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ABSTRACT 
 

This paper concerns the continuous-time stable alpha symmetric processes which are inivitable in the 

modeling of certain signals with indefinitely increasing variance. Particularly the case where the spectral 

measurement is mixed: sum of a continuous measurement and a discrete measurement. Our goal is to 

estimate the spectral density of the continuous part by observing the signal in a discrete way. For that, we 

propose a method which consists in sampling the signal at periodic instants. We use Jackson's polynomial 

kernel to build a periodogram which we then smooth by two spectral windows taking into account the 

width of the interval where the spectral density is non-zero. Thus, we bypass the phenomenon of aliasing 

often encountered in the case of estimation from discrete observations of a continuous time process. 
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1. INTRODUCTION 
 

The multiple applications where the random signals whose variance increases indefinitely impose 

the interest of using stable alpha processes by several research authors in various fields. In 

particular, Stable symmetric harmonizable processes and their properties have been widely 

studied by many authors such as [1] - [10] to name a few. 

 

Concrete applications of stable symmetric processes cover a wide spectrum of fields such as: 

physics, biology, electronics and electricity, hydrology, economics, communications and radar 

applications., ...ect. See: [11]-[22]. In this paper we consider a symmetric alpha stable 

harmonizable process = { ( ) : }X X t t R . Alternatively X  has the integral representation:  

 

                                          ( ) = exp ( ) ( )X t i t d                                                       (1) 

 

where 1< < 2  and   is a complex valued symmetric  -stable random measure on R  with 

independent and isotropic increments. The  control measure is defined by ( ) =| ( ) |m A A 

  (see 

[4]) is called spectral measure. The estimation of the spectral density function was already 

studied in different cases: by E.Masry and S.Combanis [4] when the time of the process is 

continuous, by Sabre [23] when the time of the process is discrete and by R.Sabre [24]-[25]when 

the time of the process is p-adic. 

 

In this paper we consider a general case where the spectral measure is the sum of an absolutely 

continuous measure with respect to Lebesgue measure and a discrete measure:  

http://www.airccse.org/journal/sipij/vol12.html
https://doi.org/10.5121/sipij.2021.12502
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=1

( ) = ( )
q

i w
i

i

d x dx c   +  

 

where   is a Dirac measure, the specral density    is nonnegative integrable and bounded 

function. ic  is an unknown positive real number and iw  is an unknown real number. Assume 

that 0iw  . The discrete measurement comes from the repeated random energy jumps during the 

experimental measurements. Spectral density represents the distribution of the energy carried by 

the signal. 

 

Our objective is to propose a nonparametric estimator of the spectral density after discrete 

sampling of the process ( )X t . This work is motivated by the fact that in practice it is impossible 

to observe the process over a continuous time interval. However, we sampled the process at 

equidistant times, i.e., =nt n , > 0 . It is known that aliasing of   occurs. For more details 

about aliasing phenomenon, see [26]. To avoid this difficulty, we suppose that the spectral 

density   is vanishing for | |>   where   is a nonnegative real number. We create an 

estimate of the spectral density based on smoothing methods. We show that it is asymptotically 

unbiased and consistent. 

 

Briefly, the organization of this paper will be as follows: in the second section two technical 

lemmas will be presented as well as a preiodogram and we will show that this periodogram is an 

asymptotically unbiased but inconsistent estimator. In the third section, the periodogram will be 

smoothed by two well chosen spectral windows to estimate the spectral density at the jump 

points. We show that the smoothing periodogram is a consistent estimator. The fourth section 

gives conclusions and working perspectives. 

 

2. THE PERIODOGRAM AND ITS PROPRIETIES 
 

In this section we give some basic notations and properties of the Jackson's polynomial kernel. 

Let N  is the size of sample of X . Let k  and n  are the numbers satisfying: 

1
1 = 2 ( 1)

2
N k n with n N k N

 
− −    

 
 if 

1
=

2
k  then 1 1= 2 1,  n n n N−  . 

 

The Jackson's polynomial kernel is defined by: 
( )( ) = ( )N

N NH A H


   where  

 

 

2 2

( )

,

,

sin sin
1 12 2( ) = = .

2
sin sin

2 2

k k

N

k n

k n

n n

H with q d
q





 

 
  −

   
   
   
   
   

  

 

where  

1

,= ( )N NA B 


−

 with 
( )

, = ( ) .N

NB H d
 




 
−   

 

We cite two lemmas which are used in this paper. Their proof are given in [23]. 

