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Abstract-Dual Youla-Kucera plant model parametrization is very useful for describing model uncertainties. Therefore it is interesting to develop recursive identification algorithms for identification of these type of plant model structures in closed loop operation for potential use in iterative tuning or adaptive control. Following the approach introduced in [START_REF] Landau | An output error recursive algorithm for unbiased identification in closed loop[END_REF] closed loop output errors type recursive algorithms developed specifically for this type of model structure are presented. The algorithms assure global asymptotic stability in the deterministic environment and unbiased parameter estimation in the presence of noise when the plant model is in the model set. The algorithms will be applied for the identification in closed loop of a test bench for active noise control.

I. INTRODUCTION

Dual Youla-Kucera (Y-K) model structure is a useful way of representing plant model uncertainties [START_REF] Anderson | From Youla-Kučera to identification, adaptive and nonlinear control[END_REF], [START_REF] Mahtout | Advances in youlakucera parametrization: A review[END_REF] and evaluate robustness of different control schemes. See for example [START_REF] Vau | Adaptive rejection of narrow-band disturbances in the presence of plant uncertainties -a dual youla-kucera approach[END_REF] among other publications. It also offers a way for handling large model uncertainties, provided that this structures can be identified recursively in closed loop operation in view of iterative tuning and adaptive control. The standard way of recursively identifying a dual parametrized Youla-Kucera plant model in closed loop operation is to use the so called "Hansen scheme" [START_REF] Anderson | From Youla-Kučera to identification, adaptive and nonlinear control[END_REF], [START_REF] Hansen | Closed loop identification via the fractional representation: experiment design[END_REF] which transforms this operation in an open loop type identification scheme. This approach however does not take advantage of using dedicated methods for recursive identification in closed loop operation where the aim is to find a plant model estimate which allows to obtain the best closed loop predictor [START_REF] Landau | An output error recursive algorithm for unbiased identification in closed loop[END_REF], [START_REF] Landau | Recursive algorithms for identification in closed loop. a unified approach and evaluation[END_REF]. The objective is also to get a better approximation in the frequency region close to the Nyquist point when the plant model is not in the model set. There are number of off-line identification procedure for identification of dual Youla Kucera parametrized models in closed loop ( [START_REF] Van Den Hopf | Multivariable closed-loop identification: From indirect identification to dual-youla parametrization[END_REF]). The objective of this paper is to introduce recursive identification algorithms dedicated to the identification in closed loop operation of dual Youla Kucera parametrized models which try to minimize the closed loop (output) prediction error. The algorithms will be developed under the assumption that the controller is constant and known and when the plant model is in the model set. They will assure:

• global asymptotic stability for any initial parameter estimate and closed loop error prediction, Identification in closed loop operation of a test bench for active noise control will illustrate the use of the algorithms and their performance. The paper is organized as follows: Basic equation will be presented in Section II. The algorithms will be developed and analyzed in Section III, IV and V under the hypothesis that the plant model is in the model set. The bias distribution in the frequency domain when the plant is not in the model set will be discussed in Section VI and Section VIII will present simulation results.

II. BASIC EQUATIONS

The closed loop output error configuration for the identification of a dual Youla-Kucera parametrized plant models is shown in Figure 1 The initial available plant model (nominal model) is described by the transfer operator:

G o (q -1 ) = q -do B o (q -1 ) A o (q -1 ) = B o (q -1 ) A o (q -1 ) (1) 
with:

d 0 = the plant pure time delay in number of sampling periods

A o = 1 + a 1 q -1 + • • • + a n A q -n A = 1 + q -1 A * 0 ; B o = b 1 q -1 + • • • + b n B q -n B = q -1 B * 0 ; B * o = b 1 + • • • + b n B q -n B +1
; where A 0 (q -1 ), B 0 (q -1 ), B * 0 (q -1 ) are polynomials in the delay operator q -1 and n A0 , n B0 and n B -1 represent their orders 1 . The feedback fixed polynomial controller K is given by:

K(q -1 ) = R(q -1 ) S(q -1 ) (2) 
with:

S = 1 + s 1 q -1 + • • • + s n S q -n S = 1 + q -1 S * ; R = r 0 + • • • + r n R q -n R ;
It will be assumed that S is an asymptotically stable polynomial. The unknown part of the plant model is described by the input output block Π:

Π(q -1 ) = ∆(q -1 ) Γ(q -1 ) (3) 
where: with:

