕ′ |2
]
e2ϕ |ũ{T}

B |2 dτ ≤ C .

For T → +∞ , we have −1 ≤ B ≤ 1, whence

• B2

4(1−Bτ)2
≤ 9

16
B2 ,

• λ1(H{T}
B ) ≤ −1−B .

We ask that ϕ = α τ with α a real positive constant. For α <
√
5

4
, we obtain:

− 9

16
B2 + 1 +B − α2 ≥ 1

16
,

then, ∫ T

0
e2α τ |ũ{T}

B |2 dτ ≤ C .

□

Lemma A.1. There exist constants C > 0 and T0 > 0, such that, for all T ≥ T0 and B ∈
(−1/(3T ), 1/(3T )) , we have: ∣∣∣λ1(H{T}

B )
∣∣∣ ≤ C ,

∥∂Bũ{T}
B ∥L2(0, T ), dτ) ≤ C .
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