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Output Error Recursive Algorithms for Identification of Dual
Youla-Kucera Models in Closed Loop Operation

Ioan Dore Landau and Bernard Vau

Abstract— Dual Youla-Kucera plant model parametrization
is very useful for describing model uncertainties. Therefore it
is interesting to develop recursive identification algorithms for
identification of these type of plant model structures in closed
loop operation for potential use in iterative tuning or adaptive
control. Following the approach introduced in [1] closed loop
output errors type recursive algorithms developed specifically
for this type of model structure are presented. The algorithms
assure global asymptotic stability in the deterministic environ-
ment and unbiased parameter estimation in the presence of
noise when the plant model is in the model set. The algorithms
will be applied for the identification in closed loop of a test
bench for active noise control.

I. INTRODUCTION

Dual Youla-Kucera (Y-K) model structure is a useful way
of representing plant model uncertainties [2], [3] and evaluate
robustness of different control schemes. See for example [4]
among other publications. It also offers a way for handling
large model uncertainties, provided that this structures can
be identified recursively in closed loop operation in view
of iterative tuning and adaptive control. The standard way
of recursively identifying a dual parametrized Youla-Kucera
plant model in closed loop operation is to use the so called
”Hansen scheme” [2],[5] which transforms this operation
in an open loop type identification scheme. This approach
however does not take advantage of using dedicated methods
for recursive identification in closed loop operation where the
aim is to find a plant model estimate which allows to obtain
the best closed loop predictor [1],[6]. The objective is also to
get a better approximation in the frequency region close to
the Nyquist point when the plant model is not in the model
set. There are number of off-line identification procedure for
identification of dual Youla Kucera parametrized models in
closed loop ([7]).
The objective of this paper is to introduce recursive identi-
fication algorithms dedicated to the identification in closed
loop operation of dual Youla Kucera parametrized models
which try to minimize the closed loop (output) prediction
error. The algorithms will be developed under the assumption
that the controller is constant and known and when the plant
model is in the model set. They will assure:
• global asymptotic stability for any initial parameter

estimate and closed loop error prediction,
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Fig. 1: Closed loop ouput error identification of dual Youla
Kucera parametrized model

• unbiased parameter estimation in the presence of mea-
surement noise

Identification in closed loop operation of a test bench for ac-
tive noise control will illustrate the use of the algorithms and
their performance. The paper is organized as follows: Basic
equation will be presented in Section II. The algorithms will
be developed and analyzed in Section III, IV and V under
the hypothesis that the plant model is in the model set. The
bias distribution in the frequency domain when the plant is
not in the model set will be discussed in Section VI and
Section VIII will present simulation results.

II. BASIC EQUATIONS

The closed loop output error configuration for the identi-
fication of a dual Youla-Kucera parametrized plant models
is shown in Figure 1
The initial available plant model (nominal model) is de-

scribed by the transfer operator:

Go(q
−1) =

q−doB′o(q
−1)

Ao(q−1)
=
Bo(q

−1)

Ao(q−1)
(1)



with:

d0 = the plant pure time delay in
number of sampling periods

Ao = 1 + a1q
−1 + · · ·+ anA

q−nA = 1 + q−1A∗0 ;

Bo = b1q
−1 + · · ·+ bnB

q−nB = q−1B∗0 ;

B∗o = b1 + · · ·+ bnB
q−nB+1 ;

where A0(q−1), B0(q−1), B∗0(q−1) are polynomials in the
delay operator q−1 and nA0

, nB0
and nB−1 represent their

orders1. The feedback fixed polynomial controller K is given
by:

K(q−1) =
R(q−1)

S(q−1)
(2)

with:

S = 1 + s1q
−1 + · · ·+ snS

q−nS = 1 + q−1S∗ ;

R = r0 + · · ·+ rnR
q−nR ;

It will be assumed that S is an asymptotically stable poly-
nomial. The unknown part of the plant model is described
by the input output block Π:

Π(q−1) =
∆(q−1)

Γ(q−1)
(3)

where: with:

Γ = 1 + γ1q
−1 + · · ·+ γnΓq

−nΓ = 1 + q−1Γ∗ ;

∆ = δ1q
−1 + · · ·+ δn∆q

−n∆ = q−1∆∗ ;
(4)

The unknown plant model is described by:

G(q−1) =
B(q−1)

A(q−1)
(5)

and can be expressed as2

G(q−1) =
ΓB0 + ∆S

ΓA0 −∆R
(6)

The closed loop output predictor can be described similarly
except that one uses an estimation of Π:

Π̂(q−1) =
∆̂(q−1)

Γ̂(q−1)
(7)

where:

Γ̂ = 1 + γ̂1q
−1 + · · ·+ γ̂nΓ

q−nΓ = 1 + q−1Γ̂∗ ;

∆̂ = δ̂1q
−1 + · · ·+ δ̂n∆

q−n∆ = q−1∆̂∗ ;
(8)

The input and output of Π will be denoted α(t) and β(t)
respectively and the input and output of Π̂ will be denoted
α̂(t) and β̂(t) respectively.