Γ = 1 + γ 1 q -1 + • • • + γ nΓ q -nΓ = 1 + q -1 Γ * ; ∆ = δ 1 q -1 + • • • + δ n∆ q -n∆ = q -1 ∆ * ; (4) 
The unknown plant model is described by:

G(q -1 ) = B(q -1 ) A(q -1 ) (5) 
and can be expressed as2 

G(q -1 ) = ΓB 0 + ∆S ΓA 0 -∆R (6) 
The closed loop output predictor can be described similarly except that one uses an estimation of Π:

Π(q -1 ) = ∆(q -1 ) Γ(q -1 ) (7) 
where:

Γ = 1 + γ1 q -1 + • • • + γnΓ q -nΓ = 1 + q -1 Γ * ; ∆ = δ1 q -1 + • • • + δn∆ q -n∆ = q -1 ∆ * ; (8) 
The input and output of Π will be denoted α(t) and β(t) respectively and the input and output of Π will be denoted α(t) and β(t) respectively.

In the time domain the following input/output relationships will be used:

y(t) = ΓB 0 + ∆S ΓA 0 -∆R u(t) (9) 
u(t) = r(t) - R S y(t) (10) 
where r(t) is the external excitation.

ŷ(t) = ΓB 0 + ∆S ΓA 0 -∆R û(t) (11) 
û(t) = r(t) - R S ŷ(t) (12) 
Note that:

α(t) = Su(t) + Ry(t) (13) 
β(t) = A 0 y(t) -B 0 u(t) = ∆ Γ α(t) (14) 
α(t) = S û(t) + Rŷ(t) (15) 
β(t) = A 0 ŷ(t) -B 0 û(t) = ∆ Γ α (t) (16) 
The closed loop output error is defined as:

ε CL = y(t) -ŷ(t) (17) 
The closed loop poles for the nominal system G 0 are defined by:

P 0 = A 0 S + B 0 R (18) 
which is assumed to be a Hurwitz polynomial. Define:

θ T = [γ 1 , γ 2 . . . δ 1 , δ 2 , . . . ] ; (19) θT = [γ1, γ2 . . . δ1, δ2...], (20) 
ϕ T (t) = [-β(t), -β(t -1), . . . α(t), α(t -1), . . . ] (21) 
For developing the identification algorithm it will be assumed that the plant model is in the model set. The algorithms will be analyzed first in this context and then in the case when the plant model is not in the model set.

III. DUAL-CLOE ALGORITHM

In a deterministic context (w = 0 in Fig; 1), for the case of a constant estimated parameter vector θ using the predictor given in Eq [START_REF] Anderson | Stability of adaptive systems[END_REF] one has the following result: Lemma 1 For a constant estimated vector θ in a deterministic environment (w(t) = 0) the closed loop output error is given by:

ε CL (t + 1) = S ΓP 0 (θ -θ) T ϕ(t) (22) 
The proof of this lemma is given in appendix A.

In the presence of time varying parameter estimates one can define an a priori and and a posteriori filtered closed loop output error, i.e.

ε 0 CL (t + 1) = S ΓP 0 (θ -θ(t)) T ϕ(t) (23) 
ε CL (t + 1) = S ΓP 0 (θ -θ(t + 1)) T ϕ(t) (24) 
Eqs. ( 23)and ( 24) have the standard form for using parameter adaptation algorithms (PAA) of the form: [START_REF] Landau | Recursive algorithms for identification in closed loop. a unified approach and evaluation[END_REF], [START_REF] Landau | Adaptive control, 2nd Edition[END_REF] Θ(t + 1) = Θ(t) + F (t)φ(t)ν(t + 1) (25)

ν(t + 1) = ν o (t + 1) 1 + φ T F (t)φ(t) (26) 
F (t + 1) -1 = λ 1 F (t) -1 + λ 2 φ(t)φ T (t) (27) 0 < λ 1 < 1 0 ≤ λ 2 < 2, F 0 > 0 3 (28)
Leading to the Dual -CLOE algorithm with:

Θ(t) = θ(t), φ(t) = ϕ(t) and ν(t) = ε CL (t).