 

Lemma 2.1  There is a non negative function kh  such as:  
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( 1)
( )

= ( 1)

( ) = cos( )
k n

N

k

m k n

m
H h m

n
 

−

− −

 
 
 

  

  

Lemma 2.2  Let

2

, ,

sin
2= = | | | ( ) | ,

sin
2

k

N N N

n

B d and J u H u du



 
 

 
 




− −

    where 

]0,2],   then 

 

2

2 1

,

2 1

2
2         0 < < 2

4 1
              < < 2

2 1 2

k

k

N

k

n if

B
k

n if
k k









 


 




−

−

  
     



 −

 

and 

 

2

2 2 1

, 2

2

1 1 1
          < <

2 ( 2 1) 2 2

2 1 1
     < < 2

2 ( 1)(2 1) 2

k

k k

N k

k

if
k n k k

J
k

if
k n k

 

 

  

 

 


 

 


  

+

−

+

 +


− +
 

+
 + − −

 

 

 

This paragraph gives a periodogram and develops its proprieties. Consider the process ( ),X t  

defined in (1),  observed at instants =jt j , = 1,2,...j N  and 
2

=





, where   is a real 

number strictly greater than 2 . Define the periodogram ˆ
NI  on ] , [−   as follows: 

 

 ( ),
ˆ ( ) = | | , 0 < <

2

p

N p NI C I p


   

 

Where 

 

 

1 = ( 1)

= ( 1)

( ) = [ ] e[ exp{ ( )} ( ( 1) )],

' 'n k n
' '

N N k
'n k n

n
I A R h i n X n k n

n
    

−

− −

 
− + − 

 
  

 

The normalisation constant ,pC   is given by , /

,

=
[ ]

p

p p

p

D
C

F C
 

 

, with 

| |

,1 1

1 cos( ) 1
= a =

| | | |

au

p pp p

u e
D du nd F du

u u


−
 

+ +− −

− −
   .  

 

Lemma 2.3  
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  The characteristic function of ( )NI  ,  exp ( )NE irI  , converges to 

,1 ,2exp[ | | ( ( ) ( )].N NC r 

    − +  where  

( ),1( ) = | |N N

y
H y dy





   

−

 
−  

 
   and  ,2

=1

( ) = ( )
q

N i N i

i

c H w


  −  

 

Proof  

  

From (1) and the expression of NI , we have:  

    
1 = ( 1)

= ( 1)

( ) = [ ] e exp [ ( )] exp [ ( 1)] ( ).

' 'n k n
'

N N k
R

'n k n

n
I A R h i n u i uk n d u

n
     

−

− −

 
− − 

 
  

 

Using [1] and the definition of the Jackson polynomial kernel we obtain  that the characteristic 

function is the form:  

 

    exp ( ) = exp | | ( ) .a

N a NE irI C r   −                                                 (2) 

  

where ,1 ,2( ) = ( ) ( )N N N     +    with  

  

( ),1( ) = | |aN N
R

v
H v dv   



 
−  

 
   and  ,2

=1

( ) = ( )
q

N i N i

i

c H w


  −  

 ( ),1( ) = | |aN N
R

v
H v dv   



 
−  

 
 ( )

(2 1)

(2 1)
= | | .

j
a

N
j

j Z

v
H v dv




 



+

−


 
−  

 
  

 

Putting = 2v y j−  and using the fact that NH  is 2 -periodic, we get  

( )( ) = | | ( ) ,a

N N jj Z
H y y dy




   

 −
−   where 

2
( ) = .j

y
y j


 

 

 
− 

 
 Let j  be an integer 

such that 
2

< <
y j



−
−  . Since <   and | |<y  , we get 

1
| |< < 1

2 2
j






+  and then 

= 0j . Therefore  

 

                 ( ),1( ) = | | .N N

y
H y dy





   

−

 
−  

 
                                               (3) 

 

Theorem 2.4   Let < <−   then     ( )ˆ ( ) = ,
p

N NE I        
 

 

Proof  

 

From the following equality used in [4], for all real x  and 0 < < 2p ,  

 

        
1 1

1 1

1 cos( ) 1
| | = = e ,  

| | | |

ixu
p

p pp p

xu e
x D du D R du

u u

 
− −

+ +− −

− −
                                   (4) 
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 and replacing x  by NI , we obtain  

 

             
/ 1

,

1 exp{ ( )}1ˆ ( ) = e ,
[ ] | |

N
N p p

p a

iuI
I R du

F C u








+−

−
                                  (5) 

 

The equation (5) and the definition of the , ,pF   give  

 

     

 

 

/ 1

,

/

1 exp | | ( )1ˆ ( ) = .
[ ] | |

= ( ) .

a N

N p pR
p a

p

N

C u
EI du

F C u









 


 

+

− −


   

                   

3. SMOOTHING PERIODOGRAM 
 

In order to obtain a consistent estimate of [ ( )]
p

  , we smooth the periodogram via spectral 

windows depending on whether   is a jump point or not ( )iw  .  