1The complex variable z−1 will be used for characterizing the system’s
behavior in the frequency domain and the delay operator q−1 will be used
for describing the system’s behavior in the time domain.

2In order to simplify the writing the argument q−1 has been dropped out
in many equations)

In the time domain the following input/output relationships
will be used:

y(t) =
ΓB0 + ∆S

ΓA0 −∆R
u(t) (9)

u(t) = r(t)− R

S
y(t) (10)

where r(t) is the external excitation.

ŷ(t) =
Γ̂B0 + ∆̂S

Γ̂A0 − ∆̂R
û(t) (11)

û(t) = r(t)− R

S
ŷ(t) (12)

Note that:
α(t) = Su(t) +Ry(t) (13)

β(t) = A0y(t)−B0u(t) =
∆

Γ
α(t) (14)

α̂(t) = Sû(t) +Rŷ(t) (15)

β̂(t) = A0ŷ(t)−B0û(t) =
∆̂

Γ̂
ˆα(t) (16)

The closed loop output error is defined as:

εCL = y(t)− ŷ(t) (17)

The closed loop poles for the nominal system G0 are defined
by:

P0 = A0S +B0R (18)

which is assumed to be a Hurwitz polynomial. Define:

θT = [γ1, γ2 . . . δ1, δ2, . . . ] ; (19)

θ̂T = [γ̂1, γ̂2 . . . δ̂1, δ̂2...], (20)

ϕT (t) = [−β̂(t),−β̂(t− 1), . . . α̂(t), α̂(t− 1), . . . ] (21)

For developing the identification algorithm it will be assumed
that the plant model is in the model set. The algorithms will
be analyzed first in this context and then in the case when
the plant model is not in the model set.

III. DUAL-CLOE ALGORITHM

In a deterministic context (w = 0 in Fig; 1), for the case of
a constant estimated parameter vector θ̂ using the predictor
given in Eq (11) one has the following result:
Lemma 1 For a constant estimated vector θ̂ in a deterministic
environment (w(t) = 0) the closed loop output error is given
by:

εCL(t+ 1) =
S

ΓP0
(θ − θ̂)Tϕ(t) (22)

The proof of this lemma is given in appendix A.
In the presence of time varying parameter estimates one can
define an a priori and and a posteriori filtered closed loop
output error, i.e.

ε0
CL(t+ 1) =

S

ΓP0
(θ − θ̂(t))Tϕ(t) (23)

εCL(t+ 1) =
S

ΓP0
(θ − θ̂(t+ 1))Tϕ(t) (24)



Eqs. (23)and (24) have the standard form for using parameter
adaptation algorithms (PAA) of the form: [6], [8]

Θ̂(t+ 1) = Θ̂(t) + F (t)φ(t)ν(t+ 1) (25)

ν(t+ 1) =
νo(t+ 1)

1 + φTF (t)φ(t)
(26)

F (t+ 1)−1 = λ1F (t)−1 + λ2φ(t)φT (t) (27)

0 < λ1 < 1 0 ≤ λ2 < 2, F0 > 03 (28)

Leading to the Dual − CLOE algorithm with:
Θ̂(t) = θ̂(t), φ(t) = ϕ(t) and ν(t) = εCL(t).

A. Stability Analysis
Using the Theorem 4.1 [6] or Theorem 3.3 [8] one can

straightforwardly conclude that:
Lemma 2: Using the PAA given in Eqs. (25) through (27)
with Θ̂(t) = θ̂(t) and φ(t) = ϕ(t) and assuming that S
is stable and the external excitation r(t) is bounded, one has :

lim
t→∞

εCL(t+ 1) = lim
t→∞

ε0
CL(t+ 1) = 0 (29)

together with the boundedness of εCL(t), and ϕ(t) for any
initial conditions, provided that:

S(z−1)

Γ(z−1)P0(z−1)
− λ

2
; maxλ2(t) ≤ λ2 ≤ 2 (30)

is a strictly positive real (SPR) transfer function.