A. Stability Analysis

Using the Theorem 4.1 [START_REF] Landau | Recursive algorithms for identification in closed loop. a unified approach and evaluation[END_REF] or Theorem 3.3 [START_REF] Landau | Adaptive control, 2nd Edition[END_REF] one can straightforwardly conclude that: Lemma 2: Using the PAA given in Eqs. ( 25) through (27) with Θ(t) = θ(t) and φ(t) = ϕ(t) and assuming that S is stable and the external excitation r(t) is bounded, one has :

lim t→∞ ε CL (t + 1) = lim t→∞ ε 0 CL (t + 1) = 0 (29)
together with the boundedness of ε CL (t), and ϕ(t) for any initial conditions, provided that:

S(z -1 ) Γ(z -1 )P 0 (z -1 ) - λ 2 ; maxλ 2 (t) ≤ λ 2 ≤ 2 (30) 
is a strictly positive real (SPR) transfer function.

IV. DUAL -FCLOE ALGORITHM Consider now Eq. ( 22), for the case with time varying estimated parameters. Neglecting the non-commutativity of the time-varying operators (but an exact algorithms can be derived -see [START_REF] Landau | Adaptive control, 2nd Edition[END_REF]) one can consider to filter the observation vector as follows:

ϕ f (t) = S Γ 0 P 0 ϕ(t) (31) 
where Γ 0 is an a priori estimation of Γ (Γ 0 =1 in the absence of a priori information or in the case of FIR models). In this case one gets:

ε CL (t + 1) = Γ 0 Γ [θ -θ(t + 1)] T ϕ f (t) (32) 
This equation has the standard form for using the PAA given in Eqs. ( 25) through ( 27)leading to the Dual -F CLOE algorithm with:

Θ(t) = θ(t), φ(t) = ϕ f (t) and ν(t) = ε CL (t).
The stability condition in this case will be that the transfer function:

Γ 0 (z -1 ) Γ(z -1 ) - λ 2 ; maxλ 2 (t) ≤ λ 2 ≤ 2 (33) 
is a strictly positive real (SPR) transfer function.

Remark: One can also consider to filter the regressor vector through the current estimation of Γ(t) but including a stability test (Dual -AF CLOEalgorithm).

A. The Noisy Case

In the presence of measurement noise w(t) , the output of the plant will be given by:

y((t + 1) = -A * y(t) + B * u(t) + Aw(t + 1) (34) 
One assumes that the measurement noise w(t) is bounded and independent with respect to the external excitation r(t) and that one uses a decreasing adaptation gain (λ 1 (t) ≡ 1, λ 2 (t) > 0). One can use for analysis, the ODE approach [START_REF] Ljung | System Identification -Theory for the User, 2nd Edition[END_REF]. Following a similar path as for the proof of Lemma 1 it can be shown that the closed loop output prediction error in the case of the Dual -CLOE algorithm for a fixed value of the estimated parameter vector will be given by:

ε CL (t + 1) = S ΓP 0 (θ -θ) T ϕ(t) + AS ΓP 0 w(t + 1) (35)
For the Dual -F CLOE algorithm the expression of the adaptation error will take the form:

ε CL (t + 1) = Γ 0 Γ (θ -θ) T ϕ f (t) + AS ΓP 0 w(t + 1) (36) 
One observes that ϕ(t), ϕ f (t) and ϕ f f (t) are independent with respect to w(t + 1) (by the way that tey are generated) and one can straightforwardly use Theorem 4.1 [START_REF] Landau | Adaptive control, 2nd Edition[END_REF] One concludes that conditions (30) and (33) respectively assures asymptotic unbiased estimates under richness conditions.

V. RELAXATION THE POSITIVE REAL CONDITION

A. Using Integral+proportional Adaptation

As shown in [START_REF] Landau | Adaptive control, 2nd Edition[END_REF], [START_REF] Tomizuka | Parallel MRAS without compensation block, Automatic Control[END_REF], [START_REF] Landau | An output error recursive algorithm for unbiased identification in closed loop[END_REF], is possible to relax the strictly positive real condition for stability by using an integral+proportional adaption algorithm:

θI (t + 1) = θI (t) + F I (t)φ(t)ν(t + 1) (37) θp (t + 1) = F p (t)φ(t)ν(t + 1) (38) F I (t + 1) -1 = λ 1 (t)F I (t) -1 + λ 2 (t)φ(t)φ T (t) (39) F p (t) = α(t)F I (t) ; α(t) > -0.5 (40) θ(t + 1) = θI (t + 1) + θp (t + 1) (41) 
provided that:

1) The adaptation gains F I and F P and the observation vector φ(t) satisfy the condition:

φ T (t)(F P + 1 2 F I )φ(t) > K min > 0 ∀t (42)
2) The gain K min is the minimum gain such that:

H K (z -1 ) = S/(ΓP 0 ) -λ/2 1 + K[S/(ΓP 0 ) -λ/2] ( 43 
)
is a strictly positive real (a solution exists always in the discrete time).