 

 

(1)

1 2

(2) (1)

( )    { , , , }

( ) = ( ) ( )

1

N q

N
N N

f if w w w

f f cf
else

c

 

  

 

 −


−

 

 

where 
(1) (1) ˆ( ) = ( ) ( )N N Nf W u I u du




 

−
−  and 

(2) (2) ˆ( ) = ( ) ( ) .N N Nf W u I u du



 

−
−  

 

The spectral windows 
(1)

NW  and 
(2)

NW  are defined by: 
(1) (1) (1)( ) = ( )N N NW x M W M x  and 

(2) (2)) (2)( ) = ( )N N NW x M W M x  with W  is an even nonnegative, continuous function , vanishing for 

| |> 1  such that 
1

1
( ) =1W u du

− . The bandwidths 
(1) )NM  and 

(2) )NM  satisfying:

(2)

(1)

N

N

M
c

M
=  

( )
lim

i
N NM→ = + , 

( )

= 0lim

i

N
N

M

N
→  for 1,2i = , 

(2)

(1)
= 0lim

N
N

N

M

M
→+  and such that 

(2) (1)

(1) (1)

1 1
( ) = ( ) ,N N

N N

W M W M
M M

  
 

  − 
 

. 

 

Th following theorem shows that ( )Nf   is an asymptotically unbiased estimator of [ ( )]
p

   for 

< <−   and 1 2{ , , , }qw w w . 

 

Theorem 3.1 

 

Let < <−  , such that 1 2{ , , , }qw w w . Then,     ( )( ) ( ) = o 1 .
p

NE f   −  
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If   satisfies the hypothesis ( ) ( ) ( ) ,x y cste x y


 
−

−  − with < 2 1k  − , then,  

  
(2 1) (1)

(1) (2 1) (1) 2 1

1 1
= 0

( ) [ ( )] = .
1 1 1

= 0

kp
N

N

k k

N N

O if
n M

E f

O if
M n M n

 



  



  



−

− −

  
+  

  
− 

 
+ + 

 

 

 

Proof  

 

It is easy to see that:  

 

                                    (1) (1) ˆ( ) = ( ) ( ) .N N N N
R

E f M W M u E I u du    −     

 

Let 
(1) ( ) =NM u v − , we obtain:  

            
1

(1)1
[ ( )] = ( ) .

p

N N

N

v
E f W v dv

M



  
−

  
−  

  
                                  (7) 

Since 
1

1
( ) =1W u du

−  and the inequality (3), we get:  

    
1

(1)1
( ) ( ) ( ) ( ) .

p

p

N N

N

v
E f W v dv

M



      
−

 
−  − − 

 
  

As < 1
p


, we obtain  

 
,1 ,2(1) (1) (1)

( ) ( ) |

p p p

N N N

N N N

v v v

M M M

  

         
     

− −  − − + −     
     

 

 

We now examine the limit of 
,1 (1)N

N

v

M
 

 
− 

 
. From (3) we get:  

 

 
,1 (1) (1)

= .N N

N N

v v u
H u du

M M



    




−

      
− − −             

  

 

Let 
(1)

=
N

v
u y

M
 
 

− − 
 

, we obtain: 
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,1 (1) (1)

(2 1)

(1)(2 1)

= ( )

= ( ) .

N N
R

N N

j

N
j

j Z N

v v y
H y dy

M M

v y
H y dy

M



 



   


 


+

−


   
− − +   

   

 
− + 

 



                         (8) 

 

Let 2 =y j s− . Since | (.) |NH 
 is 2 −periodic function, we get  

 

 
,1 (1) (1)

2
= ( ) .N N

j ZN N

v v s
H s j ds

M M

 




   

 

+

−


   
− − + +   

   
  

 

The function   is uniformly continuous on [ , ]−   and since | |NH 
 is a kernel, the right hand 

side of the last equality converges to 
2

.
j Z

j
 



 
+ 

 
  Let j  be an integer such that 

2
< <

j 



+
−  . The definition of   implies that | |<| |<   . It is easy to see that 

| |< 1j  and then = 0j . Since 
(1)

NH  is a kernel, we obtain that 
,1 (1)N

N

v

M
 

 
− 

 
 converges to 

( )  . On the other hand,  
(1)

,2 (1) (1)
=1

=
q

N N i

iN N

v v
H w

M M



   
    

− − −     
    

  

 

Since iw is different from  and from the lemma 2.2, we get 

1
2 (1)

2 1

,2 (1)
=1

2 1
2 ,   where  cte = inf sin .