IV. DUAL - FCLOE ALGORITHM

Consider now Eq. (22), for the case with time varying
estimated parameters. Neglecting the non-commutativity of
the time-varying operators (but an exact algorithms can be
derived - see [8]) one can consider to filter the observation
vector as follows:

ϕf (t) =
S

Γ0P0
ϕ(t) (31)

where Γ0 is an a priori estimation of Γ (Γ0 =1 in the absence
of a priori information or in the case of FIR models). In this
case one gets:

εCL(t+ 1) =
Γ0

Γ
[θ − θ̂(t+ 1)]Tϕf (t) (32)

This equation has the standard form for using the PAA given
in Eqs. (25) through (27)leading to the Dual − FCLOE
algorithm with:
Θ̂(t) = θ̂(t), φ(t) = ϕf (t) and ν(t) = εCL(t).
The stability condition in this case will be that the transfer
function:

Γ0(z−1)

Γ(z−1)
− λ

2
; maxλ2(t) ≤ λ2 ≤ 2 (33)

is a strictly positive real (SPR) transfer function.
Remark: One can also consider to filter the regressor vec-
tor through the current estimation of Γ̂(t) but including a
stability test (Dual −AFCLOEalgorithm).

3λ1(t) and λ2(t) allow to obtain various profiles for the evolution of the
adaptation gain F (t)

A. The Noisy Case

In the presence of measurement noise w(t) , the output of
the plant will be given by:

y((t+ 1) = −A ∗ y(t) +B ∗ u(t) +Aw(t+ 1) (34)

One assumes that the measurement noise w(t) is bounded
and independent with respect to the external excitation r(t)
and that one uses a decreasing adaptation gain (λ1(t) ≡
1, λ2(t) > 0). One can use for analysis, the ODE approach
[9]. Following a similar path as for the proof of Lemma 1 it
can be shown that the closed loop output prediction error in
the case of the Dual − CLOE algorithm for a fixed value
of the estimated parameter vector will be given by:

εCL(t+ 1) =
S

ΓP0
(θ − θ̂)Tϕ(t) +

AS

ΓP0
w(t+ 1) (35)

For the Dual − FCLOE algorithm the expression of the
adaptation error will take the form:

εCL(t+ 1) =
Γ0

Γ
(θ − θ̂)Tϕf (t) +

AS

ΓP0
w(t+ 1) (36)

One observes that ϕ(t), ϕf (t) and ϕff (t) are independent
with respect to w(t+ 1) (by the way that tey are generated)
and one can straightforwardly use Theorem 4.1 [8] One
concludes that conditions (30) and (33) respectively assures
asymptotic unbiased estimates under richness conditions.

V. RELAXATION THE POSITIVE REAL CONDITION

A. Using Integral+proportional Adaptation

As shown in [8], [10], [1], is possible to relax the
strictly positive real condition for stability by using an
integral+proportional adaption algorithm:

θ̂I(t+ 1) = θ̂I(t) + FI(t)φ(t)ν(t+ 1) (37)

θ̂p(t+ 1) = Fp(t)φ(t)ν(t+ 1) (38)
FI(t+ 1)−1 = λ1(t)FI(t)

−1 + λ2(t)φ(t)φT (t) (39)
Fp(t) = α(t)FI(t) ;α(t) > −0.5 (40)

θ̂(t+ 1) = θ̂I(t+ 1) + θ̂p(t+ 1) (41)

provided that:

1) The adaptation gains FI and FP and the observation
vector φ(t) satisfy the condition:

φT (t)(FP +
1

2
FI)φ(t) > Kmin > 0 ∀t (42)

2) The gain Kmin is the minimum gain such that:

HK(z−1) =
S/(ΓP0)− λ/2

1 +K[S/(ΓP0)− λ/2]
(43)

is a strictly positive real (a solution exists always in the
discrete time).



B. Averaging

For small values of the adaptation gain on can use ”averag-
ing” [11] for analysing the stability of the system. Following
the analysis provided in [12] stability of the system will be
assured if the frequency region wher the SPR condition is
violated, is samller than the frequency region where the SPR
condition is verified.

VI. BIAS DISTRIBUTION IN THE FREQUENCY DOMAIN

If the true system is not in the model set, the identified
model will be necessarily biased. The bias distribution is
usually evaluated in the frequency domain. Using the results
of [13] it is possible to obtain the limit model expressions
of Dual − CLOE and DualFCLOE.