B. Averaging

For small values of the adaptation gain on can use "averaging" [START_REF] Anderson | Stability of adaptive systems[END_REF] for analysing the stability of the system. Following the analysis provided in [START_REF] Landau | Adaptive feedforward compensation algorithms for active vibration control with mechanical coupling[END_REF] stability of the system will be assured if the frequency region wher the SPR condition is violated, is samller than the frequency region where the SPR condition is verified.

VI. BIAS DISTRIBUTION IN THE FREQUENCY DOMAIN

If the true system is not in the model set, the identified model will be necessarily biased. The bias distribution is usually evaluated in the frequency domain. Using the results of [START_REF] Vau | Some remarks on the bias distribution analysis of discrete-time identification algorithms based on pseudo-linear regressions[END_REF] it is possible to obtain the limit model expressions of Dual -CLOE and DualF CLOE. where S yw = AS ΓP 0 is the output sensitivity function and Ψ r (ω) is the PSD (Power Spectral Density) of the external excitation signal. The proof is given in Appendix. The proof is given in Appendix.

VII. VALIDATION OF HE IDENTIFIED MODELS

The techniques presented in [START_REF] Landau | Recursive algorithms for identification in closed loop. a unified approach and evaluation[END_REF] and [START_REF] Landau | Adaptive control, 2nd Edition[END_REF] can be used also in this context.

VIII. IDENTIFICATION OF A TEST BENCH FOR ACTIVE NOISE CONTROL IN CLOSED LOOP OPERATION

The objective of this section is to see if a reliable dual Youla-Kucera model can be obtained in closed loop operation. The case of feedback active noise attenuation is considered. The two physical configurations corresponding to G 0 and G are shown in Figure 2 and their corresponding Bode diagramms are presented in Fig. 3 (For more details see [START_REF] Vau | Closed-loop output error identification algorithms with predictors based on generalized orthonormal transfer functions: Convergence conditions and bias distribution[END_REF]). The excitation signal on r(t) is a PRBS (length: 2 14 -1 samples, without decimation). The system G has an order equal to 26 and the R-S controller has an order equal to 57 thus the full order Dual-Youla-Kucera filter has an order equal to 85. The first identification is carried out by using the Dual-FCLOE with Γ 0 = 1, the estimation being performed with the classical PAA (equations (25), ( 26), ( 27), (28)) with λ 1 = λ 2 = 1 (decreasing adaptation gain). One can observe The estimated parameters are represented as a function of time in Fig. 5. In order to improve the convergence, one can employ an Integral+Proportional adaptation as presented in Section V. An identification under the same conditions is carried out where α = 0.2, Fig. 6 and7 show that the convergence of the estimated parameters has been improved.

At last an identification with a reduced order Dual Youla-Kucera filter is performed (order 60) and Fig. 8 and9 show that the algorithms performs well, even if a small bias appears in high frequencies, which is unavoidable.

IX. CONCLUSIONS

The paper has presented a set of recursive algorithms for identification in closed loop operation of plant models represented in dual Youla Kucera form. The algorithms have been analyzed in the deterministic and stochastic environment and have been evaluated on data from an acitve attenuation noise system. Further work will concern comparisons with the Hansen scheme. Proof : From Eq. ( 9) one gets:

Γ[A 0 y(t + 1 -B 0 u(t + 1] = ∆[Su(t + 1) + Ry(t + 1] (46)
which can be alternatively written as:

y(t+1) = -(ΓA 0 ) * y(t)+ΓB 0 u(t+1)+∆[Su(t+1)+Ry(t+1)]
(47) where:

ΓA 0 = 1 + q -1 (ΓA 0 ) * (48) 
The output of the closed loop predictor will be given by:

ŷ(t+1) = -( ΓA 0 ) * ŷ(t)+ ΓB 0 û(t+1]+ ∆[S û(t+1)+Rŷ(t+1)] (49 
) where:

ΓA 0 = 1 + q -1 ( ΓA 0 ) * (50) 
Eq. ( 47) can be rewritten:

y(t + 1) = -(ΓA 0 ) * y(t) + ΓB 0 u(t + 1)+ ∆[Su(t + 1) + Ry(t + 1)] ±[ΓA 0 ) * ŷ(t) + ΓB 0 û(t + 1) + ∆[S û(t + 1) + Rŷ(t + 1)] (51) 
taking into account Eq.( 17) , Eq. ( 51) can be expressed as:

y(t + 1) = -(ΓA 0 ) * ε CL (t) -ΓB 0 R S ε CL (t) -(ΓA 0 ) * ŷ(t) + ΓB 0 û(t) + ∆[S û(t + 1) + Rŷ(t + 1)] +∆[Rε CL (t) -S R S ε CL (t)] (52)
Note that the last term in Eq. ( 52) is zero. Subtracting now Eq. (49) from Eq. (52) one gets:

[1 + q -1 (ΓA 0 ) * + q -1 ΓB 0 R S ]ε CL (t + 1) = -[(ΓA 0 ) * -( ΓA 0 ) * ]ŷ(t) + (Γ -Γ)B 0 û(t + 1) +(∆ -∆)[S û(t + 1 + Rŷ(t + 1)] (53) 
Taking into account that:

(ΓA 0 ) * -ΓA 0 ) * = (Γ * -Γ)A 0 (54) (Γ -Γ) = q -1 (Γ * -Γ * ) (55) 
and also Eq. ( 18) , Eq. ( 53) can be rewritten as:

ΓP 0 S ε CL (t + 1) = (Γ * -Γ * )[A 0 ŷ(t) -B 0 û(t)]
+(∆ * -∆ * )[S û(t + 1) + Rŷ(t + 1)] (56)

Taking also into account Eqs. ( 15) and ( 16) one gets Eq. ( 22).

XI. APPENDIX B: PROOF OF LEMMAS 3 AND 4 A. Proof of Lemma 3

As in [START_REF] Vau | Some remarks on the bias distribution analysis of discrete-time identification algorithms based on pseudo-linear regressions[END_REF], let us define Q(q -1 , θ) such that Q(q -1 , θ) ∂ε CL ∂ θ = -ϕ(t, θ). Notice that we have β(t + 1) = P0 S ŷ(t + 1, θ) -B 0 r(t), and β(t + 1) = θT ϕ(t). Therefore Γ S . Now, Theorem 1 of [START_REF] Vau | Some remarks on the bias distribution analysis of discrete-time identification algorithms based on pseudo-linear regressions[END_REF] can be used with the present expression of Q(q -1 , θ) = P0 Γ S . Since from [START_REF] Landau | Adaptive control, 2nd Edition[END_REF], p.308, ε CL (t) = ÂS P0 Γ G -Ĝ AS ΓP0 r(t)+ AS ΓP0 w(t). One obtains, the equivalent prediction error ε E (t) = Â G -Ĝ AS ΓP0 r(t) + AS ΓP0 w(t), and one has θ * = Argmin +π -π Ψ ε E (ω)dω, where Ψ ε E (ω) is the PSD of ε E , hence the limit model in the frequency domain.

B. Proof of Lemma 4

Like in case 1 of Dual -CLOE one has Q(q -1 , θ) = P0 Γ S . On the other hand, one has ϕ f (t) = S P0Γ0 ϕ(t) = 1 Q f (q -1 ) ϕ(t), where Q f (q -1 ) = P0Γ0 S . Therefore one can apply Theorem 2 in [START_REF] Vau | Some remarks on the bias distribution analysis of discrete-time identification algorithms based on pseudo-linear regressions[END_REF], with the present expressions of Q(q -1 , θ) and Q f (q -1 ), and the equivalent prediction error is ε E (t) = Q(q -1 , θ)ν CL (t) + (1 -Q(q -1 , θ)) AS Γ0P0 w(t + 1), and one gets ε E (t) = ÂS Γ0P0 G -Ĝ AS ΓP0 r(t) + AS ΓP0 w(t), hence the limit model in the frequency domain.
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  t). Therefore Q(q -1 , θ) = P0 S + θT ∂ϕ qε = P0

The complex variable z -1 will be used for characterizing the system's behavior in the frequency domain and the delay operator q -1 will be used for describing the system's behavior in the time domain.

In order to simplify the writing the argument q -1 has been dropped out in many equations)

λ 1 (t) and λ 2 (t) allow to obtain various profiles for the evolution of the adaptation gain F (t)