2

k iq
Nk

N i

iN

v
w

Mv
n c

M cte







 

  


−

−

  
− −         −                

 



Therefore,  
,2 (1) 2 1

1
=N k

N

v
O

M n 
 

−

   
−   

  
. Thus, we have    ( ) ( ) = (1).

p

NE f o  −   

 

The rate of convergence:  

 

Assume that the spectral density   satisfies the hypothesis H . Let 
/=| ( ( )) |=| [ ( )] [ ( )] |p

N NF Bias f E f    − . It follows that  

 

 

1
1

1

(1) (1)

1

( ) [ ( )] ( ) .
2

p

p

N N

N N

p v v
F W v dv

M M



       


−

−

−

 
     

 − + − −     
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Since 
N

N

v

M
 

 
− 

 
 converges to ( )  , in order to study the rate of the convergence for F  

we examine the rate of convergence of 
1

(1)1
( ) ( )N

N

v
W v dv

M
   

−

 
− − 

 
 . Indeed, from (3), we 

obtain 
(1) (1)

= | | .N N

N N

v v y
H y dy

M M








   


−

     
− − +     

    
  

 

Let ( ) (1)
, = ( )N N

N

v

M
     

 
 − − 

 
. Putting 

(1)
=

N

v
t y

M




 
− − + 
 

 and using the condition 

H , we get ( ) ( )
(1)

1 (1)
(1)

, .

v

M
N
vN N

NM
N

v t
C H t dt

M

  



 

 


− +

− −
  +  

 

We can maximize as follows: 

 

 ( )

1 1

1 (1)1 1

1
(1)1

1

1
1 (1)

1
( ) ( , ) 2 ( ) | |

2 ( )

N

N

v

M
N
v N

M
N

W v dv C W v v dv
M

C
W v H t t dtdv



 


 

 
   

 



− −

− +

− − −

 

+

 

   

The second integral of the right hand side is bounded as follows:  

 

 

( ) ( )

( )

( )

(1)

| | | |
(1)(1)

| | | |
(1)

.

v

M
N

vv N N

MM NN

N

v

M
N

N

H t t dt H t t dt

H t t dt

H t t dt


 

  


  

  




 

 



− +
−

− − −− −

−

+ +



+
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                              (9) 

 

Since | (.) |NH  is even, the first and the last integrals in the right hand side of (9) are equal. As 

N

v

M


 converges to zero and < <   , for a large N  we have:   
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The lemma 2.1 gives: 
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Thus, we obtain  the result of the theorem. 

 

Theorem 3.2. Let   a real nuber belonging to ] , [−  , and = iw . Choose k  such that 
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2
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2 1
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Proof : 

 

The form of estimator gives:  
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(2)
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(2) ( ) =NM u v −  in the first integral and put 
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1 1
[ ( )] [ ( )]

2 2

p p

E E     − + −  

From (10) and (12), for a large N,  we have 

   

 
1

(2)1 ,1(2) (2) (2)2

(1)
(1)

1 1
[ ( )] ( ) ( )

2
1

p

p

N N
M

NN N N

M
N

N

v v
E W v dv

M M M

M



       
   

−  − + − −   
   −

  

  As 1
p


 , we obtain   

        
1

(2)1 ,1(2) (2)

(1)
(1)

1 1
[ ( )] ( ) ( )

2
1

p

p

N
M

NN N

M
N

N

v
E W v dv

M M

M



     
 

−  − − 
 −

  

                                                 +
1

(2) ,2(2) (2)

(1)
(1)

1
( ) .

1

p

N
M

NN N

M
N

N

v
W v dv

M M

M



 
 

− 
 −

  

 

On the other hand, 

 
1 1

(2) ,1 ,1(2) (2)0

(1)

( ) ( ) ( ) ( )

p p

N N
M

N N N

M
N

v v
W v dv W v dv

M M

 

       
   

 −   −   
   

   

For all   belonging to ] , [ −  ,1 (2)N

N

v

M
 

 
 

 
 converges to ( )  , uniformly in 

[ 1,1].v −  Therefore, 
1

(2) ,1(2) (2)

(1)
(1)

1
( ) ( )

1

p

N
M

NN N

M
N

N

v
W v dv

M M

M



   
 

 − 
 −

  converge to zero. 
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Since = ,iw  ,2 2(2)
=1 ,

=
(2)

1

1
sin

2

m
N i k

mN N

m i
i m

N

q
av

M B v
w w

M





 



 
  

    
 −  

  

  

 

 
2

,

(2)

1
.

1
sin

2

i

k

N

N

a

B v

M



 

+
   

  
  

 

 

  For all =m i ,

( )
2 2

[ 1,1]

(2)

1 1
= .suplim

11 sinsin
22

k k
N v

i mi m

N

v w ww w
M

 


→+  −     

− −        

 

Thus, for large N, we get 

   

 

( )
2 2

=1 =1, ,

= =
(2) {1,2, , } { }

1 1
.

11 sininfsin
22

m m

k k
m mN N

m i m ii mi m m q i
N

q q
a a

B Bv w ww w
M

 

 




 −

 
 
  +
        − −           

   

The lemma 2.1 gives  
2 2 1

=1 ,

=
(2)

1 1
= .

1
sin

2

m

k k
m N

m i
i m

N

q
a

O
B nv

w w
M

 

 
−

 
 

    
 −  

  

                  (13) 

For large N, we have 
]0,1] (2) (2)

= <sup
v

N N

v

M M

 



. Consequently  

 

2

2 2

, ,

(2)(2)

1
.