Lemma 3: The limit model for Dual−CLOE algorithm
is given by

θ̂∗ = Argmin

∫ +π

−π

∣∣∣Â(eiω)
∣∣∣2∣∣∣G(eiω)− Ĝ(eiω)
∣∣∣2 ∣∣Syw(eiω)

∣∣2 Ψr(ω)dω (44)

where Syw = AS
ΓP0 is the output sensitivity function and

Ψr(ω) is the PSD (Power Spectral Density) of the external
excitation signal.
The proof is given in Appendix.

Lemma 4: The limit model of Dual-FCLOE algorithm is
given by

θ̂∗ = Argmin

∫ +π

−π

∣∣∣∣∣ Â(eiω)S(eiω)

Γ0(eiω)P0(eiω)

∣∣∣∣∣
2

∣∣∣G(eiω)− Ĝ(eiω)
∣∣∣2 ∣∣Syw(eiω)

∣∣2 Ψr(ω)dω (45)

The proof is given in Appendix.

VII. VALIDATION OF HE IDENTIFIED MODELS

The techniques presented in [6] and [8] can be used also
in this context.

VIII. IDENTIFICATION OF A TEST BENCH FOR ACTIVE
NOISE CONTROL IN CLOSED LOOP OPERATION

The objective of this section is to see if a reliable dual
Youla-Kucera model can be obtained in closed loop op-
eration. The case of feedback active noise attenuation is
considered. The two physical configurations corresponding
to G0 and G are shown in Figure 2 and their corresponding
Bode diagramms are presented in Fig. 3 (For more details
see [14]).
The excitation signal on r(t) is a PRBS (length: 214 − 1
samples, without decimation). The system G has an order
equal to 26 and the R-S controller has an order equal to
57 thus the full order Dual-Youla-Kucera filter has an order
equal to 85. The first identification is carried out by using the
Dual-FCLOE with Γ0 = 1, the estimation being performed
with the classical PAA (equations (25), (26), (27), (28)) with
λ1 = λ2 = 1 (decreasing adaptation gain). One can observe

Fig. 2: Duct active noise control test bench (Photo): config-
uration Go (top), configuration G (bottom)

Fig. 3: Bode Diagram of G0 and G

that the identification scheme converges, as shown in Fig. 4.
The estimated parameters are represented as a function of
time in Fig. 5. In order to improve the convergence, one
can employ an Integral+Proportional adaptation as presented
in Section V. An identification under the same conditions
is carried out where α = 0.2, Fig. 6 and 7 show that the
convergence of the estimated parameters has been improved.

At last an identification with a reduced order Dual Youla-
Kucera filter is performed (order 60) and Fig. 8 and 9
show that the algorithms performs well, even if a small bias
appears in high frequencies, which is unavoidable.

IX. CONCLUSIONS

The paper has presented a set of recursive algorithms for
identification in closed loop operation of plant models repre-
sented in dual Youla Kucera form. The algorithms have been
analyzed in the deterministic and stochastic environment and
have been evaluated on data from an acitve attenuation noise
system. Further work will concern comparisons with the
Hansen scheme.



Fig. 4: Bode Diagram of G and of the estimated model for
Dual-FCLOE (Dual Y-K filter of order 85, I adaptation)

Fig. 5: Estimated parameters for Dual-FCLOE (Dual Youla-
Kucera filter of order 85,I adaptation)

Fig. 6: Bode Diagram of G and of the estimated model for
Dual-FCLOE (Dual Y-K filter of order 85, PI adaptation)

Fig. 7: Estimated parameters for Dual-FCLOE (Dual Y-K
filter of order 85, PI adaptation)

Fig. 8: Bode Diagram of G and of the estimated model for
Dual-FCLOE (Dual Y-K filter of order 60, I adaptation)

Fig. 9: Estimated parameters for Dual-FCLOE (Dual Youla-
Kucera filter of order 85, I adaptation)
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X. APPENDIX A: PROOF OF LEMMA 1

Proof : From Eq. (9) one gets:

Γ[A0y(t+ 1−B0u(t+ 1] = ∆[Su(t+ 1) +Ry(t+ 1] (46)

which can be alternatively written as:

y(t+1) = −(ΓA0)∗y(t)+ΓB0u(t+1)+∆[Su(t+1)+Ry(t+1)]
(47)

where:

ΓA0 = 1 + q−1(ΓA0)∗ (48)

The output of the closed loop predictor will be given by:

ŷ(t+1) = −(Γ̂A0)∗ŷ(t)+Γ̂B0û(t+1]+∆̂[Sû(t+1)+Rŷ(t+1)]
(49)

where:

Γ̂A0 = 1 + q−1(Γ̂A0)∗ (50)

Eq. (47) can be rewritten:

y(t+ 1) = −(ΓA0)∗y(t) + ΓB0u(t+ 1)+

∆[Su(t+ 1) +Ry(t+ 1)]

±[ΓA0)∗ŷ(t) + ΓB0û(t+ 1) + ∆[Sû(t+ 1) +Rŷ(t+ 1)]
(51)

taking into account Eq.(17) , Eq. (51) can be expressed as:

y(t+ 1) = −(ΓA0)∗εCL(t)− ΓB0
R

S
εCL(t)

−(ΓA0)∗ŷ(t) + ΓB0û(t) + ∆[Sû(t+ 1) +Rŷ(t+ 1)]

+∆[RεCL(t)− SR
S
εCL(t)] (52)

Note that the last term in Eq. (52) is zero. Subtracting now
Eq. (49) from Eq. (52) one gets:

[1 + q−1(ΓA0)∗ + q−1 ΓB0R

S
]εCL(t+ 1)

= −[(ΓA0)∗ − (Γ̂A0)∗]ŷ(t) + (Γ− Γ̂)B0û(t+ 1)

+(∆− ∆̂)[S ˆu(t+ 1 +Rŷ(t+ 1)] (53)

Taking into account that:

(ΓA0)∗ − Γ̂A0)∗ = (Γ∗ − Γ̂)A0 (54)

(Γ− Γ̂) = q−1(Γ∗ − Γ̂∗) (55)

and also Eq. (18) , Eq. (53) can be rewritten as:

ΓP0

S
εCL(t+ 1) = (Γ∗ − Γ̂∗)[A0ŷ(t)−B0û(t)]

+(∆∗ − ∆̂∗)[Sû(t+ 1) +Rŷ(t+ 1)] (56)

Taking also into account Eqs. (15) and (16) one gets Eq. (22).

XI. APPENDIX B: PROOF OF LEMMAS 3 AND 4

A. Proof of Lemma 3

As in [13], let us define Q(q−1, θ̂) such that
Q(q−1, θ̂)∂εCL

∂θ̂
= −ϕ(t, θ̂). Notice that we have

β̂(t+ 1) = P0

S ŷ(t+ 1, θ̂)−B0r(t), and β̂(t+ 1) = θ̂Tϕ(t).
Therefore ∂ŷ(t+1,∂θ̂)

θ̂
= S

P0

[
ϕ(t) + θ̂T ∂ϕ(t)

∂qε
∂qε

∂θ̂

]
,

and
[
P0

S + θ̂T ∂ϕ
∂qε

]
∂ε(t+1,θ̂)

∂θ̂
= −ϕ(t). Therefore

Q(q−1, θ̂) = P0

S + θ̂T ∂ϕqε = P0Γ̂
S . Now, Theorem 1

of [13] can be used with the present expression of
Q(q−1, θ̂) = P0Γ̂

S . Since from [8], p.308, εCL(t) =
ÂS
P0Γ̂

[
G− Ĝ

]
AS
ΓP0

r(t)+ AS
ΓP0

w(t). One obtains, the equivalent

prediction error εE(t) = Â
[
G− Ĝ

]
AS
ΓP0

r(t) + AS
ΓP0

w(t),

and one has θ̂∗ = Argmin
∫ +π

−π ΨεE (ω)dω, where ΨεE (ω)
is the PSD of εE , hence the limit model in the frequency
domain.

B. Proof of Lemma 4

Like in case 1 of Dual − CLOE one has Q(q−1, θ̂) =
P0Γ̂
S . On the other hand, one has ϕf (t) = S

P0Γ0
ϕ(t) =

1
Qf (q−1)ϕ(t), where Qf (q−1) = P0Γ0

S . Therefore one can
apply Theorem 2 in [13], with the present expressions of
Q(q−1, θ̂) and Qf (q−1), and the equivalent prediction error
is εE(t) = Q(q−1, θ̂)νCL(t)+(1−Q(q−1, θ)) AS

Γ0P0
w(t+1),

and one gets εE(t) = ÂS
Γ0P0

[
G− Ĝ

]
AS
ΓP0

r(t) + AS
ΓP0

w(t),
hence the limit model in the frequency domain.