1
sin

2

k

i i

k k

N N

NN

a a

B B vv

MM



 

 






   

  
  

 

 

As 
(1) (2) (2)

N N N

v

M M M

  
  , we obtain 

2

,

(2)

1

1
sin

2

i

k

N

N

a

B v

M



 
   

  
  

2

2

,

(1)

.
k

i

k

N

N

a

B

M













 

 

Frome the lemma 2.2 , we obtain 
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( )

2
(1)

2 2 1

,

(2)

1
= .

1
sin

2

k

Ni

k k

N

N

Ma
O

B nv

M



 

 
−

 
 
      + −  

  

                                              (14) 

 

Therefore, we get  

 

 
( )

2
(1)

1

(2) ,2(2) (2) 2 1
(2 1)

(1)
(1)

2 1
( ) =

1

p
pp k

N

N p kM kNN N

M
N

N

Mv
W v dv O

M M n
n

M

 








 

−
−

 
      +  
    −  

  

           (15) 

 

Choosing
(1)

NM  such that 
( )

2
(1)

2 1

k

N

k

M

n



−
 converges to 0 . For example 

(1) = b

NM n  with 

1
0 < < 1

2
b

k
− . Thus, [ ( )] [ ( )] = 0.lim

p

N
N

E f   
→+

−  

 

 

 Theorem 4.2   Let < <−   such that ( ) > 0  . Then,  ( ))Nvar f   converges to zero. 

If 
(1) = c

NM n  with 
2 2

1 1
< <

2 2
c

k 
, then   (1 2 )

1
( )) = O .N c

var f
n


−

 
 
 

    

 

Proof   

 

Fisrt suppose that 1 2{ , , , }qw w w . It is clear that the variance of Nf  can be written as 

follows:  

 

 
(1) (1)

12
ˆ ˆ[ ( )] = ( ) ( )c ( ), ( ) .' ' '

N N N N N
R

var f W u W u ov I u I u dudu    − −
   

 

Since W  is zero for | |> 1 , for large N , we have  

 

 
1

1 1
1 1 1 1

1

ˆ ˆ[ ( )] = , ( ) ( ) .
'

' '

N N N

N N

x x
var f cov I I W x W x dx dx

M M
  

−

    
− −    

    
  

 

Define two subsets of the 
2[ 1,1]−  by:   

 

    •  2

1 1 1 1 1= ( , ) [ 1,1] ; | |> ,' '

NL x x x x  − −  

 

    •  2

2 1 1 1 1= ( , ) [ 1,1] ; | | ,' '

NL x x x x  − −    
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where N  is a nonnegative real, converging to 0 . We split the integral into an integral over the 

subregion 2L  and an integral over 1L : 1 2
2 1

var[ ( )] = = .N
L L

f J J


+ +   

 

Cauchy-Schwartz inequality and theorem 3.1, give  

 

 
1 1 1 1 1

| |
1 1

( ) ( ) .' '

'x x
N

J C W x W x dx dx
− 

   where C  is constant. Thus, we obtain  

 

                                    1 = ( )NJ O                                                                    (16) 

 

It remains to show that 2J  converges to zero. For simplicity, we define 

 

 1 1
1 2(1) (1)

= ; = ,
'

N N

x x

M M
   − −  and 1 1

(1) (1)
ˆ ˆ( ) = c , .

'

N N

N N

x x
C ov I I

M M
  

    
− −    

    
 

 

We first show that ( )C   converges to zero uniformly in 1 1, [ 1,1]'x x  − . Indeed, from lemma 

2.3, we have  

 

 
( )( ) | | ( )

1 /

, 1

e
ˆ ˆ( ) ( ) = [ ] .

| |

iuI v C u v
N N

p

N N p p

R e e
EI v I v F C du

u





 

−


− −

+−

−
−   

 

Thus, the expression of the covariance becomes  

 

 

( )

 

2 2
2

, 2

=1

2 1 2

1=1
1 2

( ) = cos ( )

exp | | ( )
| |

p

p k N k
R

k

k N k pk

C F C E u I

du du
C u

u u


 





 

 

−
−

+

 
 
 

− −





 

 

Using the following equality: 2cos cos = cos( ) cos( )x y x y x y+ + − , we have  

 

 

( )
1

2 2

=1=1

1
2 1

=1

1
cos ( ) = exp ( ) ( ) ( )

2

1
                                       exp ( ) ( 1) ( ) ( ) .

2

k N k k N kkk

k

k N kk

E u I C u H v d v

C u H v d v











    

   +

 
   − −
    

 
 + − − −
  

 



 

 

By substituting the expression for ( )C   and changing the variable 2u  to 2( )u−  in the second 

term, we obtain  

 

( )
2

2 1 2
, 2 1

1 2

( ) = ,
| |

p
'K K

p pR

du du
C F C e e

u u


 
−

− − −

+
−                    (17) 
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where 

1
2

=1
= ( ) ( ) ( )k N kkR

K C u H v d v




    − and  

2

=1
= | | ( ) ( )'

k N kk R
K C u H v v dv



   −   

 

Since , > 0'K K , exp{ }
'K K ' ' 'e e K K K K K− −−  − − − , we obtain: 

2
1 22 | | ( ; ),'

NK K C u Q


  −   where 

2 2
1 2 1 2( ; ) = | ( ) | | ( ) | ( )N N NQ H u H u d u

 

      


−
− −  

 

Now, let us show that 1 2( ; )NQ    converges to zero. Indeed, since   is bounded on [ , ]−  , 

we have  

 

              

2
1 2 1 2

2
1 2

=1

( ; ) sup( ) | ( ) ( ) |

                ( ) ( )

N N N

q

i N i N i

i

Q H u H u du

c H w H w





      

   



−
 − −

+ − −




                    (18) 

 

From the definition of NH  , we can write  

 

( ) ( )
( )

( )

( )

( )

1 2

2
1 2

,
1 2

sin sin
1 2 2

| | = .
1 1

sin sin
2 2

k k

N N '

N

n n
v v

H v H v dv dv
B

v v

 





   

   

   

 

− −

   
− −   

   − −
   

− −   
   

   

  

a) First step: 

 

We show that the denominators of the first and second terms under the last integral do not vanish 

for the same v , so we suppose that v exists, belonging to [ , ]−   and , 'z z Z  such as:  

1 2= 2 = 2 'v z and v z     − − . Since 1 2=  , then z  and z  are different.  

 

Therefore, ( )1 2=
2

'z z


 


− − . Hence, 1 2

1
| |= .'z z

w
 − −  As 

1 2 = 0limN  → − ,  

consequently, for a large N we get: 
1

<
2

'z z− . 

 

Thus, we obtain a contradiction with the fact that z  and 
'z  are different integers. 

 

b) Second step: 

 

Asuume there exist q  points, 1 2, , , [ , ]qV V V  −   such as: 
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for 1= 1,2, , 2jj q V Z  −   then 1 jV
Z

w w


−  , and we assume that there exist 

'q  points 

1 2, , , [ , ]' ' '

'q
V V V  −   such that for =1,2, , 'i q   2

'

iV
Z

w w


−  . Showing that, | |=jV  , 

| |=iV    for 1 j q   and 1 'i q  . Indeed, 1 < < 0
w

 −
−  and 0 < < 1

w

 +
 because 

> 2w  . Hence Z
w

 −
  and Z

w

 +
 . For a large N , we get that 

1< <1 ,
E Ew w w w

 −  −   
− +   

   
 where  

E
x  is the integer part of x . Hence, 

1 Z
w w

 
−  . In the same manner, we show that  1 Z

w w

 
+  . Similarly, it can be shown that 

2 Z
w

 +
 . Thus, | |=jV   and | |=iV   .  

 

c) Third step: 

 

 We classify jV  and 
'

iV  by increasing order: 
1 2

< < < < <j j j
'q q

V V V
+

−  , and we write 

the integral in the following manner:  

 

 

( )

( )

( )

( )

1 2 1

1 2, 3, 4

=1 =1
1 2 1

sin sin
2 2

=
1 1

sin sin
2 2

k k

' 'q q q q

i i

i i

n n
v v

dv I I I I

v v

 

   

   

+ + −


−

   
− −   

    + + +
   

− −   
   

   

 

where  
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( )

( )

( )

( )

( )

( )

( )

( )

1 2
( )

1
1

1

1 2

1 2
( )

2,
( )

1 2

3,
( )

sin sin
2 2

=
1 1

sin sin
2 2

sin sin
2 2

=
1 1

sin sin
2 2

=

k k

V N
j

k k

V N
j
i

i
V N

j
i

V
j

i
V N

j
i

n n
v v

I dv

v v

n n
v v

I dv

v v

I

 



 







   

   

   

   

−

−

+

−

+

   
− −   

   

   
− −   

   

   
− −   

   

   
− −   

   





( )

( )

( )

( )

( )

( )

( )

( )

1 2
( )

1

1 2

1 2

4
( )

1 1 2

sin sin
2 2

1 1
sin sin

2 2

sin sin
2 2

=
1 1

sin sin
2 2

k k

N
i

k k

V N
j

'q q

n n
v v

dv

v v

n n
v v

I dv

v v

 



 



   

   

   

    

−
+



+

+

   
− −   

   

   
− −   

   

   
− −   

   

   
− −   

   





 

 

where ( )N  is a nonnegative real number converging to zero and satisfying:  

 

 

1 1 2 2
< ( ) < ( ) < ( ) < ( ) < < ( ) < ( ) < ,j j j j j j

' 'q q q q

V N V N V N V N V N V N     
+ +

− − + − + − +  a

nd 1 2( ) < .
2

N
 


−

  

 

Showing  that the first integral converges to zero. For a large N , it easy to see that 1 <  . 

Without loss of generality, we assume that 1 = 2j i
i

V k  −  for all i , with ik Z . The fact that 

there is no v  between −  and 
1

( )jV N−  on which the denominators are vanishing, gives 

 

 

1
1

1 2
1 2

( ) 1
.

( ) ( ( ))( ) ( )inf sin , sin inf sin , sin
2 2 2 2

j

k kk
k

j

V N
I

V NN
  



      

− +


   + − + +
   
    

 

 

 

Substituting  
1
jV  in the last inequality, we get  

 

 
2

1 2 1
( ( )) | ( ) |

sin = sin
2 2

k
k

jV N N
       − + − +

. For a large N  ,we obtain 
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 2 1| ( ) | ( ) ( )
<

2 2 2

N N N     
 

− +
 + − .  

 

On the other hand, two cases are possible:   

 

    1.  2 1 > 0 − , then we have 2 1 2 1| ( ) |= ( ) > ( )N N N      − + − +   

    2.  2 1 < 0 − , since 2 1| |> 2 ( )N  − , we have 

2 1 1 2| ( ) |= ( ) > ( )N N N      − + − − .  

  

Therefore, 2 1| ( ) |( ) ( )
< <

2 2 2

NN N    


− +
− . For a large N , we have 

1( ) < 2 ( )N   − +  and 2( ) < 2 ( )N   − + . Then, 

 

 1( )( ) ( )
< <

2 2 2

N N  


+
−  and 2( )( ) ( )

< < .
2 2 2

N N  


+
−  

Therefore,  

 1
1 2

( )
.

( )
sin

2

j

k

V N
I

N






− +
  

 

For the integral 2,iI  , we bound the first fraction under integral by 
kn 

:  

 

 

( )

( )

2,
( )

2

1

1
sin

2

V N
jk i

i kV N
j
i

I n dv

v






 

+

−


 
− 

 

 . By substituting for j
i

V  in the last 

inequality and putting 
2

=
k

v u



− , we get 

 

( )

( )
1

2,
( )

1

2

1

1
sin

2

N
k

i kN
I n du

u

 


 

 

+

−


 
− 

 

 .  Since 1| |< ( )u N − , it is easy to see that 

: 

 2 1
2 2 1 1 2 1

| |
| | | | | | | | ( ) >

2
u u N

 
      

−
−  − − −  − −  

 

Since ( )N  converges to zero, for a large N  we have 2 1

2
( ) < | |

2
N


   



 
− − 

 
, therefore 

2 1 2 2 1| | | | | | ( )
0 < < < < .

4 2 2

u N     
   

− − − +
 Consequently:  
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 2,

1 2 1 2

2 ( )
,

| | | | ( )
inf sin ; sin

4 2

k

i

N n
I

N



       


− − + 
 
 

 

 

where 2 1
2 1| |=

N

x x

M
 

−
− . Then, for a large N , we have 2 1

3
< 2 .

2


  −  Therefore, 

2 1 2 1 2 1| | | | ( ) | |
< < .

4 2 4

N       
  

− − + −
−  Thus, we bound the integral as follows:  

 

 
2,

2 1

2 ( )

| |)
sin

4

k

i k

N n
I







  


−
 

 

 

Since there is no v  between ( )j
i

V N+  and 
1

( )j
i

V N
+
−  on which the denominators are 

vanishing, we get:  

 

 1
3,

2 ( )
,

j j
i i

i

V V N
I

A B


+
− −




 

 

where  

 

 

1 1
1

2 2
1

( ) ( )
= inf sin , sin

2 2

( ) ( )
= inf sin , sin

2 2

k k

j j
i i

k k

j j
i i

V N V N
A

V N V N
B

 

 

     

     

+

+

 − − − +
 
 
 

 − − − +
 
 
 

 

 

It follows from the hypothesis on ( )N  that 

 

 

1 2 1 2 1 2| | | ( ) | | |( ) | ( ) | | ( ) | ( )
< < < < .

2 2 2 2 2 2 2

NN N N N              


− − − −
− + −  

  

The definition of j
i

V gives  
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2

1 1
< .

( ) ( )
sinsin

22

k k

j
i

V N N
 

   − −
 Similarly we bound the other terms: 

1
3, 2

2 ( )
.

( )
sin

2

j j
i i

i k

V V N
I

N






+
− −

  

 

We can show by same majoration that :  

 

1
4

2 ( )
,

j j
i i

V V N
I

E F


+
− −




where  

 

1
1

2
2

( )
= inf sin , sin

2 2

( )
= inf sin , sin

2 2

k
k

j
q q

k
k

j
q q

V N
E

V N
F







   

   

+

+

 − −−  
 
 

 − −−  
 
 

 

Since ( )N  converges to zero, for a large N , we have 1

2
( ) < | |

2
N


  



 
− − 

 
, and 

1 2

2
( ) < | |

2
N


   



 
− − 

 
. It follows that: 

4 2

( )
.

( )
sin

2

j
q q

k

V N
I

N






+
− −

  We recapitulate, from the 

previous increases, we obtain  

 

( )

( )

( )

( )

1 2

1

2
=1 2 1

1 2

sin sin ( ) 2 ( )2 2

1 1 ( ) | |sin sin sin sin
2 2 2 4

                                                                    

k k

kq q
j

k k
i

n n
v v V N n N

dv
Nv v

 



 

     

      

+


−

   
− −    + −     +

    −− −   
   



1

1

2 2
=1

( )( )
     

( ) ( )
sin sin

2 2

q q
jj j q qi i

k k
i

V NV V N

N N
 



 

+ −
++

− −− −
+ +

 

 

After simplification, we have 
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( )

( )

( )

( )

1 2

2

2 1
1 2

sin sin
2 2( 1) ( ) 2 ( )( )2 2

.
1 1 ( ) | |sin sin sin sin
2 2 2 4

k k

k

k k

n n
v v

q q N n N q q
dv

Nv v

 



 

   
 

      



−

   
− −     − + + +     +

    −− −   
   

  

  

Using the following inequality 
| |

sin
2

x x


 , we get  

 

 

( )

( )

( )

( ) ( )

21 2

2

2 1
1 2

sin sin
2 2 ( )( )(2 )2 2

.
1 1 ( ) | |sin sin
2 2

k k

k k k

k k

N

n n
v v

n N q q
dv

N x xv v
M

 

  

 

   
  

    



−

   
− −     +     +

     −− −        
 

  

 

The lemma 2.1 gives 

 

( )

( )

( )

( )

( )

1 2

,
1 2

2 2

22 1

1

sin sin
1 2 2

1 1
sin sin

2 2

1 2 2 ( )( )(2 )
                                  

2 ( )

k k

N

k k k

k kk

k N

N

n n
v v

dv
B

v v

N q q

n N
n

M

 



  

 



   

   

   

  



−

−

−

   
− −   

    
    

− −   
   

 
 

 +  
+   

   
 
  



.




      (19) 

 

In order to obtain the convergence of the last expression to zero, we choose 

( ) = , > 0N n  −
, such as  

 

       

2

2 1

1

1
= 0 = 0.lim lim

k

kk
n n

k N

N

n
and

n
n

M





  
−

→ →
+ −  

 
 

                    (20) 

 

Thus, from (18) NQ  converges to zero. On the other hand, 

 

 

2

2 | | 1 2
, 1

1 2

( ) | | ,
| |

p

K K K

p p

du du
C F C K K e

u u


 
−  

 − − −

+− −
 −   

 where ( )
2

1 2=1
| | | | ( ; )k N k Nk
K K K C u Q

      
 − −  − − . 

We denote by: ( )( , ) 1 2= ( ; )N k N k NQ       − . It follows from (18) and (20) that ( , )N k   

converges to ( )  . Hence,  
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2 2
2

, 1 2 ( , )
0 1

=1 2

( ) 2 ( ; )4 exp ( ) | | .

( )

p

k
p a N k N k

p
k

k

du
C F C C Q C u

u


   

    
− 

− 
 

+ −



  −   

Putting ( )
1

, = ,k N ku v   we obtain 

 

 

2

| |2

2 1 2
, 1

1
2 2

( ,1) ( ,2)

( ; )
( ) 2 .

| |

C vp

N
p p

p

N N

Q e
C F C C dv

v





   



 
 

 

−
− 

−

−− + −
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Since ( ) > 0  , ( )C   converges uniformly in 1 1, [ 1,1]x x −  to zero. From (20), we obtain 
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 Thus, [ ( )]Nvar f   converges to zero and then, ( )Nf   

is an asymptotically unbiased and consistent estimator.   

 

4. CONCLUSIONS 
 

This paper gives an estimate of the spectral density of a mixed continuous-time stable process 

from observations at discrete instants. To avoid the phenomenon of aliasing we have assumed 

that the spectral density is a compact support. The applications of these processes are found in 

various fields. For example: 

 

- The study of soil cracking where the observed signal is the resistance of the soil. This signal 

encounters random jumps due to the encounter of certain stones in the ground. The spectral 

measurement will therefore be composed of two parts, one continuous and the other discrete. 

This last corresponds to the resistance jumps encountered during the measurement. 

 

- The growth of fruits on a tree can be seen as a continuous distribution, and when there is a fall 

of a fruit, the other fruits remaining on the tree absorb more energy and their growth will have a 

jump in value. 

 

As perspective of this work is to find the optimum smoothing parameters to have a better rate of 

convergence. For this purpose, the cross-validation method will be the most appropriate tool. 

 

We intend to complete this work by studying the case where the process is observed with random 

errors. For this, we will use the deconvolution methods known for their efficiency in the presence 

of random errors. 

 

We think to give an estimator of the mode of the spectral density representing the frequency 

where the spectral density reaches the maximum of energy. 
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